
 1

Optimal clustering of a pair of irregular objects

J. Bennell1, G. Scheithauer2, Y. Stoyan3, T. Romanova3, A. Pankratov3

1Southampton Management School, United Kingdom
2Technische Universität Dresden, Germany

3Department of Mathematical Modeling and Optimal Design, Institute for Mechanical

Engineering Problems, National Academy of Sciences of Ukraine

Abstract. Cutting and packing problems arise in many fields of applications and theory.
When dealing with irregular objects, an important subproblem is the identification of the optimal
clustering of two objects. Within this paper we consider a container (rectangle, circle, convex
polygon) of variable sizes and two irregular objects bounded by circular arcs and/or line
segments, that can be continuously translated and rotated. In addition minimal allowable
distances between objects and between each object and the frontier of a container, may be
imposed. The objects should be arranged within a container such that a given objective will reach
its minimal value. We consider a polynomial function as the objective, which depends on the
variable parameters associated with the objects and the container. The paper presents a universal
mathematical model and a solution strategy which are based on the concept of phi-functions and
provide new benchmark instances of finding the containing region that has either minimal area,
perimeter or homothetic coefficient of a given container, as well as finding the convex polygonal
hull (or its approximation) of a pair of objects.

Key words: minimum containment ⋅ irregular shapes⋅ cutting and packing ⋅ mathematical

modeling ⋅ optimisation.

1. Introduction

Cutting and packing problems, also called placement or allocation problems, are

interesting theoretically and have many important applications. Applications in industry include

dye-cutting in the engineering sector, parts nesting for shipbuilding, marker layout in the

garment industry, glass cutting for windows and leather cutting for shoes, furniture and other

goods. It is well known that even the one-dimensional version of the problem of finding the

optimal usage of a given resource, the classical knapsack problem, belongs to the class of NP-

hard optimisation problems. For this reason, most of the work related to cutting and packing

problems employ heuristic approaches. Nevertheless, the development of exact solution methods

 2

is an important task to broaden the range of optimal solvable cases.

One of the successful concepts in the case of irregular objects, which lends itselft to exact

approaches, is phi-functions [6], [10]. Using this approach leads, in general, to multi-extremal

non-linear optimisation problems. Phi-functions permit the modelling of continuous object

rotations, non-overlapping, containment and distance constraints. The concept allows the

computation of high quality local optima, and in some cases, the global optimum.

In this paper, we address the problem of determining the minimum size container to

house two irregular objects and use the concept of phi-functions to achieve this aim. A tool to

solve this problem is useful in cutting and packing for the input minismisation (minimum waste)

problem and the output maximisation (knapsack) problem. In detail, we will investigate the

following two-dimensional problem:

Optimal clustering problem. Given two (irregular) objects bounded by circular arcs

and/or straight line segments where free continuous rotations of the objects are permitted, find

the minimal sizes of a given containing region (rectangle, circle, or convex polygon) according

to a given objective (a polynomial function) and placement parameters of two objects such that

the objects are placed completely inside the containing region without overlap and taking in to

account allowable distances between objects. We consider a number of frequently occurring

objectives, i.e. minimum area, perimeter, and homothetic coefficient (scaling parameter of an

equilateral K sided polygon) of a given container.

The containment problem is useful in the design of cutting and packing solution

approaches in a number of ways. Some applications have constraints on the cutting process that

are naturally dealt with by using a containment approach. Han et al. [18] decribe the cutting of

irregular glass shapes for conservatories. Due to the guillotine cutting requirement, pieces are

clustered into rectangles first, and then the rectangles are arranged on the stock sheets.

Approaches designed for packing of rectangles and boxes is more common in the literature than

irregular objects. One reason for this arises from the fact that stronger optimality criterion, or

bounds, are available in contrast to cases of arbitrary shaped objects. The containment problem

allows these approaches to be exploited for irregular shapes. Finally, placement heuristics that

employ hole filling are commonly acknowledged as effective. However, this has not been

efficiently implemented with irregular shapes as yet. The containment problem is equivalent to

hole filling where the hole defines the size of the container, which is compared with the derived

 3

minimal sizes of the containing region (according to the obtained value of its homothetic

coefficient).

The contributions of the paper are many as follows: 1) we deal with an accurate

representation of objects bounded by circular arcs and/or line segments (irregular objects)

without first generating a polygonal approximation; 2) we allow continuous simultaneous

translations and rotations of the objects; 3) we construct a universal mathematical model of the

problem taking into account allowable distances (in the form of a non-smooth optimisation

problem) using radical free phi-functions and adjusted phi-functions. Also our mathematical

model can accommodate any polynomial objective function; 4) we formulate the optimal

clustering problem with a wide range of applicable problems including minimal containment of a

pair given shapes in a rectangle, circle or convex hull, which supports applications in packing

irregular objects, glass cutting non-rectangular pieces, selecting or designing containers, and

hole filling; 5) we propose the concept of the phi-tree based on the max-min structure of phi-

functions and define the number of terminal nodes of each of the basic phi-trees; 6) we construct

a solution tree for the optimal clustering problem and give an estimation of the maximum

number of terminal nodes of the solution tree; 7) we propose two efficient algorithms in order to

solve the optimal clustering problems based on the solution tree; 8) we present a new set of

challenging benchmark instances.

The paper is organized as follows. In the next section, we give an overview of related

work. In Section 3, we describe the phi-functions concept for containing regions with variable

metrical characteristics and placement objects with variable placement parameters. In Section 4,

we use phi-functions for constructing a mathematical model of the optimal clustering problem

and present six basic realisations of the model. The general solution strategy, which involves the

concept of phi-tree and the construction of the solution tree, and two solution algorithms is given

in Section 5. We provide some computational results, illustrated with pictures, in Section 6, and

finish with some concluding remarks in Section 7.

2. Related work
The literature on two dimensional irregular packing problems is large and it is not

possible to comprehensively review here. It is common for cutting and packing papers to indicate

 4

the problem type according to the typology presented in [28]. However in this paper, we deal

with a sub-problem of the irregular packing problem. The sub-problem applies to both input

minimisation and output maximisation, and is not specific to the number of large objects

available. Hence, we have not classified this problem by this typology. In the following we

identify some of the relevant papers to this work.

Solution approaches to irregular nesting problems are reviewed by [5, 14]. A tutorial

covering the core geometric methodologies currently applied by researchers in cutting and

packing of irregular shapes is presented by [4]. Tools of mathematical modeling of arbitrary

object packing problems are given by [6, 10, 11]. Complexity investigations for cutting and

packing problems can be found in [7, 9, 12, 20] .

Among the plurality of two-dimensional cutting and packing problems the open

dimension problem (ODP) is the most common when packing irregular objects. In the ODP, a

given set of objects must be placed feasibly within a strip of given fixed width W while

minimizing the height H needed. A packing pattern is feasible if all objects are contained

completely within the rectangle W H× and do not overlap each other. In this case, the objective

to minimize H is equivalent to minimizing the perimeter. This does not remain true if the width

W is also variable and the total area has to be minimized, then the objective becomes non-linear.

There is a short list of publications which deal with irregular shapes without polygonal

approximations. Packing problems with irregular objects of fixed orientation, whose frontier can

be described by a sequence of line- and arc-segments, are tackled in [8] using the line and arc

no-fit polygon. That paper extends the heuristic orbital sliding method of calculating no-fit

polygons to enable it to handle arcs and then shows the resultant no-fit polygons being utilised

successfully on the two-dimensional irregular packing problem.

Several publications address the containment problem. One problem type is as follows:

Does a set of given objects (or a single object) fit feasibly within a given containing region?

Rotation of objects may or may not be permitted. The single polygon-containment problem

where rotation of the polygon is allowed has been studied in [2, 15, 21]. Two-and three-polygon

problems are considered in [3, 16].

In [22, 25] the translational containment of multiple polygons within another polygon is

investigated, whereas the more general case, also allowing rotations, is considered in [23, 24,

19]. In [26] the authors offer an approximation algorithm of the Minkowski sum for objects

 5

bounded by line segments and circular arcs. Authors of [15] use a mathematical programming

formulation/model to solve the following containment problem: Given a convex polygon Q and

a simple polygon P , can P be translated and/or rotated such that P fits within Q ? This method

is used in an algorithm to place small (polygonal) items into (polygonal) holes obtained after

placing larger items.

The minimal-area convex enclosure problem consists of finding the relative position of

two simple polygons such that the area of their convex enclosure is minimized. It is investigated

in [17]. The technique searches along the envelope (or no-fit polygon). Authors of [13] consider

the problem of circumscribing a convex polygon by a polygon of fewer sides with minimal

increase in area.

Most of the approaches dealing with the interaction of two (or a few) objects are used in

placement algorithms for larger instances as local decision rules. Some of the earliest approaches

to irregular packing problems used the strategy of first clustering pieces within easier to handle

shapes, for example [1]. However, such approaches lost popularity as computational speed and

methodology improvements facilitated the direct packing of irregular objects. There are recent

examples where the cutting process requires the initial clustering, for example, guillotine cuts

described in [18]. Further, the more sucessful placement heuristics use hole filling strategies that

is the equivalent of the containment problem described here.

 3. The concept of phi-functions

Cutting and packing problems involving irregular shapes require the modelling of

interaction of two objects with respect to containment, overlap constraints and allowable

distances. In this section we describe the core phi-function concepts including the definition of a

phi-object, describing a placement objects and a containing regions, identify the interactions

between objects. Finally we describe the containment and non-overlapping constraints taking

into account allowable distances using phi-functions.

3.1. Placement objects. We assume that any placement object T (an object which

has to be placed into a container) considered here, is a two-dimensional one-connected phi-object

[6], where a phi-object is a canonically closed point set 2T R⊂ *(= () = (())T cl T cl int T having

 6

the same homothopic type as its interior.

Each one-connected phi-object T is given by an ordered collection of frontier elements

1 2, , ..., nl l l , (in counter clockwise order). Each element il is given by tuple (, , , ,)
i ii i i c cx y r x y

if il is an arc or by tuple (, ,)i i ix y r if il is a line segment, where (,)i ix y and 1 1(,)i ix y+ + are

the end points of il , (,)
i ic cx y is the centre point of an arc. Each il is a line segment, if 0ir = ;

il is a "convex" arc, if 0ir > ; il is a "concave" arc, if 0ir < (assume 1 1 1 1(,) (,)i ix y x y+ + = for

i n=). We call the components of the tuples, which describe elements 1 2, , ..., nl l l , the metrical

characteristics of placement object T .

Given the ordered collection of line segments and circular arcs, we apply the

decomposition algorithm given in [10] to obtain a set of basic objects that describe the object.

Authors of [10] show that each phi-object, T, bounded by line segments and circular

arcs, may be decomposed into n basic objects of four types, including convex polygons (K),

circular segments (D), hats (H) and horns (V).We denote a class of basic objects by ℜ . In

terms each basic object is the intersection of primitive objects (half-planes, circles and circular

holes). Illustrations of primitive and basic objects are given in Appendix A.

Thus, we represent placement object T in the form

1
=

n
j

j
T T

=
 with jT ∈ℜ . (1)

Example. Let us consider two objects A and B given in Figure 1a. These can be

decomposed into basic objects according to formula (1), so we have A H K=  , B D V=  ,

, , ,V D H K ∈ℜ , = = 2A Bn n , see Figure 1b.

 (a) (b)

 7

Fig. 1. a) Objects A and B, b) Decomposition of A and B into basic objects

Each placement object may be described in an analytical form. It follows from (1) that

object T is a union of basic objects jT , = 1, ,j n . Further, each basic object jT is an

intersection of primitive objects jkT , 1, ..., jk n= (see Appendix A). Thus,
1 1

jnn
kj

j k
T T

= =
=  1 . We

define 2= { : () 0}j jT t R f t∈ ≤ , with
=1, ,

() = ()maxj jk
k n j

f t f t


, = 1, , ,j n where ()jkf t is an

infinitely differentiable function associated with primitive object Tjk, being a circle, the

complement to a circle and a half-plane. We take the maximum of ()jkf t , 1, ..., jk n= , because

object jT is defined by an intersection of primitive objects. Thus, if
=1, ,

() 0max jk
k n j

f t ≤


 then

() 0jkf t ≤ for all 1, ..., jk n= . It follows that since T is a union of basic objects jT , and we

take
=1, ,

()min j
j n

f t


, so each placement object can be represented in the form

2

=1, ,
= { : () 0}min j

j n
T t R f t∈ ≤

2
, i.e. 2

=1, , =1, ,
{ : 0}maxmin jk

j n k n j
T t R f= ∈ ≤

2 2
. Appendix B

provides and example of an object description.

The location and orientation of a placement object T is defined by a variable vector of its

placement parameters (, ,)T T Tx y θ . The translation of object T by vector 2= (,)T T Tv x y R∈

and the rotation of T (with respect to its reference point) by angle [0, 2)Tθ ∈ π is defined by

2(, ,) = { : = () , (0, 0, 0)}T T T T TT x y t R t v M t t Tθ ∈ + θ ∀ ∈∀ ∀ , where (0, 0, 0)T denotes the non-

translated and non-rotated object T , where ()TM θ is given by
cos sin

() =
sin cos

T T
T

T T
M

θ θ 
θ  − θ θ 

.

We assume here that placement objects have fixed metrical characteristics and variable

placement parameters (, ,)T T Tx y θ .

3.2. Containing regions. We consider the following containing regions shown in

figure 2: a) a circle of variable radius r: 2 2= {(,) : }C x y x y r+ ≤ , b) an axis-parallel rectangle:

 8

= {(,) : 0 , 0 }R x y x a y b≤ ≤ ≤ ≤ where variables a and b are the horizontal and vertical

dimensions respectively, c) a convex polygon K : K is given by its variable sides ie , 1, ...,i m= ,

where each side 1[,]i i ie v v += of variable length it is defined by two variable vertices

(,)i i iv x y= and 1 1 1(,)i i iv x y+ + += , 1 cosi i i ix x t θ+ = + ⋅ , 1 sini i i iy y t θ+ = + ⋅ , and d) a regular

convex polygon with equal sides and homothetic coefficient α. Each side ie may be given by

variable vector (, , ,)i i i ix y tθ ; Kα is given by its verticies (,)i i iv x yα α α= , 1, ...,i m= , where

α is a variable homothetic coefficient and ix and iy are constant (see Figure 2d), subject to for

original polygon 1α = .

Fig. 2 Containing region Ω of variable vector p: (a) circle of variable radius, (b) rectangle of

variable sides, (c) convex m-polygon of variable vertices, (d) convex polygon of variable

 9

homothetic coefficient

Containing region Ω have fixed pacement parameters (0, 0, 0) and variable metrical

characteristics p defined above. Hereinafter, we denote a containing region ()pΩ = Ω .

3.3. Description of relationships between objects. In order to feasibly place

two objects within a containing region, we need an analytical description of the relationships

between a pair of objects A and B . We employ the phi-function technique for this. Phi-

functions allow us to distinguish the following three cases: A and B are intersecting so that A and

B have common interior points; A and B do not intersect, i. e. A and B do not have common

points; A and B are in contact, i. e. A and B have only common frontier points. By definition,

the phi-function of A and B is everywhere defined and continuous function that possesses the

following characteristics: 0A BΦ > if A B = ∅ ; 0A BΦ = if int intA B = ∅ and

frA frB ≠ ∅ ; 0A BΦ < if int intA B ≠ ∅ , where int A , frA is the interior and the frontier

of object A. We employ phi-functions for the description of the contaiment relationship A B⊆

as follows: * 0
AB

Φ ≥ , where * 2 \ intB R B= . See [6], [10] for definitions and basic features

of phi-functions. According to equation (1), let

1
=

An

i
i

A A
=
 ,

1
=

Bn

j
j

B B
=
 and ,i jA B ∈ℜ . (2)

A phi-function that characterises the non-overlapping of the pair of arbitrary shaped

objects A and B and has the form

= min{ , = 1, 2, ..., , = 1, 2, ..., },AB ij A Bi n j nΦ Φ (3)

where ijΦ denotes a basic phi-function for the pair of objects ,i jA B ∈ℜ . The complete

class of basic phi-functions is given in [11] .

Thus, in terms of phi-functions we describe non-overlapping constraint in the form:

0ABΦ ≥ and containment constraint in the form: * 0,
AΩ

Φ ≥ (* 0
BΩ

Φ ≥).

For objects A and B given in Figure 1, based on (2) and (3), we have

non-overlapping constraint: 0ABΦ ≥ , where = min{ , , , },AB VH VK DH DKΦ Φ Φ Φ Φ

VHΦ , VKΦ , DHΦ , DKΦ are phi-functions for basic objects.

 10

containment constraint : * 0,
AΩ

Φ ≥ (* 0
BΩ

Φ ≥), where * 2= \ intRΩ Ω , Ω is a

circular, a rectangular or a convex polygonal region and * * *= min{ , },
A V DΩ Ω Ω

Φ Φ Φ

* * *= min{ , }
B K HΩ Ω Ω

Φ Φ Φ , * *, ,
V DΩ Ω

Φ Φ * ,
HΩ

Φ *KΩ
Φ are basic phi-functions. It should

be noted that *AΩ
Φ for KΩ ≡ with variable verticies we consider in the form:

*AΩ
Φ =min{

kP AΦ , 1,...,k m= }, where
kP AΦ is phi-function for half-plane kP and object A .

We take into account distance constraints replacing phi-functions in non-overlapping and

containment constraints with adjusted phi-functions. By definition an adjusted phi-function of A

and B is an everywhere defined continuous function Φ
 AB , such that 0Φ >

 AB , if dist(A,B) ρ> ,

0Φ =
 AB , if dist(A,B) ρ= , 0Φ <

 AB , if dist(A,B) ρ< , where ρ is the minimum allowable

distance between objects A and B. Here, dist(A,B) =
,

min (,)
a A b B

d a b
∈ ∈

and (,)d a b is the Euclidean

distance between two points a and b in 2R . In particular, we have dist(A,B) ρ≥ ⇔ 0Φ ≥
 AB .

4. Mathematical model

In terms of phi-functions we can formulate the optimal clustering problem as a constrained

optimisation problem:
*() = min{ () : },F u F u u W∈ (4)

{
* *

: 0, 0, 0, 0}σ λΩ Ω= ∈ Φ ≥ Φ ≥ Φ ≥ ≥
  A B ABΩ u R , (5)

where ()F u is a polynomial function, (, ,)A Bu p u u Rσ= ∈ is a vector of variables, Rσ

is Euclidean space of σ dimension, p is a vector of variable metrical characteristics of Ω ,

(,) (, , , , ,)A B A A A B B Bu u x y x yθ θ= is vector of variable placement parameters of objects A and

B , W denotes the corresponding set of feasible solutions (the solution space), Φ
 AB is an

adjusted phi-function for objects A and B taking into account a given minimal allowable distance

ρ between the objects,
*ΩΦ

 A is an adjusted phi-function for objects A and *Ω ,
*ΩΦ

 B is an

 11

adjusted phi-function for objects B and *Ω taking into account a given minimal allowable

distances 'ρ between each object and the frontier of Ω , 0λ ≥ involves a system of additional

restrictions on the metrical variables p that ensures the validity of the shape of a container (for

instance, 0r > for a circle, , 0a b > for a rectangle, homothetic coefficient 0α > for convex

polygon). It should be noted that if 0ρ = and ' 0ρ = , then we use the original phi-function

instead of the adjusted phi-functions in (5).

We consider six realizations of problem (4)-(5), denoted by P1,.., P6, with respect to the shape of

the containing region Ω and the form of the objective function ()F u :

P1: RΩ ≡ , 1() =F u a b⋅ (area of R):

(, , ,)A Bu a b u u Rσ= ∈ ,

8σ = (for rotatable A and B), 6σ = (for non-rotatable A and B),

0λ ≥ means: 0, 0a b> > ;

P2: RΩ ≡ , 2() =F u a b+ (half-perimeter of R):

(, , ,)A Bu a b u u Rσ= ∈ ,

8σ = (for rotatable A and B), 6σ = (for non-rotatable A and B),

0λ ≥ means: 0, 0a b> > ;

P3: CΩ ≡ , 3() =F u r (radius of C):

(, ,)A Bu r u u Rσ= ∈ ,

7σ = (for rotatable A and B), 5σ = (for non-rotatable A and B),

0λ ≥ means: 0r > ;

P4: KΩ ≡ , 4
1

()
m

i
i

F u t
=

= ∑ (perimeter of K):

1 1 1 1(, , , , ..., , , , , ,)m m m m A Bu x y t x y t u u Rσθ θ= ∈ ,

4 6mσ = + (for rotatable A and B), 4 4mσ = + (for non-rotatable A and B),

 0λ ≥ means: 1 cos 0i i i ix x t θ+ − − ⋅ = , 1 sin 0i i i iy y t θ+ − − ⋅ = ,

1 1() cos () sin 0i i i i i ix x y yθ θ+ +− ⋅ + − ⋅ ≥ , s.t. 1 1m + ≡ , 0it ≥ ,
1

0
m

i
i

t
=

>∑ ;

 12

P5: KΩ ≡ , 5 1 1
1

() ()
m

i i i i
i

F u x y y x+ +
=

= −∑ s.t. 1 1m + ≡ , (doubled area of K):

1 1 1 1(, , , , ..., , , , , ,)m m m m A Bu x y t x y t u u Rσθ θ= ∈ ,

4 6mσ = + (for rotatable A and B), 4 4mσ = + (for non-rotatable A and B),

0λ ≥ means: 1 cos 0i i i ix x t θ+ − − ⋅ = , 1 sin 0i i i iy y t θ+ − − ⋅ = ,

1 1() cos () sin 0i i i i i ix x y yθ θ+ +− ⋅ + − ⋅ ≥ , s.t 1 1m + ≡ , 0it ≥ ,
1

0
m

i
i

t
=

>∑ ;

P6: (KΩ ≡ α), 6() =F u α (homothetic coefficient of K):

(, ,)A Bu u u Rσα= ∈ ,

7σ = (for rotatable objects A and B), 5σ = (for non-rotatable objects A and B),

0λ ≥ means: 0α > .

Remark. We may include additional restrictions on variables in 0λ ≥ . For instance, to fix

any variable of vector (, ,)A Bu p u u= or give allowable rotation ranges for ,A Bθ θ .

It is clear that, W ≠ ∅ , since F is bounded from below, hence problems (4)-(5) are

always solvable. The objectives we consider here are linear { 2 3 4 6, , ,F F F F } or quadratic

{ 1 5,F F }. The phi-functions in (5) are composed of min - and max -combinations of linear

and\or non-linear functions including sin - and cos -terms [11]. System 0λ ≥ , involves linear

and\or non-linear functions including sin - and cos -terms. As a result, the set W of feasible

solutions is non-convex, leading to many local extrema. Hence, the optimal clustering problem

(4)-(5) is a nonsmooth optimisation problem.

5. General solution strategy

The formulaton given in (4) and (5) is a non-smooth optimisation problem and so can not

be solved directly. In this section we describe a branching tree structure to define the feasible

region by a set of sub-regions and, using these sub-regions, solution strategies to find the local

and global extrema.

5.1 The solution tree

 13

Let us consider phi-functions ABΦ , *AΩ
Φ and *BΩ

Φ which take part in describing the

feasible region W (solution space) in mathematical model (4)-(5). Here A and B are composed

objects given by
1

=
An

t
t

A A
=
 ,

1
=

Bn

l
l

B B
=
 , ,t lA B ∈ℜ according to (2).

Let * *{ , , }
t l t l

k A B A BΩ Ω
Φ ∈ Φ Φ Φ be a basic phi-function, 1, .2, ..,k n= ,

A B A Bn n n n n= ⋅ + + , 1, .2, .., At n= , 1, .2, .., Bl n= , where A Bn n⋅ is the number of basic phi-

functions
t lA BΦ in phi-function ABΦ ; An + Bn is the number of basic phi-functions *

tA Ω
Φ

and *
lB Ω

Φ in phi-functions *AΩ
Φ and *BΩ

Φ .

By construction [10] each basic phi-function kΦ may be given in the form:

1,.., 1,.., 1,...,
max max min

kk k i

k k
k i ij

i i j J
f f

= η = η =
Φ = = ,

where k
ijf are infinitely-differentiable functions. Since

1,...,
min 0

k
i

k
ij

j J
f

=
≥ is equivalent to

0k
ijf ≥ for all j , and

1,..,
max 0

k

k
i

i
f

= η
≥ means at least one of the inequalities, say

0
0k

if ≥ has to

be fulfilled, each of these terms can be considered as a system of (in general non-linear)

inequalities. This can be solved using a branching scheme.

For each inequality 0kΦ ≥ we may construct a tree, called a basic phi-tree and noted by

kℑ and kη means the number of terminal nodes of the basic phi-tree. Each terminal node of

kℑ corresponds to a system of inequalities 0k
if ≥ , 1, 2,..., ki η= .

The solution tree ℑ describes feasible region W of problem (4)-(5) and is constructed as

follows, see Figure 3.

The tree root corresponds to inequality system 0λ ≥ .

On the first level of ℑ we have 1τ = 1η of nodes, where 1η is the number of terminal

nodes of basic phi-tree 1ℑ describing 1 0Φ ≥ , where
1

1
1

1,..,
max i

i
f

η=
Φ = ,

1
1 1

1,...,
min

i
i ij

j J
f f

=
= . To each

node there corresponds a system of inequalities
1
10, 0ifλ ≥ ≥ .

 14

On the second level of ℑ to each node of the first level we add 2η terminal nodes of

basic phi-tree 2ℑ describing 2 0Φ ≥ , where
2

2
2

1,..,
max i

i
f

η=
Φ = ,

2
2 2

1,...,
min

i
i ij

j J
f f

=
= , i.e. the

number of nodes of the second level of ℑ becomes 2 1 2τ η η= ⋅ .To each node there corresponds

a system of inequalities
1 2
1 20, 0, 0i if fλ ≥ ≥ ≥ .

On the k-level of ℑ to each node of the (k-1)-level level of ℑ we add ηk terminal

nodes of basic phi-tree kℑ describing 0Φ ≥k ,
1,..,
max

k

k
k i

i
f

η=
Φ = ,

1,...,
min

k
i

k k
i ij

j J
f f

=
= , i.e. the

number of nodes of the k-level of ℑ becomes 1 2 ...k kτ η η η= ⋅ ⋅ ⋅ .To each node there

corresponds a system of inequalities
1 2
1 20, 0, 0,, 0

k
k

i i if f fλ ≥ ≥ ≥ ≥ .

Note that nτ = 1 2 1...η η η η−⋅ ⋅ ⋅ ⋅n n =η , where η is the number of terminal nodes of the

solution tree ℑ .

Now we may present a feasible region W of problem (4)-(5) as a union of subregions

, = 1, 2, ...,sW s η [9]. Each sW corresponds to s-th terminal node of ℑ and therefore sW is

determined by a system of inequalities 0, 0, 1, ...,
k
k

sf k nλ ≥ ≥ = .

Fig. 3 Forming inequality systems which describe subsets , = 1, 2, ...,sW s η

 15

Since
1

= s
s

W W
η

=
 we may reduce the nonsmooth optimisation problem (4)-(5) to the

following problem for = (, ,)A Bu p u u :

 * *() = min{ (), = 1, , }sF u F u s η , (6)

where

 *() = min ()sF u F u s.t. su W∈ , (7)

Clearly, the global optimum solution can be obtained and proved by inspecting and

exactly solving all of the subproblems defined in (7) .

Subproblems (7) are in general non-linear mathematical programming problems and they

may be solved by standard local optimisation techniques (e.g. interior point method, feasible

direction method). In particular, problems P2 and P6, which are subproblems of (7), are linear

optimisation problems when A and B are polygons with allowable minimal distances of zero and

continuous rotations of A and B are not allowed. In these cases we can apply LP methods and can

derive proved optimal solutions.

5.2. Evaluation of the number of terminal nodes of branching tree ℑ . The

number η of terminal nodes of the solution tree ℑ depends on the number 'η of terminal nodes

of phi-tree ABℑ for 0ABΦ ≥ , and the number ''η of the terminal nodes of phi-tree *AΩ
ℑ for

* 0AΩΦ ≥ , * 0BΩΦ ≥ . Since,
1

An
i

i
A A

=
=  ,

1

Bn
j

j
B B

=
=  , iA ∈ℜ , jB ∈ℜ according to (2) and,

therefore, phi-functions ABΦ , *AΩ
Φ , *BΩ

Φ may be given in the form:

min{ , 1, ..., , 1, ..., }AB ij A Bi n j nΦ = Φ = = = min{ , 1, ..., }k A Bk n nΦ = ⋅ ,

* *min{ , 1, 2, ..., }
i

AA A
i n

Ω Ω
Φ = Φ = , * *min{ , 1, 2, ..., }

j
BB B

j n
Ω Ω

Φ = Φ = .

We denote: '
A Bn n n= ⋅ and '' max{ , }A B An n n n= = , and the upper estimation of the number

of terminal nodes of ABℑ and *AΩ
ℑ by '*η and ''*η respectively, which we derive below.

The upper estimation *η of the number of terminal nodes of the solution tree ℑ for problem
(6)-(7) arises from all combinations of the terminal nodes of ABℑ , *AΩ

ℑ and *BΩ
ℑ , and is

defined as

 16

η = ' ''* 2() ()η η⋅ . (8)
The number of terminal nodes for ABℑ and *AΩ

ℑ respectively are
' ' ' '

1 2 '... nη η η η= ⋅ ⋅ ⋅ , '' '' '' ' '
1 2 ''... nη η η η= ⋅ ⋅ ⋅ , (9)

Based on (9), we have

 '*η =
'' '(max{ , 1, 2, ..., })n

k k nη = , ''*η =
'''' ''(max{ , 1, 2, ..., })n

k k nη = . (10)

For constructing the solution space of problem (6)-(7) we use the basic phi-functions, which is

a complete class of phi-functions for all pairs of basic objects of { , , , }K D H Vℜ = : phi-functions

for non-overlapping constraints t{ , 1, 2, ...,10}AB tΦ ∈ Φ = , A∈ℜ , B∈ℜ , and phi-functions

for containment constraints * { , 1, 2, ..., 4}pA
p

Ω
Φ ∈ Φ = , A∈ℜ .

Then estimations (10) are reduced to

 '*η =
''(max{ , 1, 2, ...,10})n

t tη = , ''*η =
''''(max{ , 1, 2, ..., 4})n

p pη = . (11)

 Table 1 and 2 define the upper estimations ' , 1, 2, ...,10t tη = , and '' , 1, 2, ..., 4p pη = ,

respectively, according to the formulas of the basic phi-functions given in [11]. We note that in

tables 1 and 2 notations ,A Bm m mean the numbers of sides of convex polygons

,A BK A K B⊂ ⊂ .

Table 1. Estimations of the number of terminal nodes for phi-tree ABℑ

A\B V H D BK
V '

1η =385

H '
2η =197 '

3η =28

D '
4η =45 '

5η =35 '
6η =19

AK '
7η = 22(2 6 7)A Am m+ + '

8η = 2 5Am + '
9η =3(1)Am + '

10η = A Bm m+

Table 2. Estimations of the number of terminal nodes for phi-tree *AΩ

ℑ
*Ω \A V H D K

R∗ ''
1Rη =12 ''

2Rη =1 ''
3Rη =12 ''

4Rη =1

C∗ ''
1Cη =2 ''

2Cη =1 ''
3Cη =2 ''

4Cη =1

K ∗ ''
1Kη 2m m= − ''

2Kη =1 ''
3Kη 2m m= − ''

4Kη =1
Based on relations (8) - (11) and tables 1 and 2, we obtain

 17

*
Rη =

''212 n ⋅
'' ' '

1 7 10(max{ , , })nη η η , (12)
*
Cη =

''22 n ⋅
'' ' '

1 7 10(max{ , , })nη η η ,

*
Kη =

''2 2() nm m− ⋅
'' ' '

1 7 10(max{ , , })nη η η .

The increase in the number of terminal nodes of the solution tree shows that the optimal

clustering problem is NP-hard, and in most cases to consider all subregions Ws and, therefore, to

obtain proved optimal solution is an unrealistic task .

5.3 Example of the solution tree. In this subsection we provide an example of a

solution tree for problem P3 considering two circular segments and a containing circle.

Let Ω be a circular container of radius r . We consider two objects: 1=A D and 2=B D ,

where iD are circular segments given as =i i iD T C , where iC are circles, iT are appropriate

triangles with two tangent sides to iC , {1, 2}i∈ . Center points iO of the circles are poles of

iD , {1, 2}i∈ . Appendix C explains the rationale for this composition to derive a circular

segment.

The mathematical model (4)-(5) can be written in the form

min . .r s t u W∈ , (13)

2

7
*1

= { : 0, 0, 0, , = 1, 2}
iD D D C iW u R r r r i∈ Φ ≥ Φ ≥ > ≤ ,

 where 7
1 1 1 2 2 2= (, , , , , ,)u r x y x y Rθ θ ∈ .

 In order to reduce problem (13) to problem (6)-(7) we need to construct an inequality

systems describing subregions sW , = 1, 2,s ...,η .

Let us now consider inequality
1 2

0D DΦ ≥ . Since 1 1 1=D T C1 and 2 2 2=D T C we

have

1 2 1 2 1 2

= max{ , },D D D T D CΦ Φ Φ (14)

 where
1 2 1 2 1 2

= max{ , },D T T T C TΦ Φ Φ
1 2 2 1 1 2

= max{ , }.D C C T C CΦ Φ Φ

 Consequently, we consider phi-functions of basic objects
1 2C CΦ ,

1 2T TΦ ,
1 2C TΦ ,

2 1C TΦ and given in [10, 11].

 18

Before we give explicit forms of the phi-functions we remind the reader that each point

 (,) (0,0,0)x y A∈ in the eigen coordinate system of A is transformed into point (,)x y given a

translation of (xA, yA) and rotated by angle Aθ as follows:

   cos sin , sin cosA A A A A Ax x y x y x y yθ θ θ θ= ⋅ + ⋅ + = − ⋅ + ⋅ + .

Each straight line � � �  � �2 22{(,) 0, 1}L x y R x yα β γ α β= ∈ + + = + = is transformed into straight

line 2{(,) 0}L x y R x yα β γ= ∈ + + = , where � �cos sinA Aα α θ β θ= ⋅ + ⋅ ,

� �sin cosA Aβ α θ β θ= − ⋅ + ⋅ , 
A Ax yγ γ α β= − ⋅ − ⋅ , Aθ is rotation parameter, (,)A Ax y is

translation vector A.

Let (', ')i ix y , = 1, 2, 3i , be the vertices of 1T , and (' , ')j jx y′ ′ , = 1, 2, 3j , those of 2T ,

and 1 = {(,) : 0, = 1, 2, 3}iT x y iϕ ≤ , 2 = {(,) : 0, = 1, 2, 3},jT x y iy ≤ = ' ' 'i i i ix yϕ α + β + γ ,

= ' ' 'j j j jx y′ ′ ′y α + β + γ .

The phi-function for 1T and 2T is defined as follows:

1 2 1 3 1 31 3 1 3
= max{max min , max min },T T ij ji

j ii j≤ ≤ ≤ ≤≤ ≤ ≤ ≤
Φ jψ (15)

where = ' ' ' ' 'ij i j i j ix y′ ′j α + β + γ , = ' ' ' ' 'ji j i j i jx y′ ′ ′y α + β + γ .

 The phi-function for two circles iC of radii ir and center points (,)C Ci i
x y , = 1, 2,i is

 2 2 2
1 21 2 1 2 1 2

() () () .C C C C C Cx x y y r rΦ = φ = − + − − + (16)

 The phi-functions
21C TΦ and

12C TΦ are defined by

 = max{ , min{ , }, = 1, 2, 3},CT i i i iΦ χ ω ψ (17)

 where 2 2= {(,) : 0, = 1, = 1, 2, 3}i i i i iT x y x y iα +β + γ ≤ α + β is a triangle, C is a circle

of radii Cr and center points (,)C Cx y ,

= ,i i C i C i Cx y rχ α + β + γ −

2 2 2= () ()i C i C i Cx x y y rω − + − − ,

1 1 1 1= ()() ()() ()i i i C i i i C i C i i i ix x y y r− − − −y β −β − − α − α − + α β − α β .

We below apply notations ' ' ', ,i i iχ ω ψ for
21C TΦ and '' '' '', ,i i iχ ω ψ for

12C TΦ .

 19

In order to ensure iD ⊂ Ω we set ir r≤ , = 1, 2i , here, since this simplifies the containment

constraints, and define phi-functions *
iC D

Φ for = 1, 2i in the form:

*
1,2

min
i

i ijC D j
g g

=
Φ = = , 2 2 2

ij ij ijg r x y= − − , = 1, 2i , (18)

where (ijx , ijy), = 1, 2j , are end points of the base of iD .

Given the above phi-functions, we can now construct the branching tree ℑ for problem

(13) based on phi-trees (denoted by ABℑ , *AΩ
ℑ and *BΩ

ℑ) for
1 2

0D DΦ ≥ ,
1 * 0D CΦ ≥ and

2 * 0D CΦ ≥ .

First consider phi-tree ABℑ for
1 2

0D DΦ ≥ . Let 11υ denote the root node, and 1,i k
ij
−υ

denote the j -th node of the i -th level of the tree (1,i k
ij
−υ is an offspring of the k -th node of the

(1i −)-th level of the tree), then the phi-tree for
1 2

0D DΦ ≥ , taking into account relations (14)-

(18), has the following form:

level 1: 11υ ↔
1 2

0D DΦ ≥

level 2: 11
21υ ↔

21
0D TΦ ≥ , 11

22υ ↔
21

0D CΦ ≥

level 3: 21
31υ ↔

21
0T TΦ ≥ , 21

32υ ↔
21

0C TΦ ≥ , 22
33υ ↔

21
0T CΦ ≥ , 22

34υ ↔
1 2

0C CΦ ≥

level 4: 31 31
41 1 42 2{ 0, = 1, 2, 3, { 0, = 1, 2, 3,j jj jυ ↔ j ≥ υ ↔ j ≥ 31

43 3{ 0, = 1, 2, 3j jυ ↔ j ≥ ,

31
43 3{ 0, = 1, 2, 3j jυ ↔ j ≥ , 31 31

44 1 45 2{ 0, = 1, 2, 3, { 0, = 1, 2, 3,i ii iυ ↔ ψ ≥ υ ↔ ψ ≥

31
46 3{ 0, = 1, 2, 3,i iυ ↔ ψ ≥ 32 32 32

47 1 48 2 49 3{ ' 0, { ' 0, { ' 0,υ ↔ χ ≥ υ ↔ χ ≥ υ ↔ χ ≥

32
4,10 1 1{ ' 0, ' 0,υ ↔ ω ≥ ψ ≥ 32 32

4,11 2 2 4,12 3 3{ ' 0, ' 0, { ' 0, ' 0,υ ↔ ω ≥ ψ ≥ υ ↔ ω ≥ ψ ≥

33 33
4,13 1 4,14 2{ ' 0, { ' 0,′ ′υ ↔ χ ≥ υ ↔ χ ≥ 33

4,15 3{ ' 0,′υ ↔ χ ≥ 33
4,16 1 1{ ' 0, ' 0,′ ′υ ↔ ω ≥ ψ ≥

33
4,17 2 2{ ' 0, ' 0′ ′υ ↔ ω ≥ ψ ≥ , 33

4,18 3 3{ ' 0, ' 0,′ ′υ ↔ ω ≥ ψ ≥ 34
4,19 { 0υ ↔ φ ≥ .

Thus, the number of terminal nodes, ABη , of the phi-tree ABℑ for
1 2

0D DΦ ≥ is equal

to 19. For each terminal node kυ , = 1, ...,19k , there corresponds a system of inequalities. The

 20

diagram of the phi-tree ABℑ for
1 2

0D DΦ ≥ is given in Appendix D.

Phi-tree *AΩ
ℑ for

1 * 0D CΦ ≥ consists of only one node corresponding to the system of

inequalities 11 120, 0g g≥ ≥ . The same is true for phi-tree *BΩ
ℑ for

2 * 0D CΦ ≥ and the system

of inequalities 21 220, 0,g g≥ ≥ where ijg is given in (18). Therefore * 1
A

η
Ω

= and * 1
B

η
Ω

= .

Solution tree ℑ for problem (13) describes the system of inequalities

2 *1
0, 0, 0, 0, = 1, 2

iD D D C ir r r iΦ ≥ Φ ≥ > − + ≥ , and involves phi-trees ABℑ , *AΩ
ℑ and

*BΩ
ℑ . Hence, the terminal nodes of ℑ is the to system of inequalities for each terminal node of

ABℑ combined with: 1) the system of inequalities 0, 0, = 1, 2ir r r i> − + ≥ ; 2) one of

inequality system of the last level of *AΩ
ℑ ; 3) one of inequality system of the last level of

*BΩ
ℑ .

 Thus, the number of terminal nodes η = * * 19 1 1 19AB A B
η η η

Ω Ω
⋅ ⋅ = ⋅ ⋅ = .

For example, we form the inequlity system corresponding to the 19-th terminal node of ℑ by

adding to inequality system 0φ ≥ (the system corresponds to node 34
4,19υ of ABℑ) the

following inequality systems: 1) 0, 0, = 1, 2ir r r i> − + ≥ ; 2) 11 120, 0g g≥ ≥ ; 3)

21 220, 0g g≥ ≥ .

Finally, we obtain the system of inequalities 0,φ ≥ 0,r > 1 0,r r− + ≥ 2 0,r r− + ≥

11 0,g ≥ 12 0,g ≥ 21 0,g ≥ 22 0g ≥ , which describes sub-region 19W in (7).

5.4 Solution algorithms.
In order to solve the optimal custering problems defined in Section 4, we propose two

algorithms. The first requires a comprehensive search for local extrema on all subregions and

provides the global extremum provided each subproblem (7) can be solved optimally. The

second is considerably faster and only searches one highly promising starting point, hence is

only locally optimal. In order to search for local minima of subproblems (7) we use IPOPT (see

[26]) that only guarantees a local optimum for non-linear programming problems.

Algorithm 1. The algorithm is based on the branching scheme described above and

generates the inequality systems that describe sW W⊂ from (7), using the solution tree ℑ .

 21

Algorithm 1 employs an accelerated search (branching scheme) of the inequality systems

corresponding to nodes
k

k
sv , 1, ...,k ks η= , 1, ...,k n= of ℑ . In order to discard unpromising

nodes at the k -level of the search tree ℑ we apply cut rules. The rules use the incompatibility of

systems and the upper bound value of the objective function.

First we find an upper estimation 0F of our objective function ()F u . Then we perform

an exhaustive search of nodes
1

1
1 1, 1, ...,sv s η= , of the first level of ℑ (see Figure 3) sequentially

and solve optimisation problems corresponding to node
1

1
sv in the form:

1 1
1 1() = min{ () : },s sF u F u u V∗ ∈ {1 1

1 1: 0, 0}s sV u R fs λ= ∈ ≥ ≥ .

If
1
1
sV ≠ ∅ and

1
1 0()sF u F∗ < , then we consider sequentially each offspring

2
2
sv ,

2 21,...,s η= , of node
1

1
sv and solve optimisation problems corresponding to node

2
2
sv in the

form:
2 2

2 2() = min{ () : },s sF u F u u V∗ ∈ {2 1 2
2 1 2: 0 : 0, 0}s s sV u R f fs λ= ∈ ≥ ≥ ≥ .

Otherwise we cut node
1

1
sv .

If
2
2

sV ≠ ∅ and
2

2 0()sF u F∗ < , then we consider sequentially each offspring
3

3
sv ,

3 31,...,s η= , of node
2

2
sv and solve appropriate optimisation problems corresponding to node

3
3
sv by analogy of previous step, otherwise we cut node

2
2
sv and so on .

On the last level of ℑ we solve an optimisation problem corresponding to node
n

n
sv

() = min{ () : },
n n

n n
s s sF u F u u W V∗ ∈ = { 1 2

1 2: 0, 0, ..., 0, 0}
n n
n n

s ss sV u R f f fs λ= ∈ ≥ ≥ ≥ ≥ . If

n
n

sV ≠ ∅ and 0()
n

n
sF u F∗ < , then we set 0 ()

n
n
sF F u ∗= and take point

n
n
su ∗ as the best solution.

The complexity of Algorithm 1 depends on the number η η≤


 of nonlinear optimisation

problems which have to be solved and the complexity of applying a nonlinear optimisation

method, (()O η). Algorithm 1 is applicable only for "simple" objects, since the number of

terminal nodes of the search tree ℑ increases rapidly with the numbers An and Bn of basic

objects which form A and B.

 Algorithm 2. This algorithm finds good solutions with reasonable computation times that

 22

do not increase significantly with the complexity of the objects. In order to obtain a good starting

solution 0u W∈ the algorithm employs a fast and effective heuristic given in [10]. The heuristic

is based on searching for an approximate solution of problem (4)-(5) provided that the placement

parameters of objects A and B take discrete values. Then the algorithm applies IPOPT [27] to

search for local minima. Below we give a description of the algorithm.

Let us define function * *() min{ , , , }AB A B
u λ

Ω Ω
Λ = Φ Φ Φ . Our aim is to extract from 0() 0uΛ ≥

an inequality system, which describes subregion sW W⊂ , such that 0
su W∈ .

We form the subregion sW as follows. We realise an exhaustive search of nodes 1
1, 1, ...,sv s η= ,

of the first level of ℑ (see Figure 3) sequentially and search for the number 1s such that

1 1
1 0 1 0 1 0 1 0 1 0

1 2() () max{ (), (), ..., ()}sf u f u f u f u f uη= = . Then we realise an exhaustive search of

offsprings 2
sv , 21,...,s η= , of node

1
1
sv and search for the number 2s such that

2 1
2 0 2 0 2 0 2 0 2 0

1 2() () max{ (), (), ..., ()}sf u f u f u f u f uη= = . And so on.

On the n-th level of our solution tree ℑ we realise an exhaustive search of nodes , 1, ...,n
s nv s η=

which are offsprings of node
1

1
n

n
sv
−
− and search for the number ns such that

0 0 0 0 0
1 2() () max{ (), (), ..., ()}

n n
n n n n n

sf u f u f u f u f uη= = . Then we form inequality system

which corresponds to s-th terminal node of our solution tree ℑ in the form:

{ 1 2
1 2: 0, 0, ..., 0, 0}

n
n

s s s sW u R f f fs λ= ∈ ≥ ≥ ≥ ≥ . To each sequence of numbers

1 2, ,..., ,...,k ns s s s there corresponds the number s which is derived by formula:

* *
1*

11
*

(1) , 1,..., 1

,

n

k k i k
i k

k k

s s s if k n
s s

s s if k n

η +
= +

 = − ⋅ + = −= = 
 = =

∏
.

Finally, we solve problem min ()
su W

F u
∈

 starting from point 0u . The complexity of Algorithm 2

depends on the number n of basic phi-functions forming the solution space and the complexity of

a single application of a nonlinear optimisation method, (()A BO n n⋅).

In conclusion, our approach is able to find the global minimum for problems P1 and P6 for non-

 23

rotable objects using Algorithm 1, since in the case each problem (7) becomes a linear problem

and a good approximation to the global minimum of problems P1-P6 for the general case using

Algorithm 1 or using Algorithm 2.

6. Computational experiments

The results include a number of examples to demonstrate the effectiveness of the

methodology. In all cases the input data of the example has been provided in Appendix E.

Example 1.1 is the proved global optimum since all the sub-problems defined by (7) are linear

and Algorithm 1 performs an exhaustive search. All other examples are non-linear optimisation

problems. For local optimisation, our programs use IPOPT (https://projects.coin-or.org/Ipopt).

Example 5a and Example 9 are examples of global optimum proved by known global solutions.

All input and output data considered in the following examples can be download from

http://www.math.tu-dresden.de/~capad/. We use computer AMD Athlon 64 X2 5200+.

Example 1. We consider two triangles A and B and problem P2. The task is to find the

enclosing rectangle of minimal perimeter, i.e. () =F u a b+ .

 Example 1.1. Non-rotatable case. In this example we demonstrate the approach for

computing the global solution. We use Algorithm 1 to relise model (6)-(7). Figure 4 shows the

optimal arrangments of A and B which coorespond to six local minima of problem (4)-(5)

arising from the solution tree. Since all subproblems (7) are linear, we can find the global

minima *()F u of problem (6)-(7). In Figure 4, each solution point *su is the global minimum

of subproblem (5), 1, , 6s =  . Solution * 4*u u= is the point of the global minimum of problem

(4)-(5). * 1* 2* 3* 4* 4*() min{ (), (), (), ()} () 7.6667.F u F u F u F u F u F u= = = Running time is

0.06 sec.

Example 1.2. Continuous rotations are allowed, *()F u a b= + = 6.3640. Running time is 0.109

sec, see Figure 5a. We use Algorithm 1 to relise model (6)-(7).

Example 1.3. Discrete rotations are allowed. We solve problem (6)-(7) for each object

orientation according to the rotation step. We use Algorithm 1. *()F u a b= + = 7.0000, see

Figure 5b. Running time is 0.72 sec, see Figure 5a.

https://projects.coin-or.org/Ipopt
http://www.math.tu-dresden.de/~capad/

 24

Fig. 4 Arrangments of A and B of Example 1.1, corresponding to points *
su , 1, , 6s = 

 (a) (b)

Fig. 5 Arrangment of polygons A and B corresponding to point *u : a) with continuous

rotations, Example 1.2, b) with discrete rotations, Example 1.3.

Example 2. We consider two irregular objects A and B, see Figure 6. We use Algorithm 2.

A

B

A

B

 25

Example 2.1 Clustering of objects A and B into a rectangle R , we believe this optimal but not

proved, problem P1, see Figure 6a, * * *() = 23.2253F u a b⋅ = . Running time is 0.431 sec.

Example 2.2 Clustering of objects A and B into a circle C, we believe this optimal but not

proved, problem P3, see Figure 6b, * *() = = 3.2599F u r . Running time is 0.387 sec.

Example 2.3 Clustering of objects A and B into a rectangle R taking into account minimal

allowable distance ρ =0.6, we believe this optimal but not proved, problem P1, see Figure 6c,

* * *() = 27.685F u a b⋅ = . Running time is 0.4067sec.

 (a) (b)

 (c) (d) (e)

Fig.6. Arrangement of objects A and B as described in Example 2: a) minimal enclosing

rectangle, b) minimal enclosing circle, c) minimal enclosing rectangle taking into account

distance constraints, d) minimal enclosing m-polygon, e) minimum homothetic coefficient

Example 2.4 Polygonal approximation to the minimal convex hull of objects A and B , problem

A

B

B

A

B

A

A B

A

B

 26

P5, Figure 6d, * *() = = 42.6835F u S . Running time is 0.589 sec.

 Example 2.5 Clustering of objects A and B into a convex pentagon KΩ ≡ α of minimal

homothetic coefficient, we believe this optimal but not proved, problem P6, see Figure 6e,
* *() = = 0.5259F u α . Running time is 0.401 sec.

Example 3. We consider two irregular objects A and B , see Figure 7. We use Algorithm 2.

Example 3.1 . Clustering of objects A and B in a circle of minimal radius, we believe this

optimal but not proved, problem P3, see Figure 7a, F(u*)=8.5826.Running time is 0.531 sec.

Example 3.2. Clustering of objects A and B in a circle of minimal radius with allowable

distance 0.3ρ = , we believe this optimal but not proved, problem P3, see Figure 7b,

F(u*)=r*=11.3709. Running time is 1.235 sec.

Example 3.3. Clustering of objects A and B in a convex polygon of minimal area, we believe

this optimal but not proved, problem P5, see Figure 7c, F(u*)=S*= 439.8638. Running time is

5.06 sec.

 (a) (b) (c)

Fig 7. Minimal enclosing container of objects A and B as described in Example 3: a) circle,

without distance constraints , b) circle, with distance constraints, c) convex m-polygon

Exanple 4. We consider two irregular objects A and B , see Figure 8. We use Algorithm 2.

Example 4.1 Clustering of objects A and B in a circle of minimal radius we believe this optimal

but not proved, problem P3, see Figure 8a, F(u*)=17.7674. Running time is 5.031 sec.

Example 4.2 Clustering of objects A and B in a rectangle of minimal area, we believe this

optimal but not proved, problem P1, see Figure 8b, F(u*)=1121.6867. Running time is 2.938

B

A A

B

 27

sec.

Example 4.3 Clustering of objects A and B in a convex m-polygon, we believe this optimal but

not proved, problem P5, see Figure 8c, F(u*)=1736.6091. Running time is 10.375 sec.

 (a) (b) (c)

Fig 8. Minimal enclosing regions for objects A and B of Example 4: a) rectangle, b)

circle, c) convex m-polygon

Example 5. The convex hull of two convex polygons A and B , the optimal solution, problem

P5, see Figure 9a, F(u*) =387.5215. Running time is 5.14 sec. We use Algorithm 1.

Example 6. The convex hull for two rotated objects A and B, we believe this optimal but not

proved problem P5, see Figure 9b, F(u*) =51.0228. Running time is 0.484 sec. We use

Algorithm 2.

 (a) (b)

Fig. 9 The convex hull for objects A and B: (a) two convex polygons, Example 5, (b) two non-

convex objects, Example 6.

 Example 7. An approximation of the convex hull for two convex polygons considering minimal

 allowable distance 0.2ρ = between objects A and B, as well as, between the frontier of Ω and

B

A

B

A

B

A

A

B

 28

 each object, problem P5, see Figure 10. We consider polygons A and B, given in Appendix

 E, for Example 1. F(u*) =11.3211. Running time is 0.283 sec. We use Algorithm 2.

Fig.10. An approximation of the m-polygonal convex hull for two convex polygons of Example1

 Example 8. An approximation of the convex hull for two non-convex objects, see Figure 11. We

 use Algorithm 2.

Example 8. 1. An approximation of the convex hull of minimal area for two non-convex objects,

we believe this optimal but not proved, problem P5, see Figure 11a, F(u*) =373.5249. Running

time is 0.562 sec.

Example 8. 2. An approximation of the convex hull of minimal perimeter for two non-convex

objects, which looks like the optimal, problem P4, see Figure11b, F(u*) =55.0508 . Running time

is 0.5710 sec.

 (a) (b)

Fig 11. An approximation of the m-polygonal convex hull for two non-convex objects of

Example 8: (a) area of the convex hull (b) perimeter of the convex hull

Example 9. Containment of two convex polygons A and B into the given polygonal container K

taken from [16]. We consider the containment problem as problem P6, assuming that KΩ ≡ α .

We say that the problem is solved, if * 1α ≤ . In the example we got the global minimum:

F(u*) = *α =1, see Figure 12. We use Algorithm 1. Running time is 0.95 sec.

Ω

A
B

A
B

B

A

 29

A

BK

Fig. 12 Containment of two polygons A and B into container K of Example 9 with respect to
point of the global minimum * * * *(, ,)A Bu u uλ=

7. Conclusions
In the paper a basic approach is presented to handle placement problems with irregular shapes,

whose frontiers formed by circular-arc and/or line segments. We investigated the problem of enclosing

two such objects by a rectangle or circle or convex polygon of minimal area or perimeter or homothetic

coefficient by means of phi-function technique. The solution methodology can be applied to a wide

range of problems in cutting and packing. The extension of the approach to the case of more than two

objects, the problem of filling holes of arbitrary shapes and other forms of objectve functions is onging

work for the near future publication.

References

1. Adamowicz, M., Albano, A.: Nesting two-dimensional shapes in rectanglular modules.

Computer Aided Design. 8, 1, 27-33 (1976)
2. Avnaim, F., Boissonnat, J.D.: Polygon placement under translation and rotation. Informatique

Theorique et Applications. 23(1), 5-28 (1989)
3. Avnaim, F., Boissonnat, J.D.: Simultaneous containment of several polygons. In Symposium

on Computational Geometry. 242-247 (1987)
4. Bennell, J.A., Oliveira J.F.: The geometry of nesting problems: A tutorial. European Journal

of Operational Research. 184:397-415 (2008)
5. Bennell, J.A., Oliveira J.F, A tutorial in irregular shape packing problem, Journal of the

Operational Research Society, 60:s93-s105 (2009)
6. Bennell, J., Scheithauer, G., Stoyan, Y., Romanova, T.: Tools of mathematical modeling of

arbitrary object packing problems. Annals of OR, 179:343-368 (2008)
7. Blazewicz, J., Drozdowski, M., Soniewicki, B., Walkowiak, R.: Two-dimensional cutting

problem. basic complexity results and algorithms for irregular shapes. Found. Cont. Eng.,
14(4), 137-60 (1989)

8. Burke, E.K., Hellier, R., Kendall, G., Whitwell, G.: Irregular packing using the line and arc
no-fit polygon. Operations Research. 58(4), 948-970 (2010)

9. Chazelle, B., Edelsbrunner, H., Guibas, L.J.: The complexity of cutting complexes. Discrete &
Computational Geometry. 4(2), 139-81 (1989)

 30

10. Chernov, N., Stoyan, Yu., Romanova, T.: Mathematical model and efficient algorithms for
object packing problem. Comput. Geometry: Theory & Appl. 43, 535-553 (2010)

11. Chernov, N., Stoyan, Yu., Romanova, T., Pankratov, A.: Phi-functions for 2D objects formed
by line segments and circular arcs. Advances in Operations Research (2012).
doi:10.1155/2012/346358

12. Chlebik, M., Chlebikova, J.: Hardness of approximation for orthogonal rectangle packing and
covering problems. Journal of Discrete Algorithms. 7, 291-305 (2009)

13. Dori, D., Ben-Bassat, M.: Circumscribing a convex polygon by a polygon of fewer sides with
minimal area additions. Computer Vision, Graphics and Image Processing.24,131-159(1983)

14. Dowsland, K.A., Dowsland, W.B.: Solution approaches to irregular nesting problems.
European Journal of Operational Research. 84, 506-521 (1995)

15. Grinde, R. B., Cavalier, T. M.: Containment of a single polygon using mathematical
programming. European Journal of Operational Research. 92, 368-386 (1996)

16. Grinde, R. B., Cavalier, T. M.: A new algorithm for the two-polygon containment problem.
Computers & Oper. Res. 24, 231--251 (1997)

17. Grinde, R. B., Cavalier, T. M.: A new algorithm for the minimum-area convex enclosing
problem. European Journal of Operational Research. 84, 522-538 (1995)

18. Han, W., Bennell, J.A., Song, X., Zhao, X.: Construction heuristics for two-dimensional
irregular shape bin packing with guillotine constraints. European Journal of Operational
Research. (2013) doi:10.1016/j.ejor.2013.04.048

19. Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles: J Glob Optim
(2009) 43:299-328
20. Li, Z., Milenkovic, V.: The complexity of the compaction problem. In 5th Canadian Conf.

On Comp. Geom., Univ. Waterloo (1993)
21. Martin, R. R., Stephenson, P. C.: Putting objects into boxes. Computer Aided Design. 20(9),

506-514 (1988)
22. Milenkovic, V.: Multiple translational containment part ii: Exact algorithms. Algorithmica,

19(9):183-218 (1997)
23. Milenkovic, V.: Rotational polygon containment and minimum enclosure using only robust

2D constructions. Computational Geometry. 13(1), 3-19 (1999)
24. Milenkovic, V.: Rotational polygon overlap minimization and compaction. Computational

Geometry. 10(4), 305-318 (1998)
25. Milenkovic, V., Daniels, K.: Translational polygon containment and minimal enclosure using

mathematical programming. International Transactions in Operational Research. 6(5), 525-
554 (1999)

26. Milenkovic, V., Sacks, E.: Two approximate Minkowski sum algorithms. Int. J. Comp.
Geometry & App. 20, 485-509 (2010)

27. Wachter, A., Biegler, L. T.: On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming.106, 1, 25-57
(2006)

28. Wascher, G., Hauner, H., Schuma, H.: An improved typology of cutting and packing
problems. European Journal of Operational Research. 183, 1109-1130 (2007)

Acknowledgement. T. Romanova, Yu. Stoyan and A. Pankratov acknowledge the support of the
Science and Technology Center in Ukraine and the National Academy of Sciences of Ukraine,
grant 5710.

 31

Appendix A: Primitive and basic objects

Fig. A. (a) 3 types of primitive objects (b) 4 types of basic objects

Appendix B: Description of irregular objects in an analytical form

We define phi-object T , given in Figure B, as follows: 1 2=T T T , where 1T is a circle

of radius 1r , T2 =T21 T22 T23, where T21 and T23 are half-planes, T22 is the complement to the

interior of a circle of radius 2r with center point 22 22(,)x y . Primitive objects 1T , T21, T22, T23

are defined as follows: 2
1 1{ : () 0}T t R f t= ∈ ≤ , 2 2 2

1 11 1() = () = t tf t f t x y r+ − ,

2
21 21{ : () 0}T t R f t= ∈ ≤ , 21() = t tf t x y′ ′ ′α + β + γ , 2

22 22{ : () 0}T t R f t= ∈ ≤ ,

2 2 2
22 22 22 2() = () ()t tf t x x y y r− − − − + , 2

23 23{ : () 0}T t R f t= ∈ ≤ , 23() = t tf t x y′′ ′′ ′′α + β + γ .

Now we may conclude, that 2
2 2{ : () 0}T t R f t= ∈ ≤ , where

2 21 22 23() = max{ (), (), ()}f t f t f t f t . Thus, 2{ : () 0}T t R f t= ∈ ≤ , where

1 2() = min{ (), ()}f t f t f t . Note, that 2int { : () 0}T t R f t= ∈ < , 2{ : () 0}frT t R f t= ∈ = .

 32

Fig. B. Definition of object T

Appendix C: Definition of circular segment D for deriving phi-functions
Given =A P C and =B K convex polygon, where P is a half-plane and C is a circle.

We arrange A and B as it is shown in Figure Ca. One can see that P K∩ ≠ ∅ (resulting in

< 0)PKΦ and C K∩ ≠ ∅ (resulting in < 0)CKΦ , while =A K∩ ∅ (meaning that ABΦ

should be positive). Therefore, max{ , }AB RK C K∗Φ ≠ Φ Φ . If we take =A T C , where T is a

triangle with two tangent sides to circle C (see Figure Cb), then we have

= max{ , }AB TK CKΦ Φ Φ .

 (a) (b)

Fig. C. Definition of circular segment D for deriving phi-functions: (a) D is an

intersection of circle C and half-plane P, (b) D is an intersection of circle C and triangle T

 33

Appendix D: Phi-tree diagram

Fig. D. Diagram of phi-tree for

1 2
0D DΦ ≥

 34

APPENDIX E: Input and output data for examples

Example_1.
INPUT DATA

OBJECT A EX_1
Al = (2, -1, 0, 0, 2, 0, -2, 0, 0)

OBJECT B EX_1
Bl = (0, 0, 0, 3, 2, 0, 0, 2, 0)

Example_1 OUTPUT DATA
 Example 1.1. * * * * * * *

1 1 2 2= (, , , , ,)u a b x y x y = (4.0, 3.6667, 2.0, 1.0, 0.0 , 1.6667) .

 Example 1.2. * * * * * * * * *
1 1 1 2 2 2= (, , , , , , ,)u a b x y x yθ θ = (3.5355, 2.8284, 2.1213, 1.4142, 2.3562,

0.0791, 0.7591, 6.3087)
Example 1.3. Rotation step is 30  ,
 * * * * * * * * *

1 1 1 2 2 2= (, , , , , , ,)u a b x y x yθ θ = (4.0, 3.0, 2.0, 1.0, 0.0, 2.0, 3.0, 1.5708)
Example_2. INPUT DATA

OBJECT A EX_2
Al = (-1.605, -2.125, -2.693, 0.829, -3.278, 1.892, -0.804, 0, 2.039, 1.369, 0, -0.2372, 2.0661, 0)

OBJECT B EX_2
Bl = (2.022, -1.281, 1.843, 1.1539, 0.3449, 0.708, 2.133, 12.743, 7.836, -8.429, -2.934, -1.619, -

3.632, -0.276, -4.0936).
Example_2. OUTPUT DATA

Example 2.1.
* * * * * * * * *

1 1 1 2 2 2= (, , , , , , ,)u a b x y x yθ θ = (6.0977, 3.8089, 4.1637, 2.9426, 1.2554, 2.8937,
1.2500, -2.3398)
 Example 2.2.

* * * * * * * *
1 1 1 2 2 2= (, , , , , ,)u r x y x yθ θ = (3.2599, -0.2514, 1.4905, -5.4582,-0.1020, -0.7134,

-9.01344)
Example 2.3.

* * * * * * * * *
1 1 1 2 2 2= (, , , , , , ,)u a b x y x yθ θ = (4.4249, 6.2566, 0.8663, 4.3227, 5.9678, 3.1659, 2.8858,

2.3858)
Example 2.4. m=11, * * * * * * * * * * * * * * *

1 1 1 1 11 11 11 11= (, , , , ..., , , , , , , , , ,)A A A B B Bu x y t x y t x y x yθ θ θ θ =(3.7724,
0.0000, 2.3683, 0.8404, 3.1711, -0.5870, 2.8165, 0.8404, 2.3747, -0.8554, -3.0185, 0.8404,
1.5408, -0.7522, -2.5702, 0.8404, 0.8339, -0.2977, -2.1220, 1.1793, 0.2163, 0.70686, -1.6199,
4.4084, 0.0000, 5.1099, -0.0673, 3.5617, 3.5537, 5.3494, 0.5327, 0.0000, 3.5537, 5.3494,
1.3184, 1.3214, 3.8837, 4.0698, 1.5251, 2.6428, 4.0045, 1.4298, 1.7318, 1.4485, 0.9580 , 3.2641,
5.9187, 2.7233, 2.1026, 2.3254)
Example 2.5.
Pentagon K is given by a vector of coordinates of its vertices:
 (7.0190, 1.4637, 1.8053, 7.2809, -5.3382, 4.1200, -4.5396 -3.6507, 3.0977, -5.2924)
m=5, * * * * * * * *= (, , , , , ,)A A A B B Bu x y x yα θ θ = (0.5259 , 1.6035, 1.1955, 8.1947, -0.3486, -0.0779,

 35

10.8685)
Example_3 INPUT DATA

OBJECT A EX_3
Al = (4.326, 6.395, -1.433, 2.914, 6.639, 1.56, 6.169, -2.405, 3.738, 7.189, 1.333, 7.212, 1.507, -

0.143, 6.908, -0.553, 8.358, 3.78, 3.226, 8.266, 2.139, 4.645, -1.335, 1.574, 3.436, 0.749, 2.385, -
41.479, 26.033, 35.267, -4.337, 7.015, 0.69, -4.999, 6.826, -4.974, 6.137, -11.293, -10.967, -
3.435, -1.594, 2.865, -2.1027, -3.484, 1.944, -1.523, 1.186, -3.278, -1.925, 4.439, -4.36, 2.245,
18.437, -17.211, -10.975, -8.242, 5.133, -19.365, -19.496, -10.626, -3.431, 0.187, -0.727, -4.157,
0.218, -4.551, -0.393, -6.038, -1.879, 5.022, -6.914, 1.689, 1.485, -8.213, 0.971, -9.274, 2.01, -
1.738, -8.923, 0.308, -8.055, -1.197, 7.273, -2.074, 2.942)
OBJECT B EX_3

Bl = (2.493, 6.764, 1.771, 2.143, 5.028, 0.38, 5.191, -4.788, 1.364, 0.506, 4.149, 4.399, -1.876,
2.274, 4.368, 1.795, 2.554, 10.681, -0.594, -7.857, -1.702, 2.767, 8.905, 2.509, 10.614, 4.229,
1.877, -0.496, 4.671, 1.651, 4.781, 1.167, -16.555, 1.111, 17.31, -1.293, 0.931, 0.944, -1.623,
0.047, -1.214, -0.804, -10.767, 1.31, -11.271, 3.834, -0.804, -1.324, 3.524, -2.091, 3.361, -3.405,
-40.094, 8.293, 36.385, -2.239, -2.301, 0.723, -2.193, -3.023, -2.003, -3.72, -4.687, -1.968, -
8.407, 1.231, -4.981, -2.155, -0.867, -5.474, 0.837, -6.794, -1.946, -0.701, -5.602, -2.239, -6.794,
1.103, -3.112, -7.469, -3.423, -8.528, 7.762, 0.541, -1.854, 2.0200 -9.4743 8.4740 -0.1576 -
1.2849).

 Example 3. OUTPUT DATA
Example 3.1. * * * * * * * *

1 1 1 2 2 2= (, , , , , ,)u r x y x yθ θ = (8.5826, 2.6036, 4.1595, -1.9849, 1.1292, -
0.5965 -4.4319)
Example 3.2. * * * * * * * *

1 1 1 2 2 2= (, , , , , ,)u r x y x yθ θ = (5.6452, 4.7846, -1.3617, -1.1846, -3.5867, -
3.6332)
Example 3.3.
m=24, * * * * * * * * * * * * * * *

1 1 1 1 24 24 24 24= (, , , , ..., , , , , , , , , ,)A A A B B Bu x y t x y t x y x yθ θ θ θ = (-5.3369, -8.5664, -
2.6532, 2.4302, -7.4829, -7.4261, -2.3683, 2.4302, -9.2220, -5.7287, -2.0835, 2.4302, -10.4141, -
3.6120, -1.7987, 2.4302, -10.9631, -1.2436, -1.5138, 2.4302, -10.8247, 1.1826, -1.2290, 2.4302,
-10.0101, 3.4722, -0.9441, 1.2151, -9.2975, 4.4564, -0.8760, 0.9460, -8.6918, 5.1831, -0.6335,
1.8920, -7.1669, 6.3030, -0.3909, 1.8920, -5.4177, 7.0239, -0.2271, 1.3731, -4.0798, 7.3330,
0.0182, 4.0874, 0.00688, 7.2587, 0.3034, 2.2215, 2.1269, 6.5950, 0.6065, 2.2215, 3.9522,
5.3288, 0.9096, 2.2215, 5.3164, 3.5755, 1.2127, 2.2215, 6.0950, 1.4949, 1.5158, 2.22150,
6.2171, -0.7232, 1.8189, 2.2215, 5.6716, -2.8767, 2.1220, 2.2215, 4.5081, -4.7695, 2.3619,
4.8634, 1.0496, -8.1884, 2.6565, 0.5084, 0.5998, -8.4255, 2.7755, 1.2151, -0.5346, -8.8605,
3.0603, 2.4302, -2.9569, -9.0577, -2.9380, 2.4302, 2.1774, 1.4609, 4.9044, -1.7436, -1.6084,
2.4573)

Example_4 INPUT DATA
OBJECT A EX_4

Al = (0.916, -3.2835, -2.1141, -1.1925, -3.4331, -3.1599, -4.2069, 1.5176, -4.5722, -4.7624, -
6.0118, -5.243, -1.9194, -7.8323, -5.8509, -9.7247, -5.5302, 6.5362, -16.1691, -4.4383, -10.9427,
-0.5133, 0.531, -11.3672, -0.8321, -11.8691, -0.6587, 6.4935, -5.7318, -2.7797, -11.614, -5.5302,
-10.3158, -20.9587, -9.8998, -10.6432, -9.9873, 1.0287, -9.8552, -10.6486, -9.5622, -11.6347,
12.1386, -19.1497, -4.1899, -7.9948, -8.9767, -0.8426, -7.1675, -9.1368, -6.3926, -8.8058, 1.509,
-5.0049, -8.213, -3.5952, -8.7513, -2.7401, -1.0353, -9.7286, -0.3511, -7.0753, -2.5557, 0.6609, -

 36

9.4221, 2.6318, -7.7951, 3.383, 5.924, -7.0167, 5.1053 ,-3.7343, -2.0191, 5.7366, -1.8164,
4.5707, -0.1679, 5.8141, -0.784, 2.0974, 4.2101, 5.0745, 2.1588, 2.3558, 3.9691, 2.1899, 6.1215,
-0.8636, 2.1236, 6.9825, 1.721, 7.7466, 1.7119, 0.9229, 9.2611, 0.7867, 10.9676,-1.2333,
0.6886,12.1970,1.1388,13.3452,2.0740, 1.8957, 15.2761, 3.2381, 16.8571, 2.0329, 1.9223,
15.3074, -0.0714, 15.7046 -0.8439,-0.8991,15.8695,-1.5973,15.3956,1.5839,-2.9079, 14.5062, -
3.3626, 12.9889, -1.2291, -3.7155, 11.8116, -2.5921, 11.3130,-1.0093,-3.5146, 11.7225, -4.2379,
11.0185, 0.9691, -4.9323, 10.3426, -4.8298, 9.3789, -1.7325, -4.6465, 7.6562, -4.5749, 5.9252,
2.3942, -4.4760, 3.5330, -4.0691, 1.1736, -3.8135, -3.4210, -2.5844, -0.6502, 0.0357, -5.8961, -
4.9343, -4.0153)
OBJECT B EX_4

Bl = (-3.9051, 15.6754, 3.6105, -6.3238, 12.9949, -5.4522, 9.4912, -1.7667, -4.4782, 8.0172, -
5.7334, 6.7739, -7.4716, -6.5223, 14.2038, -8.5183, 7.0037, -5.0616, -13.3461, 5.4831, -8.3588,
4.6188, 6.9000, -2.9414, 0.3454, -9.7608, -0.7063, 4.6404, -11.0770, 3.7435, -6.4367, 3.7287,
1.0321, -5.8343, 4.5668, -4.8427, 4.8531, -1.5625, -3.2958, 4.6331, -1.7954, 4.1972, 0.9511, -
1.0711, 3.5808, -0.7171, 2.6980, -8.0493, 2.2783, -4.7732, 9.5968, -8.1244, -4.6532, 5.3660, -
6.1871, 1.0175, -7.8433, 1.0906, -0.0017, -8.2314, -1.0922, -8.2181, -3.8299, -4.9218, -8.1712, -
3.1081, -11.5444, -3.3853, -4.7112, -8.5628, -8.0775, -8.9208, 1.1200, -9.1913, -9.0393, -
10.2810, -8.7803, -1.2462, -11.4934, -8.4921, -11.2655, -9.7173, 1.8333, -10.9302, -11.5197, -
10.6091, -13.3247, -4.1852, -9.8762, -17.4452, -5.9678, -15.9483, 2.5006, -3.6327, -15.0539, -
1.7485, -16.6979, -71.089, 51.8177, -63.4345 1.6738 -13.0436 -2.7890, 3.6411, -15.0206,
5.9870, -13.5121, 1.6693, 7.3910, -12.6092, 9.0343, -12.9031, -12.2743, 21.1169, -15.0634,
13.7224, -5.2665, 3.2491, 11.7650, -2.6732, 13.2536, 0.2149, -4.2809, 15.2149, 4.0201, 11.5659,
6.2586, 1.4523, 10.3279, 7.0180, 10.1594, 8.4605, -7.0745, 9.3387, 15.4872, 4.3461, 10.4751,
0.7968, 3.7838, 9.9105, 3.1741, 9.3975, -1.5498, 1.9882, 8.3997, 1.4863, 9.866, 2.0727, 0.8151,
11.8271, 2.8459, 11.4121, -1.7315, 4.5423, 11.0654, 5.2837, 12.6302, 0.8337, 5.6407, 13.3836,
6.4089, 13.7077, 4.1508, 2.5845, 12.0942, 1.6738, 16.1439, -20.4365, -2.8097, 36.0825)

 Example 4. OUTPUT DATA
Example 4.1. * * * * * * * *

1 1 1 2 2 2= (, , , , , ,)u r x y x yθ θ = (17.7674, -1.2785, 5.0441, -2.7258, -0.2362, -
2.6272, 1.8515)
Example 4.2. * * * * * * * * *

1 1 1 2 2 2= (, , , , , , ,)u a b x y x yθ θ =(32.8975, 34.0964, 22.0452, 19.8732, 4.7927,
15.1417, 16.3673, 3.0874)
Example 4.3. u*= * * * * * * * * * *

1 1 1 1(, , , , ..., , , , , ,)m m m m A Bx y t x y t u uθ θ , m=22, where

 * * * * * * * *
1 1 1 1(, , , , ..., , , ,)m m m mx y t x y tθ θ = (32.1154, -1.3741, 2.4936, 9.2842, 24.7132, -6.9780, 2.6752,

0.2644, 24.4770, -7.0969, 2.8567, 10.1271, 14.7581, -9.9431, 3.0798, 0.7279, 14.0316, -9.9880,
-2.9803, 0.7279, 13.3131, -9.8711, -2.7572, 0.7279, 12.6384, -9.5981, -2.5341, 11.4076, 3.2719,
-3.0864, -2.17501, 0.6059, 2.9277, -2.5878, -1.8159, 12.0635, 0.0000, 9.1151, -1.4215, 0.9994,
0.14867, 10.1034, -1.0270, 14.4742, 7.6372, 22.4899, -0.6472, 1.3006, 8.6747, 23.2741, -0.2674,
1.3006, 9.9291, 23.6177, 0.1125, 16.8834, 26.7059, 21.7236, 0.5216, 0.4268, 27.0760, 21.5110,
0.9306, 11.0851, 33.6978, 12.6210, 1.0337, 0.8197, 34.1172, 11.9168, 1.3810, 1.1366, 34.3316,
10.8006, 1.6580, 9.9226, 33.4677, 0.9157, 1.8892, 0.9642, 33.1660, 0.0000, 2.1204, 0.9641,
32.6624,-0.82219,2.3517,0.7771), * *(,)A Bu u =(14.6660,12.1616, 3.334, 17.4147, 4.9045, 1.6176).

Example 5. INPUT DATA
OBJECT A EX_5

 37

Al =(-7.2662, 1.5935, 0, -5.9413, -6.8803, 0, -3.2915, -8.7340, 0, 2.3109, -10.6633, 0 6.7020, -
10.6633, 0)
OBJECT B EX_5

Bl =(-1.443, -4.819, 0. 2.67, -1.107, 0. 2.089,7 4.41, -4.991, -2.885, 3.884, 0.83, 0.55, 0, -1.443,
2.605, -5.001, -4.7927, -1.107, 8 0.11, -0.12, -5.0, -2.885, 3.884, -2.879, -1.116, 0. 0.21, -1.116, -
5.0, -4.7927, -1.109)
 Example 5. OUTPUT DATA
m=10, u*= * * * * * * * * * *

1 1 1 1(, , , , ..., , , , , ,)m m m m A Bx y t x y t u uθ θ =(10.0238, -2.2864, 3.0242, 3.2338,
6.8123, -2.6651, -2.4537, 8.5767, 0.186, 2.7804, -1.5931, 8.3482, 0, 11.1266, -0.9437, 9.1846,
5.3899, 18.5634, -0.2207, 15.5024, 20.5161, 21.9577, 1.463, 7.9482, 21.3712, 14.0556, 1.8004,
11.4346, 18.7688, 2.9211, 2.4138, 0.0001, 18.7688, 2.921, 2.4138, 4.391, 15.4903, 0, 2.7454,
5.925, 6.6713, 6.4244, 5.5554, 6.6713, 6.4244, 5.5554)
 Example 6. INPUT DATA
OBJECT A EX_6

Al =(-1.4427, -4.8186, 0, 2.6700, -1.1068, 0, 2.089, 4.4005, -1, 0.830000, 0.5500, 0, -1.4427,
2.6050, 0, -0.1100, -0.1100, -1, -2.8787, -1.1163, -1, 0.2100, -1.1163, 0, -1.4427, -4.8186, -1)
OBJECT B EX_6
 Bl =(-1.4427, -4.8186, 0, 2.6700, -1.1068, 0, 2.0887, 4.4005, -1, 0.8300, 0.5500, 0, -1.4427,
2.6050, 0, -0.1100, -0.1100, -1, -2.8787, -1.1163, -1, 0.2100, -1.1163, 0, -1.4427, -4.8186, -1)
 Example 6. OUTPUT DATA
m=6, u*= * * * * * * * * * *

1 1 1 1(, , , , ..., , , , , ,)m m m m A Bx y t x y t u uθ θ = (0.0889, 5.3038, -1.5932, 3.9616, 0,
9.2643, 0.3428, 5.5377, 5.2157, 7.4031, 1.2794, 5.5372, 6.8065, 2.099, 1.5484, 3.9615, 6.896, -
1.8612, -2.7988, 5.5379, 1.6797, 0, -1.8622, 5.5372, 3.0618, 5.4759, 5.1604, 3.8337, 1.9273,
2.019)
 Example 7.
INPUT DATA

0.2ρ = is allowable distance between polygons A and B (see input data of example 1).
OUTPUT DATA
m=16, u*= * * * * * * * * * *

1 1 1 1(, , , , ..., , , , , ,)m m m m A Bx y t x y t u uθ θ = (5.3365, -0.1823, 2.5860, 2.9023,
2.8708, -1.7132, 2.7833, 0.2494, 2.6372, -1.8006, 3.0773, 0.0592, 2.5782, -1.8045, 3.3713,
2.0522, 0.5799, -1.3371, -2.6874, 0.045, 0.5394, -1.3173, -2.463, 0.0451, 0.5043, -1.289, -
2.2386, 0.0451, 0.4764, -1.2536, -2.0142, 0.045, 0.4571, -1.2129, -1.7898, 0.045, 0.4473, -1.169,
-1.5655, 0.0451, 0.4475, -1.1239, -1.341, 3.1296, 1.1603, 1.9235, -0.3583, 0.3955, 1.5307,
2.0621, 0.4747, 4.2656, 5.3246, 0.1123, 1.0025, 0.1081, 5.3827, 0.0212, 1.5303, 0.1081, 5.3871,
-0.0868, 2.0581, 0.1081, 3.2376, 0.4146, 3.3713, 2.5949, -1.6030, 17.5085)
 Example 8. INPUT DATA
OBJECT A EX_8 and OBJECT B EX_8

Al = Bl =(2.0, 7.0, 0, -4.0, -3.0, 0, 0, -5.0, -2.5, 1.5, -3.0, 3.0, -5.0, 0, 11.0, 0, -8.0623, 10.0, 8.0)
 Example 8. OUTPUT DATA

Example 8.1. m=6, u*= * * * * * * * * * *
1 1 1 1(, , , , ..., , , , , ,)m m m m A Bx y t x y t u uθ θ = (20.2289, -2.57832, 1.4978

4.4721, 20.5550, -7.0386, 3.1454, 11.6619, 8.8932, -6.9943, -2.4381, 11.6619, 0.0000, 0.5497, -
0.7467, 11.4018, 8.3684, 8.2938, 0.6766, 13.2450, 18.6952, 0.0000, 1.0342, 3.0000, 15.9317, -
5.1345, 4.1758, 6.5824, -2.5603, 4.8755)

 38

Example 8.2. m=8, u*= * * * * * * * * * *
1 1 1 1(, , , , ..., , , , , ,)m m m m A Bx y t x y t u uθ θ = (0, 4.4189, -0.3471,

10.6193, 9.9858, 8.0318, 0.3941, 9.4340, 18.696, 4.4093, 0.9527, 3, 20.435, 1.9643, 1.4164,
4.4721, 21.123, -2.4546, 2.794, 10.6193, 11.1372, -6.0674, -2.7475, 9.434, 2.4264, -2.445, -
2.1889, 3, 0.688, 0, -1.7252, 4.4721, 16.3601, -0.9331, 4.0943, 4.7629, 2.8974, 0.9527)
 Example 9. INPUT DATA
Polygonal container K is given by a vector of coordinates of its vertices:
K: (0, 0, 19, 0, 30, 12, 18, 30)
OBJECT A EX_9

Al =(30.5, 16, 0, 11.5, 16, 0, 0.5, 4, 0, 18.5, -4, 0)
OBJECT B EX_9
 Bl =(10, 29.3333, 0, 22, 11.3333, 0, 28, 21.3333, 0)
OUTPUT DATA

* * * *(, ,)A Bu u uα= =(1.0, 30.5, 16.0, -3.141593, 40.0, 41.333334, -9.4247779602)

