Skip to main content
Log in

Pareto-optimal front of cell formation problem in group technology

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The earliest approaches to the cell formation problem in group technology, dealing with a binary machine-part incidence matrix, were aimed only at minimizing the number of intercell moves (exceptional elements in the block-diagonalized matrix). Later on this goal was extended to simultaneous minimization of the numbers of exceptions and voids, and minimization of intercell moves and within-cell load variation, respectively. In this paper we design the first exact branch-and-bound algorithm to create a Pareto-optimal front for the bi-criterion cell formation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arkat, J., Hosseini, L., Farahani, M.H.: Minimization of exceptional elements and voids in the cell formation problem using a multi-objective genetic algorithm. Expert Syst. Appl. 38(8), 9597–9602 (2011). doi:10.1016/j.eswa.2011.01.161

    Article  Google Scholar 

  2. Bajestani, M.A., Rabbani, M., Rahimi-Vahed, A., Khoshkhou, G.B.: A multi-objective scatter search for a dynamic cell formation problem. Comput. Oper. Res. 36(3), 777–794 (2009). doi:10.1016/j.cor.2007.10.026

    Article  MATH  Google Scholar 

  3. Batsyn, M., Bychkov, I., Goldengorin, B., Pardalos, P.M., Sukhov, P.: Pattern-based heuristic for the cell formation problem in group technology. In: B. Goldengorin, V.A. Kalyagin, P.M. Pardalos (eds.) Models, Algorithms, and Technologies for Network Analysis, Springer Proceedings in Mathematics & Statistics, vol. 32, pp. 11–50. Springer, New York (2013). doi:10.1007/978-1-4614-5574-52

  4. Boulif, M., Atif, K.: A new fuzzy genetic algorithm for the dynamic bi-objective cell formation problem considering passive and active strategies. Int. J. Approx. Reason. 47(2), 141–165 (2008). doi:10.1016/j.ijar.2007.03.003

    Article  MATH  MathSciNet  Google Scholar 

  5. Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154, 29–50 (2007). doi:10.1007/s10479-007-0186-0

    Article  MATH  MathSciNet  Google Scholar 

  6. Dimopoulos, C.: A review of evolutionary multiobjective optimization applications in the area of production research. In: Congress on Evolutionary Computation (CEC2004), vol. 2, pp. 1487–1494 (2004). doi:10.1109/CEC.2004.1331072

  7. Dimopoulos, C.: Explicit consideration of multiple objectives in cellular manufacturing. Eng. Optim. 39(5), 551–565 (2007). doi:10.1080/03052150701351631

    Article  Google Scholar 

  8. Fontes, D.B.M.M., Gaspar-Cunha, A.: On multi-objective evolutionary algorithms. In: C. Zopounidis, P.M. Pardalos (eds.) Handbook of Multicriteria Analysis, Applied Optimization, vol. 103, pp. 287–310. Springer, Berlin (2010). doi:10.1007/978-3-540-92828-7_10

  9. Goldengorin, B., Krushinsky, D., Pardalos, P.M.: Cell Formation in Industrial Engineering: Theory, Algorithms and Experiments. Springer, New York (2013)

    Book  Google Scholar 

  10. Goldengorin, B., Krushinsky, D., Slomp, J.: Flexible PMP approach for large-size cell formation. Oper. Res. 60(5), 1157–1166 (2012). doi:10.1287/opre1120.1108

    Article  MATH  MathSciNet  Google Scholar 

  11. Goldengorin, B., Pardalos, P.M.: Data Correcting Approaches in Combinatorial Optimization. Springer, New York (2012)

    Book  MATH  Google Scholar 

  12. Lee, S.D., Chen, Y.L.: A weighted approach for cellular manufacturing design: minimizing intercell movement and balancing workload among duplicated machines. Int. J. Prod. Res. 35(4), 1125–1146 (1997). doi:10.1080/002075497195588

    Article  MATH  MathSciNet  Google Scholar 

  13. Lei, D., Wu, Z.: Tabu search for multiple-criteria manufacturing cell design. Int. J. Adv. Manuf. Technol. 28, 950–956 (2006). doi:10.1007/s00170-004-2441-8

    Article  Google Scholar 

  14. Malakooti, B., Yang, Z.: Multiple criteria approach and generation of efficient alternatives for machine-part family formationin group technology. IIE Trans. 34, 837–846 (2002). doi:10.1023/A:1015557007084

    Google Scholar 

  15. Mansouri, S.A., Husseini, S.M., Newman, S.: A review of the modern approaches to multi-criteria cell design. Int. J. Prod. Res. 38(5), 1201–1218 (2000). doi:10.1080/002075400189095

    Article  MATH  Google Scholar 

  16. Neto, A.R.P., Filho, E.V.G.: A simulation-based evolutionary multiobjective approach to manufacturing cell formation. Comput. Ind. Eng. 59(1), 64–74 (2010). doi:10.1016/j.cie.2010.02.017

    Article  Google Scholar 

  17. Papaioannou, G., Wilson, J.M.: The evolution of cell formation problem methodologies based on recent studies (1997–2008): review and directions for future research. Eur. J. Oper. Res. 206(3), 509–521 (2010). doi:10.1016/j.ejor.2009.10.020

    Article  MATH  Google Scholar 

  18. Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4, 173–183 (2010). doi:10.1007/s11590-009-0156-3

    Article  MATH  MathSciNet  Google Scholar 

  19. Saaty, T.L.: The modern science of multicriteria decision making and its practical applications: the AHP/ANP approach. Oper. Res. 61(5), 1101–1118 (2013). doi:10.1287/opre2013.1197

    Article  MATH  MathSciNet  Google Scholar 

  20. Su, C.T., Hsu, C.M.: Multi-objective machine-part cell formation through parallel simulated annealing. Int. J. Prod. Res. 36(8), 2185–2207 (1998). doi:10.1080/002075498192841

    Article  MATH  Google Scholar 

  21. Tavakkoli-Moghaddam, R., Ranjbar-Bourani, M., Amin, G., Siadat, A.: A cell formation problem considering machine utilization and alternative process routes by scatter search. J. Intell. Manuf. 23, 1127–1139 (2012). doi:10.1007/s10845-010-0395-2

    Article  Google Scholar 

  22. Venugopal, V., Narendran, T.: A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Comput. Ind. Eng. 22(4), 469–480 (1992). doi:10.1016/0360-8352(92)90022-C

    Article  Google Scholar 

  23. Wemmerlov, U., Johnson, D.J.: Empirical findings on manufacturing cell design. Int. J. Prod. Res. 38(3), 481–507 (2000). doi:10.1080/002075400189275

    Article  Google Scholar 

  24. Zopounidis, C., Pardalos, P.M. (eds.): Handbook of Multicriteria Analysis, Applied Optimization, vol. 103. Springer, Berlin (2010). doi:10.1007/978-3-540-92828-7

  25. Žilinskas, A., Žilinskas, J.: Branch and bound algorithm for multidimensional scaling with city-block metric. J. Glob. Optim. 43, 357–372 (2009). doi:10.1007/s10898-008-9306-x

    Article  MATH  Google Scholar 

  26. Žilinskas, J.: Reducing of search space of multidimensional scaling problems with data exposing symmetries. Inf. Technol. Control 36(4), 377–382 (2007)

    Google Scholar 

  27. Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008). doi:10.3846/1392-6292.2008.13.145-159

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was funded by a Grant (No. MIP-063/2012) from the Research Council of Lithuania. P. M. Pardalos is partially supported by LATNA Laboratory, NRU HSE, RF Government Grant, ag. 11.G34.31.0057. We thank D. Krushinsky for a fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Žilinskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žilinskas, J., Goldengorin, B. & Pardalos, P.M. Pareto-optimal front of cell formation problem in group technology. J Glob Optim 61, 91–108 (2015). https://doi.org/10.1007/s10898-014-0154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0154-6

Keywords

Navigation