Skip to main content
Log in

Scalarization in set optimization with solid and nonsolid ordering cones

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper focuses on characterizations via scalarization of several kinds of minimal solutions of set-valued optimization problems, where the objective values are compared through relations between sets (set optimization). For this aim we follow an axiomatic approach based on general order representation and order preservation properties, which works in any abstract set ordered by a quasi order (i.e., reflexive and transitive) relation. Then, following this approach, we study a recent Gerstewitz scalarization mapping for set-valued optimization problems with \(K\)-proper sets and a solid ordering cone \(K\). In particular we show a dual minimax reformulation of this scalarization. Moreover, in the setting of normed spaces ordered by non necessarily solid ordering cones, we introduce a new scalarization functional based on the so-called oriented distance. Using these scalarization mappings, we obtain necessary and sufficient optimality conditions in set optimization. Finally, whenever the ordering cone is solid, by considering suitable generalized Chebyshev norms with appropriate parameters, we show that the three scalarizations studied in the present work are coincident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Araya, Y.: Four types of nonlinear scalarizations and some applications in set optimization. Nonlinear Anal. 75, 3821–3835 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Breckner, W.W., Kassay, G.: A systematization of convexity concepts for sets and functions. J. Convex Anal. 4, 109–127 (1997)

    MATH  MathSciNet  Google Scholar 

  5. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  6. Chen, G.Y., Huang, X., Yang, X.: Vector optimization. Set-valued and variational analysis. In: Lecture Notes in Economics and Mathematical Systems, vol. 541, Springer, Berlin (2005)

  7. Crespi, G.P., Ginchev, I., Rocca, M.: Points of efficiency in vector optimization with increasing-along-rays property and Minty variational inequalities. In: Generalized Convexity and Related Topics. Lecture Notes in Economics and Mathematical Systems, vol. 583, 209–226. Springer, Berlin (2007)

  8. Debreu, G.: Theory of Value. Wiley, New York (1959)

    MATH  Google Scholar 

  9. Gerstewitz (Tammer), Chr.: Nichtkonvexe Dualität in der Vektoroptimierung, Wiss. Zeitschr. Tech. Hochsch. Leuna-Merseburg 25, 357–364 (1983)

  10. Gerth (Tammer), Chr. , Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)

    Google Scholar 

  11. Göpfert, A., Rihai, H., Tammer, Chr, Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, Berlin (2003)

    MATH  Google Scholar 

  12. Gutiérrez, C., Jiménez, B., Novo, V.: Optimality conditions via scalarization for a new \(\varepsilon \)-efficiency concept in vector optimization problems. Eur. J. Oper. Res. 201, 11–22 (2010)

    Article  MATH  Google Scholar 

  13. Gutiérrez, C., Jiménez, B., Novo, V., Thibault, L.: Strict approximate solutions in set-valued optimization with applications to the approximate Ekeland variational principle. Nonlinear Anal. 73, 3842–3855 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gutiérrez, C., Miglierina, E., Molho, E., Novo, V.: Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Anal. 75, 1822–1833 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ha, T.X.D.: Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl. 124, 187–206 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hamel, A.: Translative sets and functions and their applications to risk measure theory and nonlinear separation, IMPA Preprint Series D 21 (2006)

  17. Hamel, A., Heyde, F., Rudloff, B.: Set-valued risk measures for conical market models. Math. Financ. Econ. 5, 1–28 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hamel, A., Löhne, A.: Minimal element theorems and Ekeland’s principle with set relations. J. Nonlinear Convex Anal. 7, 19–37 (2006)

    MATH  MathSciNet  Google Scholar 

  19. Hernández, E., Rodríguez-Marín, L.: Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325, 1–18 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hiriart-Urruty, J.-B.: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jahn, J.: Vector Optimization. Theory, Applications and Extensions, 2nd edn. Springer, Berlin (2011)

    MATH  Google Scholar 

  22. Jahn, J., Ha, T.X.D.: New order relations in set optimization. J. Optim. Theory Appl. 148, 209–236 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kuroiwa, D.: Some duality theorems of set-valued optimization with natural criteria. In: Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis, pp. 221–228. World Scientific, River Edge (1999)

  24. Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47, 1395–1400 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kuroiwa, D., Tanaka, T., Ha, T.X.D.: On cone convexity of set-valued maps. Nonlinear Anal. 30, 1487–1496 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kuwano, I., Tanaka, T., Yamada, S.: Characterization of nonlinear scalarizing functions for set-valued maps. In: Akashi, S., Takahashi, W., Tanaka, T. (eds.) Nonlinear Analysis and Optimization, pp. 193–204. Yokohama Publishers, Yokohama (2009)

    Google Scholar 

  27. Kuwano, I., Tanaka, T., Yamada, S.: Unified scalarization for sets and set-valued Ky Fan minimax inequality. J. Nonlinear Convex Anal. 11, 513–525 (2010)

    MATH  MathSciNet  Google Scholar 

  28. Kuwano, I., Tanaka, T., Yamada, S.: Inherited properties of nonlinear scalarizing functions for set-valued maps. In: Akashi, S., Kimura, Y., Tanaka, T. (eds.) Nonlinear Analysis and Convex Analysis, pp. 161–177, Yokohama Publishers, Yokohama (2010)

  29. Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989)

    Book  Google Scholar 

  30. Lucchetti, R.: Convexity and Well-Posed Problems. Springer, New York (2006)

    MATH  Google Scholar 

  31. Maeda, T.: On optimization problems with set-valued objective maps: existence and optimality. J. Optim. Theory Appl. 153, 263–279 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)

    MATH  Google Scholar 

  33. Miglierina, E., Molho, E.: Scalarization and stability in vector optimization. J. Optim. Theory Appl. 114, 657–670 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Peleg, B.: Utility functions for partially ordered topological spaces. Econometrica 38, 93–96 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  35. Richter, M.: Revealed preference theory. Econometrica 34, 635–645 (1966)

    Article  MATH  Google Scholar 

  36. Rubinov, A., Singer, I.: Topical and sub-topical functions, downward sets and abstract convexity. Optimization 50, 307–351 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Shimizu, A., Nishizawa, S., Tanaka, T.: Optimality conditions in set-valued optimization using nonlinear scalarization methods. In: Proceedings of the 4th International Conference on Nonlinear Analysis and Convex Analysis (Okinawa, 2005), pp. 565–574. Yokohama Publishers, Yokohama (2007)

  38. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectrum 8, 73–87 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42, 1071–1086 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhang, W.Y., Li, S.J., Teo, K.L.: Well-posedness for set optimization problems. Nonlinear Anal. 71, 3769–3778 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Vicente Novo and to the anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gutiérrez.

Additional information

This research was partially supported by the Ministerio de Economía y Competitividad (Spain) under project MTM2012-30942. The fourth author was also partially supported by MIUR PRIN MISURA Project, 2013–2015, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, C., Jiménez, B., Miglierina, E. et al. Scalarization in set optimization with solid and nonsolid ordering cones. J Glob Optim 61, 525–552 (2015). https://doi.org/10.1007/s10898-014-0179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0179-x

Keywords

Mathematics Subject Classification

Navigation