Skip to main content
Log in

Interactive model-based search for global optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Single-thread algorithms for global optimization differ in the way computational effort between exploitation and exploration is allocated. This allocation ultimately determines overall performance. For example, if too little emphasis is put on exploration, the globally optimal solution may not be identified. Increasing the allocation of computational effort to exploration increases the chances of identifying a globally optimal solution but it also slows down convergence. Thus, in a single-thread implementation of model-based search exploration and exploitation are substitutes. In this paper we propose a new algorithmic design for global optimization based upon multiple interacting threads. In this design, each thread implements a model-based search in which the allocation of exploration versus exploitation effort does not vary over time. Threads interact through a simple acceptance-rejection rule preventing duplication of search efforts. We show the proposed design provides a speedup effect which is increasing in the number of threads. Thus, in the proposed algorithmic design, exploration is a complement rather than a substitute to exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See [10, 17] for other approaches to enforcing diversity of exploration.

References

  1. Ackely, D.H.: A Connectionist Machine for Genetic Hillclimbing. Academic Publishers, Boston (1987)

    Book  Google Scholar 

  2. Back, T.: Evolutionary Algorithms in Theory an Practice. Oxford University Press, Oxford (1996)

    Google Scholar 

  3. Bekkera, J., Aldrich, C.: The cross-entropy method in multi-objective optimisation: an assessment. Eur. J. Oper. Res. 211(2), 112–121 (2011)

    Article  Google Scholar 

  4. Bonnans, J.F., Gilbert, J.C., Lemarechal, C., Sagastizabal, C.A.: Numerical Optimization: Theoretical and Practical Aspects, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  5. Botev, Z.I., Kroese, D.P., Rubinstein, R.Y., L’Ecuyer, P.: The cross-entropy method for optimization. In: Govindaraju, V., Rao, C.R. (eds.) Handbook of Statistics: Machine Learning, vol. 31. North-Holland, Amsterdam (2011)

    Google Scholar 

  6. Chen, J., Xin, B., Peng, Z., Dou, L.: Optimal contraction theorem for exploration-exploitation tradeoff in search and optimization. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(3), 680–691 (2009)

    Article  Google Scholar 

  7. Estrada, J.F.S., Casado, L.G., Garcia, I.: Adaptive parallel interval global optimization algorithms based on their performance for non-dedicated multicore architectures. In: 2011 19th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 252–256 (2011)

  8. Evtushenko, Y., Posypkin, M., Sigal, I.: A framework for parallel large-scale global optimization. Comput. Sci. Res. Dev. 23(3–4), 211–215 (2009)

    Article  Google Scholar 

  9. Griewank, A.O.: Generalized decent for global optimization. J. Optim. Theory Appl. 34(1), 11–39 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grosso, A., Locatelli, M., Fabio, S.: A population-based approach for hard global optimization problems based on dissimilarity measures. Math. Program. 110(2), 373–404 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hong, S., Hyesoon, K.: An analytical model for a GPU architecture with memory-level and thread-level parallelism awareness. In: Proceedings of the 36th Annual International Symposium on Computer Architecture, pp. 152–163 (2009)

  12. Hu, J., Fu, M., Marcus, S.: A model reference adaptive search method for global optimization. Oper. Res. 55(3), 549–568 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. Learn. Intell. Optim. 6683, 507–523 (2011)

    Article  Google Scholar 

  14. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)

    Article  Google Scholar 

  15. Kennedy J. Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)

  16. Leary, R.: Global optimization on funneling landscapes. J. Glob. Optim. 18(4), 367–383 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

    Article  Google Scholar 

  18. Schutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka, R.T., George, A.D.: Parallel global optimization with the particle swarm algorithm. Comput. Sci. Res. Dev. 61(13), 2296–2315 (2004)

    MATH  Google Scholar 

  19. Srinivas, M., Patnaik, L.: Generic algorithms: a survey. Methodol. Comput. Appl. Probab. 2, 127–190 (1994)

    Google Scholar 

  20. Suzuki, J.: A Markov chain analysis on simple genetic algorithms. IEEE Trans. Syst. Man Cybern. 4, 655–659 (1995)

    Article  Google Scholar 

  21. Zhang, W., Calder B., Tullsen, D.M.: An event-driven multithreaded dynamic optimization framework. In: 14th International Conference on Parallel Architectures and Compilation Techniques, PACT 2005. pp. 87–98 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuting Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Garcia, A. Interactive model-based search for global optimization. J Glob Optim 61, 479–495 (2015). https://doi.org/10.1007/s10898-014-0188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0188-9

Keywords

Navigation