Skip to main content
Log in

Inverse Max + Sum spanning tree problem by modifying the sum-cost vector under weighted \(l_\infty \) Norm

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The inverse max + sum spanning tree (IMSST) problem is studied, which is the first inverse problem on optimization problems with combined minmax–minsum objective functions. Given an edge-weighted undirected network \(G(V,E,c,w)\), the MSST problem is to find a spanning tree \(T\) which minimizes the combined weight \(\max _{e\in T}w(e)+\sum _{e\in T}c(e)\), which can be solved in \(O(m\log n)\) time, where \(m:=|E|\) and \(n:=|V|\). Whereas, in an IMSST problem, a spanning tree \(T_0\) of \(G\) is given, which is not an optimal MSST. A new sum-cost vector \(\bar{c}\) is to be identified so that \(T_0\) becomes an optimal MSST of the network \(G(V,E,\bar{c},w)\), where \(0\le c-l\le \bar{c} \le c+u\) and \(l,u\ge 0\). The objective is to minimize the cost \(\max _{e\in E}q(e)|\bar{c}(e)-c(e)|\) incurred by modifying the sum-cost vector \(c\) under weighted \(l_\infty \) norm, where \(q(e)\ge 1\). We show that the unbounded IMSST problem is a linear fractional combinatorial optimization (LFCO) problem and develop a discrete type Newton method to solve it. Furthermore, we prove an \(O(m)\) bound on the number of iterations, although most LFCO problems can be solved in \(O(m^2 \log m)\) iterations. Therefore, both the unbounded and bounded IMSST problems can be solved by solving \(O(m)\) MSST problems. Computational results show that the algorithms can efficiently solve the problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja, R.K., Orlin, J.B.: A faster algorithm for the inverse spanning tree problem. J. Algorithms 34, 177–193 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Duin, C.W., Volgenant, A.: Minimum deviation and balanced optimization: a unified approach. Oper. Res. Lett. 10, 43–48 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Duin, C.W., Volgenant, A.: Some inverse optimization problems under the Hamming distance. Eur. J. Oper. Res. 170, 887–899 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Guan, X.C., Zhang, J.Z.: Inverse constrained bottleneck problems under weighted \(l_\infty \) norm. Comput. Oper. Res. 34, 3243–3254 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. He, Y., Zhang, B., Yao, E.: Weighted inverse minimum spanning tree problems under Hamming distance. J. Comb. Optim. 9, 91–100 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Heuburger, C.: Inverse optimization: a survey on problems, methods, and results. J. Comb. Optim. 8(3), 329–361 (2004)

    Article  MathSciNet  Google Scholar 

  7. Hochbaum, D.S.: Efficient algorithms for the inverse spanning tree problem. Oper. Res. 51(5), 785–797 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Liu, L.C., Wang, Q.: Constrained inverse min–max spanning tree problems under the weighted Hamming distance. J. Glob. Optim. 43, 83–95 (2009)

    Article  MATH  Google Scholar 

  9. Minoux, M.: Solving combinatorial problems with combined minmax–minsum objective and applications. Math. Program. (Ser. B) 45, 361–371 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Punnen, A.P.: On combined minmax–minsum optimization. Comput. Oper. Res. 21(6), 707–716 (1994)

    Article  MATH  Google Scholar 

  11. Punnen, A.P., Nair, K.P.K.: An \(O(m \log n)\) algorithm for the max + sum spanning tree problem. Eur. J. Oper. Res. 89, 423–426 (1996)

    Article  MATH  Google Scholar 

  12. Radzik, T.: Parametric flows, weighted means of cuts, and fractional combinatorial optimization. In: Pardalos, P.M. (ed.) Complexity in Numerical Optimization, pp. 351–386. World Scientific, Singapore (1993)

  13. Roland, J., Figueira, J.R., Smet, Y.D.: The inverse \(\{0,1\}\)-knapsack problem: theory, algorithms and computational experiments. Discret. Optim. 10, 181–192 (2013)

    Article  MATH  Google Scholar 

  14. Scheinerman, E.R.: Matgraph is a Matlab Toolbox for Simple Graphs. http://www.ams.jhu.edu/~ers/matgraph/

  15. Sokkalingam, P.T., Ahuja, R.K., Orlin, J.B.: Solving inverse spanning tree problems through network flow techniques. Oper. Res. 47(2), 291–298 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wang, Q., Yang, X.G., Zhang, J.Z.: A class of inverse dominant problems under weighted \(l_\infty \) norm and an improved complexity bound for Radziks algorithm. J. Glob. Optim. 34, 551–567 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yamada, T., Takahashi, H., Kataoka, S.: A heuristic algorithm for the mini–max spanning forest problem. Eur. J. Oper. Res. 91, 565–572 (1996)

    Article  MATH  Google Scholar 

  18. Yang, C., Zhang, J.: Two general methods for inverse optimization problems. Appl. Math. Lett. 12, 69–72 (1999)

    Article  MATH  Google Scholar 

  19. Yang, X.G., Zhang, J.Z.: Some inverse min–max network problems under weighted \(l_1\) and \(l_\infty \) norms with bound constraints on changes. J. Comb. Optim. 13, 123–135 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, B., Zhang, J., He, Y.: Constrained inverse minimum spanning tree problems under the bottleneck-type Hamming distance. J. Glob. Optim. 34(3), 467–474 (2006)

    Article  MATH  Google Scholar 

  21. Zhang, J.Z., Liu, Z.: A general model of some inverse combinatorial optimization problems and its solution method under \(l_{\infty }\) norm. J. Comb. Optim. 6, 207–227 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Research is supported by National Natural Science Foundation of China (10801031) and the State Scholarship Fund of China (201208320355).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiucui Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, X., Pardalos, P.M. & Zuo, X. Inverse Max + Sum spanning tree problem by modifying the sum-cost vector under weighted \(l_\infty \) Norm. J Glob Optim 61, 165–182 (2015). https://doi.org/10.1007/s10898-014-0140-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0140-z

Keywords

Navigation