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History-dependent mixed variational problems

in contact mechanics

Mircea Sofonea · Andaluzia Matei

Abstract We consider a new class of mixed variational problems arising in Contact Mechan-

ics. The problems are formulated on the unbounded interval of time [0,+∞) and involve

history-dependent operators. For such problems we prove existence, uniqueness and continu-

ous dependence results. The proofs are based on results on generalized saddle point problems

and various estimates, combined with a fixed point argument. Then, we apply the abstract

results in the study of a mathematical model which describes the frictionless contact between

a viscoplastic body and an obstacle, the so-called foundation. The process is quasistatic and

the contact is modelled with normal compliance and unilateral constraint, in such a way

that the stiffness coefficient depends on the history of the penetration. We prove the unique

weak solvability of the contact problem, as well as the continuous dependence of its weak

solution with respect to the viscoplastic constitutive function, the applied forces, the contact

conditions and the initial data.

Keywords History-dependent operator · Mixed variational problem · Lagrange multiplier ·

Viscoplastic material · Frictionless contact · Normal compliance · History-dependent stiffness

coefficient · Unilateral constraint · Variational formulation · Weak solution

1 Introduction

Mixed variational problems involving Lagrange multipliers are used both in analysis and

mechanics, in the study of minimization problems. They provide a useful framework in

M. Sofonea (B)

Laboratoire de Mathématiques et Physique, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy,

66860 Perpignan, France

e-mail: sofonea@univ-perp.fr

A. Matei

Department of Mathematics, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania

1



which a large number of problems involving unilateral constraints can be cast and can be

solved numerically. Their study is based on arguments on duality, the saddle points theory

and fixed point. The literature in the field is extensive, see for instance [5,7,10,11,16] and

the references therein. There, existence and uniqueness results in the study of stationary

variational problems with Lagrange multipliers can be found, together with various appli-

cations in Solid Mechanics. A recent existence result in the study of evolutionary problems

with Lagrange multipliers was obtained in [20]. The analysis of various mixed variational

problems associated to contact models can be found in [12–15,21–23] and, more recently,

in [2,4,24], for instance.

In this paper we deal with a new class of mixed variational problems involving Lagrange

multipliers, which arise in the study of various quasistatic contact problems with elastic,

viscoelastic and viscoplastic bodies. The trait of novelty consists in the fact that the prob-

lems are evolutionary, are defined on an unbounded interval of time and involve history-

dependent operators. The statement of the problem is as follows. Let (X, (·, ·)X , ‖ · ‖X )

and (Y, (·, ·)Y , ‖ · ‖Y ) be two real Hilbert spaces. We denote by R+ the set of nonegative

real numbers, i.e. R+ = [0,+∞), and we use the notation C(R+; X) and C(R+; Y ) for the

space of continuous functions defined on R+ with values in X and Y , respectively. Also, we

consider two operators A : X → X and S : C(R+; X)×C(R+; Y ) → C(R+; X), a bilinear

form b : X × Y → R, two functions f, h : R+ → X and a set � ⊂ Y. With these data we

introduce the following problem.

Problem 1 Find the functions u : R+ → X and λ : R+ → � such that

(Au(t), v)X + (S(u, λ)(t), v)X + b(v, λ(t)) = ( f (t), v)X ∀ v ∈ X, (1.1)

b(u(t), µ − λ(t)) ≤ b(h(t), µ − λ(t)) ∀ µ ∈ �, (1.2)

for all t ∈ R+.

Our aim in this paper is threefold. The first one is to study the unique solvability of Problem

1. To this end, we use a result related to a generalized saddle point problem proved in [21],

combined with a fixed point result obtained in [27] and show that, under appropriate condi-

tions, Problem 1 has a unique solution (u, λ) such that u ∈ C(R+; X) and λ ∈ C(R+; Y ). The

second aim is to study the behavior of the solution of Problem 1 with respect to a perturbation

of the data. To this end we use monotonicity properties and arguments of convergence in the

spaces C(R+; X) and C(R+; Y ) which allow us to prove a convergence result. Finally, our

third aim is to show how our abstract results can be used in the analysis of mathematical mod-

els in Contact Mechanics. To this end we consider a quasistatic process of contact between

a viscoplastic body and a deformable foundation. The contact is with normal compliance

and finite penetration, in such a way that the stiffness coefficient depends on the history of

the penetration. Considering such kind of model leads to a new and interesting mathemati-

cal problem, governed by two history-dependent operators. We provide the analysis of this

problem, which includes its unique weak solvability and the continuous dependence of the

solution with respect to the data. The proofs are based on the abstract results obtained in the

study of Problem 1. In this way we fully exemplify the cross fertilization between the models

and applications, in one hand, and the nonlinear functional analysis, on the other hand.

The rest of the paper is structured as follows. In Sect. 2 we introduce the mixed variational

problem, list the assumptions on the data, then we state and prove our main abstract existence

and uniqueness result, Theorems 2.1. In Sect. 3 we introduce a perturbation of the problem,

then we state and prove a convergence result, Theorem 3.1. Then, in Sect. 4, we describe

our mathematical model of contact, list the assumptions on the data and derive its variational
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formulation. In Sect. 5 we prove the unique weak solvability of the model. The proof is based

on the abstract result provided by Theorem 2.1. Finally, in Sect. 6 we prove the continuous

dependence of the weak solution of the contact problem with respect to the data. The proof

is based on the abstract result provided by Theorem 3.1.

We end this introduction with some notation and preliminaries. First, everywhere in this

paper we denote by N the set of positive integers. Given a normed space U and a subset

K ⊂ U we use the symbol C(R+; K ) for the set of continuous functions defined on R+ with

values in K . It is well known that, if U is a Banach space, then C(R+; U ) can be organized in

a canonical way as a Fréchet space, i.e. a complete metric space in which the corresponding

topology is induced by a countable family of seminorms. Details can be found in [6] and

[19], for instance. Here we restrict ourselves to recall that the convergence of a sequence

(uk)k to the element u, in the space C(R+; U ), can be described as follows:

{
uk → u in C(R+; U ) as k → ∞ if and only if

max
r∈[0,n]

‖uk(r) − u(r)‖U → 0 as k → ∞, for all n ∈ N. (1.3)

We also recall the following fixed point result.

Theorem 1.1 Let (X, ‖ ·‖X ) be a real Banach space and let L : C(R+; X) → C(R+; X) be

a nonlinear operator. Assume that there exists m ∈ N with the following property: for each

n ∈ N there exist two constants cn ≥ 0 and kn ∈ [0, 1) such that

‖Lu(t) − Lv(t)‖m
X ≤ cn

t∫

0

‖u(s) − v(s)‖m
X ds + kn‖u(t) − v(t)‖m

X (1.4)

for all u, v ∈ C(R+; X) and for any t ∈ [0, n]. Then the operator L has a unique fixed point

η∗ ∈ C(R+; X).

Note that in (1.4) and below the notation Lη(t) represents the value of the function Lη at

the point t , i.e. Lη(t) = (Lη)(t). The proof of Theorem 1.1 can be found in [27]. We shall

use this fixed point result twice, in Sects. 2 and 5 of the paper.

2 An abstract existence and uniqueness result

In this section we prove the unique solvability of Problem 1. To this end we assume that the

data satisfy the following condition.

⎧
⎪⎪⎨
⎪⎪⎩

(a) There exists m A > 0 such that

(Au − Av, u − v)X ≥ m A‖u − v‖2
X ∀ u, v ∈ X.

(b) There exists L A > 0 such that

‖Au − Av‖X ≤ L A ‖u − v‖X ∀ u, v ∈ X.

(2.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

For each n ∈ N there exist dn ≥ 0 and rn ≥ 0 such that

‖S(u1, λ1)(t) − S(u2, λ2)(t)‖X

≤ dn(‖u1(t) − u2(t)‖X + ‖λ1(s) − λ2(s)‖Y )

+ rn

t∫

0

(‖u1(s) − u2(s)‖X + ‖λ1(s) − λ2(s)‖Y ) ds

∀ u1, u2 ∈ C(R+; X), ∀ λ1, λ2 ∈ C(R+; Y ), ∀ t ∈ [0, n].

(2.2)
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⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b : X × Y → R is a bilinear form such that

(a) There exists Mb > 0 such that

|b(v, µ)| ≤ Mb‖v‖X‖µ‖Y ∀ v ∈ X, µ ∈ Y.

(b) There exists α > 0 such that

inf
µ∈Y,µ�=0Y

sup
v∈X,v �=0X

b(v, µ)

‖v‖X‖µ‖Y

≥ α.

(2.3)

f ∈ C(R+; X), h ∈ C(R+; X). (2.4)

� is a closed convex unbounded subset of Y that contains 0Y . (2.5)

Our main result in this section is the following.

Theorem 2.1 Assume (2.1)–(2.5). There exists d0 > 0 which depends only on A and b such

that, if dn < d0 for all positive integers n, then Problem 1 has a unique solution (u, λ).

Moreover, the solution satisfies u ∈ C(R+; X) and λ ∈ C(R+;�).

The proof of Theorem 2.1 will be carried out in several steps. To this end, we assume in

what follows that (2.1)–(2.5) hold. The first step is given by the following result.

Lemma 2.2 Given g, k ∈ X, there exists a unique pair (u, λ) ∈ X × � such that

(Au, v)X + b(v, λ) = (g, v)X ∀ v ∈ X, (2.6)

b(u, µ − λ) ≤ b(k, µ − λ) ∀ µ ∈ �. (2.7)

In addition, if (u1, λ1) and (u2, λ2) are the solutions of the problem (2.6)–(2.7) correspond-

ing to the data g1, k1 ∈ X and g2, k2 ∈ X, respectively, then there exists c0 which depends

only on A and b such that

‖u1 − u2‖X + ‖λ1 − λ2‖Y ≤ c0(‖g1 − g2‖X + ‖k1 − k2‖X ). (2.8)

Proof The existence and uniqueness part of the lemma corresponds to Theorem 5.2 in [21]

and, for this reason, we skip its proof. The estimate (2.8) shows the Lischitz continuous

dependence of the solution with respect to the data and corresponds to Theorem 5.8 in [21].

Nevertheless, since the size of the constant c0 in this estimate will play an important role in

what follows, for the convenience of the reader, we present the proof of (2.8). Thus, consider

gi , ki ∈ X and denote by (ui , λi ), the solution of the problem (2.6)–(2.7), corresponding to

the data gi , ki ∈ X , for each i = 1, 2. Then, using (2.6) it follows that

(Au1 − Au2, v)X + b(v, λ1 − λ2) = (g1 − g2, v)X ∀ v ∈ X (2.9)

and, using (2.1)(b) we find that

b(v, λ1 − λ2) ≤ ‖g1 − g2‖X‖v‖X + L A‖u1 − u2‖X‖v‖X ∀ v ∈ X.

We now use (2.3)(b) and the previous inequality to obtain that

α ‖λ1 − λ2‖Y ≤ ‖g1 − g2‖X + L A‖u1 − u2‖X . (2.10)

On the other hand, (2.7) yields

b(u1 − u2, λ2 − λ1) ≤ b(k1 − k2, λ2 − λ1)

and, therefore, using condition (2.3)(a) we find that

b(u1 − u2, λ2 − λ1) ≤ Mb ‖k1 − k2‖X‖λ1 − λ2‖Y . (2.11)
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We now take v = u1 − u2 in (2.9) and use (2.11) in the resulting inequality to deduce that

(Au1 − Au2, u1 − u2)X ≤ (g1 − g2, u1 − u2)X + Mb ‖k1 − k2‖X‖λ1 − λ2‖Y .

Therefore, using the assumption (2.1)(a) it follows that

m A‖u1 − u2‖
2
X ≤ ‖g1 − g2‖X‖u1 − u2‖X + Mb‖k1 − k2‖X‖λ1 − λ2‖Y . (2.12)

Inequalities (2.12) and (2.10) imply that

m A‖u1 − u2‖
2
X ≤

‖g1 − g2‖
2
X

2c1
+

c1‖u1 − u2‖
2
X

2
(2.13)

+
M2

b ‖k1 − k2‖
2
X

2c2
+

c2‖λ1 − λ2‖
2
Y

2
,

‖λ1 − λ2‖
2
Y ≤

2

α2

(
‖g1 − g2‖

2
X + L2

A‖u1 − u2‖
2
X

)
(2.14)

respectively, where c1, c2 are arbitrary positive constants. We now choose c1 and c2 such that

m A −
c1

2
−

c2 L2
A

α2
> 0.

Therefore, from (2.13) and (2.14) we deduce that there exists c3 > 0, which depends only

on A and b, such that

‖u1 − u2‖
2
X ≤ c3

(
‖g1 − g2‖

2
X + ‖k1 − k2‖

2
X

)
. (2.15)

Finally, combining (2.14) and (2.15) we obtain (2.8) with c0 depending only on A and b,

which concludes the proof. ⊓⊔

The next step is given by the following result.

Lemma 2.3 Given η ∈ C(R+; X), there exists a unique couple of functions (uη, λη) ∈

C(R+; X) × C(R+;�) such that

(Auη(t), v)X + (η(t), v)X + b(v, λη(t)) = ( f (t), v)X ∀ v ∈ X, (2.16)

b(uη(t), µ − λη(t)) ≤ b(h(t), µ − λη(t)) ∀ µ ∈ �, (2.17)

for all t ∈ R+. In addition, given η1, η2 ∈ C(R+; X) and denoting by uη1 , uη2 the corre-

sponding couples of functions which verify (2.16)–(2.17) at each t ∈ R+, then

‖uη1(t) − uη2(t)‖X + ‖λη1(t) − λη2(t)‖Y ≤ c0‖η1(t) − η2(t)‖X (2.18)

for all t ∈ R+.

Proof Let t ∈ R+ be fixed. We use Lemma 2.2 with g = f (t) − η(t) and k = h(t) to

obtain the existence of a unique couple (uη(t), λη(t)) ∈ X ×� which satisfies (2.16)–(2.17).

Next, we consider t1, t2 ∈ R+ and denote η(ti ) = ηi , u(ti ) = ui , λ(ti ) = λi , f (ti ) = fi ,

h(ti ) = hi and gi = fi − ηi . Then, using inequality (2.8), it follows that

‖u1 − u2‖X + ‖λ1 − λ2‖Y ≤ c0 (‖ f1 − f2‖X + ‖η1 − η2‖X + ‖h1 − h2‖X ).

Therefore, since f, η, h ∈ C(R+; X) we conclude that uη ∈ C(R+; X) and λη ∈ C(R+;�).

Finally, the estimate (2.18) is obtained by using arguments similar to those used above, based

on inequality (2.8). ⊓⊔
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We now use Lemma 2.3 to introduce the operator L : C(R+; X) → C(R+; X) defined

by equality

Lη = S(uη, λη) ∀ η ∈ C(R+; X). (2.19)

We have the following fixed-point result.

Lemma 2.4 There exists d0 > 0 which depends only on A and b such that, if dn < d0 for

all positive integers n, then L has a unique fixed point η∗ ∈ C(R+; X).

Proof Let η1, η2 ∈ C(R+; X), n ∈ N and let t ∈ [0, n]. Then, using (2.19) and (2.2) we

have

‖Lη1(t) − Lη2(t)‖X ≤ dn(‖uη1(t) − uη2(t)‖X + ‖λη1(t) − λη2(t)‖Y )

+ rn

t∫

0

(‖uη1(s) − uη2(s)‖X + ‖λη1(s) − λη2(s)‖Y ) ds.

Therefore, inequality (2.18) yields

‖Lη1(t) − Lη2(t)‖X ≤ c0dn‖η1(t) − η2(t)‖X + c0rn

t∫

0

‖η1(s) − η2(s)‖X ds. (2.20)

Let d0 = 1
c0

and note that Lemma 2.2 shows that d0 depends only on A and b. Assume

now that dn < d0 for all n ∈ N. Then inequality (2.20) and Theorem 1.1 show that L has a

unique fixed point, which concludes the proof. ⊓⊔

We now have all the ingredients to prove Theorem 2.1.

Proof Let d0 > 0 be defined as above and recall that d0 depends only on A and b. Assume

that dn < d0 for all positive integers n, and denote by η∗ the unique fixed point of the operator

L provided in Lemma 2.4. Then, using (2.16), (2.17) and definition (2.19) of the operator L

it is easy to see that (uη∗ , λη∗) is a solution of Problem 1 and, moreover, it has the regularity

(uη∗ , λη∗) ∈ C(R+; X) × C(R+;�). This concludes the existence part of the theorem. The

uniqueness part follows from the uniqueness of the fixed point of the operator L, guaranteed

by Lemma 2.4. ⊓⊔

3 A convergence result

We now turn to the dependence of the solution with respect to the data. To this end, everywhere

in this section we assume that (2.1)–(2.5) hold and we denote by (u, λ) the solution of

Problem 1 provided by Theorem 2.1. Moreover, we assume that for each ρ > 0 the operator

Sρ : C(R+; X) × C(R+, Y ) → C(R+; X), and the functions fρ, hρ : R+ → X are given,

and represent perturbations of the data S, f and h, respectively. With these data, for each

ρ > 0, we consider the following problem.

Problem 2 Find the functions uρ : R+ → X and λρ : R+ → � such that

(Auρ(t), v)X + (Sρ(uρ, λρ)(t), v)X + b(v, λρ(t)) = ( fρ(t), v)X ∀ v ∈ X, (3.1)

b(uρ(t), µ − λρ(t)) ≤ b(hρ(t), µ − λρ(t)) ∀ µ ∈ �, (3.2)

for all t ∈ R+.
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We assume that, for each ρ > 0, the following conditions hold.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

For each n ∈ N there exist dρn ≥ 0 and rρn ≥ 0 such that

‖Sρ(u1, λ1)(t) − Sρ(u2, λ2)(t)‖X

≤ dρn(‖u1(t) − u2(t)‖X + ‖λ1(t) − λ2(t)‖Y )

+ rρn

t∫

0

(‖u1(s) − u2(s)‖X + ‖λ1(s) − λ2(s)‖Y ) ds

∀ u1, u2 ∈ C(R+; X), ∀ λ1, λ2 ∈ C(R+; Y ), ∀ t ∈ [0, n].

(3.3)

fρ ∈ C(R+, X), hρ ∈ C(R+, X). (3.4)

Under these assumptions, if dρn < d0 for all n ∈ N, Theorem 2.1 guarantees the existence

of a unique solution (uρ, λρ) to Problem 2 such that uρ ∈ C(R+; X) and λρ ∈ C(R+;�).

Our interest lies in the behavior of the solution of the perturbed problem as ρ tends to zero.

To this end we consider the following additional assumptions, in which d0 represents the

constant in Theorem 2.1.
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

For each n ∈ N there exist Hn : R+ → R+,

Jn : C(R+; X) × C(R+; Y ) → R+ and Rn ≥ 0 such that

(a) ‖Sρ(u, λ)(t) − S(u, λ)(t))‖X ≤ Hn(ρ)Jn(u, λ)

∀ (u, λ) ∈ C(R+; X × �), ∀ t ∈ [0, n], ∀ ρ > 0.

(b) rρn ≤ Rn ∀ ρ > 0.

(c) lim
ρ→0

Hn(ρ) = 0.

(3.5)

There exists d̃0 such that dρn ≤ d̃0 < d0 ∀ n ∈ N, ∀ ρ > 0. (3.6)

fρ → f, hρ → h in C(R+; X) as ρ → 0. (3.7)

We have the following convergence result.

Theorem 3.1 Assume (3.5)–(3.7). Then the solution (uρ, λρ) of Problem 2 converges to the

solution (u, λ) of Problem 1 i.e.

uρ → u in C(R+; X), λρ → λ in C(R+; Y ) as ρ → 0. (3.8)

Proof Let ρ > 0, n ∈ N and let t ∈ [0, n]. We note that the system (3.1)–(3.2) represents a

system of the form (2.6)–(2.7) in which

g = fρ(t) − Sρ(uρ, λρ)(t) and h = hρ(t).

Also, the system (1.1)–(1.2) is a system of the form (2.6)–(2.7) in which

g = f (t) − S(u, λ)(t) and h = h(t).

Therefore, using the estimate (2.8) yields

‖uρ(t) − u(t)‖X + ‖λρ(t) − λ(t)‖Y (3.9)

≤ c0(‖ fρ(t) − f (t)‖X + ‖Sρ(uρ, λρ)(t) − S(u, λ)(t)‖X + ‖hρ(t) − h(t)‖X ).

Next, we remark that

‖ fρ(t) − f (t)‖X ≤ max
s∈[0,n]

‖ fρ(s) − f (s)‖X := δρn, (3.10)

‖hρ(t) − h(t)‖X ≤ max
s∈[0,n]

‖hρ(s) − h(s)‖X := ωρn (3.11)
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and, in order to simplify the writing we denote

ϕρ(t) := ‖uρ(t) − u(t)‖X + ‖λρ(t) − λ(t)‖Y . (3.12)

Then, inequalities (3.9)–(3.11) imply that

ϕρ(t) ≤ c0(δρn + ωρn + ‖Sρ(uρ, λρ)(t) − S(u, λ)(t)‖X ). (3.13)

On the other hand

‖Sρ(uρ, λρ)(t) − S(u, λ)(t)‖X ≤ ‖Sρ(uρ, λρ)(t) − Sρ(u, λ)(t)‖X

+‖Sρ(u, λ)(t) − S(u, λ)(t)‖X ,

and, therefore, assumptions (3.3) and (3.5)(a) combined with definition (3.12) show that

‖Sρ(uρ, λρ)(t) − S(u, λ)(t)‖X ≤ dρnϕρ(t) + rρn

t∫

0

ϕρ(s) ds + Hn(ρ)Jn(u, λ).

(3.14)

We now use (3.13) and (3.14) to see that

ϕρ(t) ≤ c0(δρn + ωρn) + c0dρnϕρ(t) + c0rρn

t∫

0

ϕρ(s) ds + c0 Hn(ρ)Jn(u, λ).

Therefore, the hypothesis (3.6) allows us to write

(1 − c0d̃0)ϕρ(t) ≤ c0(δρn + ωρn) + c0rρn

t∫

0

ϕρ(s) ds + c0 Hn(ρ)Jn(u, λ).

Recall now that d0 =
1

c0
, as shown in the proof of Lemma 2.4. Thus, assumption (3.5)(b)

combined with inequality d̃0 < d0 in (3.6) imply that

ϕρ(t) ≤ c (δρn + ωρn) + c Rn

t∫

0

ϕρ(s) ds + c Hn(ρ)Jn(u, λ)

where c is a positive constant independent of ρ and n. Using now a Gronwall argument we

obtain

ϕρ(t) ≤ c (δρn + ωρn + Hn(ρ)Jn(u, λ))ecRn t

and, therefore,

max
t∈[0,n]

ϕρ(t) ≤ c(δρn + ωρn + Hn(ρ)Jn(u, λ))ecn Rn . (3.15)

We now use assumption (3.7), the equivalence (1.3) and the definitions (3.10), (3.11) to

see that

δρn → 0, ωρn → 0 as ρ → 0. (3.16)

Therefore, passing to the limit in (3.15) as ρ → 0 with a fixed positive integer n, using the

convergences (3.5)(c), (3.16) we deduce that

max
t∈[0,n]

ϕρ(t) → 0 as ρ → 0.
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Using now notation (3.12) we obtain that

max
t∈[0,n]

‖uρ(t) − u(t)‖X → 0, max
t∈[0,n]

‖λρ(t) − λ(t)‖Y → 0 as ρ → 0. (3.17)

Finally, we use (3.17) and (1.3) to see that the convergences (3.8) hold, which concludes the

proof. ⊓⊔

4 A history-dependent contact problem

In this section we introduce a model of frictionless contact which can be studied by using the

abstract results presented in Section 2. The physical setting is as follows. A viscoplastic body

occupies the bounded domain 
 ⊂ R
d (d = 2, 3), with the boundary ∂
 = Ŵ partitioned

into three disjoint measurable parts Ŵ1, Ŵ2 and Ŵ3, such that meas Ŵ1 > 0. We assume that

the boundary Ŵ is Lipschitz continuous and we denote by v its unit outward normal, defined

almost everywhere. The body is clamped on Ŵ1 and, therefore, the displacement field vanishes

there. A volume force of density f 0 acts in 
, surface tractions of density f 2 act on Ŵ2 and,

finally, we assume that the body is in contact with a deformable foundation on Ŵ3. The contact

is frictionless and we model it with a normal compliance condition with unilateral constraint,

in which the stiffness coefficient depends on the history of the penetration. The process is

quasistatic and we study it in the unbounded interval of time [0,+∞). We denote by S
d the

space of second order symmetric tensors on R
d and, in order to simplify the notation, we do

not indicate explicitly the dependence of various functions on the spatial variable. Then, the

classical formulation of the contact problem is the following.

Problem 3 Find a displacement field u:
 × [0,+∞) → R
d and a stress field σ :


 × [0,+∞) → S
d such that

σ̇ (t) = Eε(u̇(t)) + G(σ , ε(u(t))) in 
, (4.1)

Div σ (t) + f 0(t) = 0 in 
, (4.2)

u(t) = 0 on Ŵ1, (4.3)

σ (t)v = f 2(t) on Ŵ2, (4.4)

uν(t) ≤ g(t), σν(t) + k(ζu(t))p(uν(t)) ≤ 0,

(uν(t) − g(t))(σν(t) + k(ζu(t))p(uν(t))) = 0,

ζu(t) =

t∫

0

u+
ν (s) ds

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

on Ŵ3, (4.5)

σ τ (t) = 0 on Ŵ3, (4.6)

for all t ∈ R+ and, moreover,

u(0) = u0, σ (0) = σ 0 in 
. (4.7)

We now provide a brief description of the equations and conditions in Problem 3 and

refer the reader to [9,26,28] for details and additional comments on the classical formulation

of the contact problems. First, Eq. (4.1) represents the viscoplastic constitutive law of the

material, in which ε(u) denotes the linearized stress tensor, E is the elasticity tensor and G is

a given constitutive function. Moreover, the dot above represents the derivative with respect

to the time variable t . Quasistatic frictionless and frictional contact problems for such kind
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of materials were studied in various works, see for instance [3,4,9,26] and the references

therein.

Equation (4.2) is the equilibrium equation in which Div represents the divergence operator

for tensor-valued functions; we use it here since the process is assumed to be quasistatic.

Conditions (4.3) and (4.4) are the displacement and traction boundary conditions, respec-

tively, and condition (4.5) represents a new version of the normal compliance condition with

unilateral constraint; here uν and σν represent the normal component of the displacement

and the stress field, respectively; g ≥ 0 is a time-dependent bound for the penetration, p

represents a given normal compliance function, k is a positive function and ζu(t) represents

the accumulated contact penetration depth at time t , u+
ν being the positive part of uν . We

interpret k = k(ζu) as a stiffness coefficient which, clearly, depends on the history of pene-

tration. Note that such kind of dependence models the surface hardening or softening which

appears in various applications, when cycles of contact and no contact arise. Details can be

found in [25]. Condition (4.5) was introduced for the first time in [18] in the case when g

is a constant and k ≡ 1. In this particular form it was recently used in [3,4], in the study

of a quasistatic viscoplastic problem. Condition (4.6) shows that the tangential stress on the

contact surface, denoted σ τ , vanishes. We use it here since we assume that the contact process

is frictionless. Finally, (4.7) represents the initial conditions in which u0 and σ 0 denote the

initial displacement and the initial stress field, respectively.

We turn now to the variational formulation of Problem 3. To this end, we need further

notation and preliminaries. First, we use the notation x = (xi ) for a typical point in 
 ∪ Ŵ

and we denote by νi the components of v, i.e. v = (νi ). Here and below the indices i , j , k, l

run between 1 and d and, unless stated otherwise, the summation convention over repeated

indices is used. An index that follows a comma represents the partial derivative with respect

to the corresponding component of the spatial variable, e.g. ui, j = ∂ui/∂x j . Recall that the

inner product and norm on R
d and S

d are defined by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀ u, v ∈ R

d ,

σ · τ = σi jτi j , ‖τ‖ = (τ · τ )
1
2 ∀ σ , τ ∈ S

d .

We use standard notation for the Lebesgue and Sobolev spaces associated to 
 and Ŵ and,

moreover, we consider the spaces

V = { v = (vi ) ∈ H1(
)d : v = 0 on Ŵ1 },

Q = { τ = (τi j ) ∈ L2(
)d×d : τi j = τ j i }.

These are real Hilbert spaces endowed with the inner products

(u, v)V =

∫




ε(u) · ε(v) dx, (σ , τ )Q =

∫




σ · τ dx,

and the associated norms ‖ · ‖V and ‖ · ‖Q , respectively. Here ε represents the deformation

operator given by

ε(v) = (εi j (v)), εi j (v) =
1

2
(vi, j + v j,i ) ∀ v ∈ H1(
)d .

Completeness of the space (V, ‖ · ‖V ) follows from the assumption meas Ŵ1 > 0, which

allows the use of Korn’s inequality.

For an element v ∈ V we still write v for the trace of v on the boundary and we denote by

vν and vτ the normal and tangential components of v on Ŵ, given by vν = v · v, vτ = v −vνv.

10



Let Ŵ3 be a measurable part of Ŵ. Then, by the Sobolev trace theorem, there exists a positive

constant ctr which depends only on 
, Ŵ1 and Ŵ3 such that

‖v‖L2(Ŵ3)
d ≤ ctr‖v‖V for all v ∈ V . (4.8)

Inequality (4.8) represents a consequence of the Sobolev trace theorem. We also consider the

space

S = { w = v|Ŵ3 : v ∈ V },

where v|Ŵ3 denotes the restriction of the trace of the element v ∈ V to Ŵ3. Thus, S ⊂

H1/2(Ŵ3; R
d) where H1/2(Ŵ3; R

d) is the space of the restrictions on Ŵ3 of traces on Ŵ of

functions of H1(
)d . It is known that S can be organized as a Hilbert space, in a canonical

way, see for instance [1,8,17]. The dual of the space S will be denoted by D and the duality

paring between D and S will be denoted by 〈·, ·〉Ŵ3 . Nevertheless, for simplicity, we write

〈µ, v〉Ŵ3 instead of 〈µ, v|Ŵ3〉Ŵ3 , when µ ∈ D and v ∈ V .

For a regular function σ ∈ Q we use the notation σν and σ τ for the normal and the

tangential traces, i.e. σν = (σv) · v and σ τ = σv − σνv. Moreover, we recall that the

divergence operator is defined by the equality Div σ = (σi j, j ) and, in addition, the following

Green’s formula holds:
∫




σ · ε(v) dx +

∫




Div σ · v dx =

∫

Ŵ

σv · v da ∀ v ∈ V . (4.9)

Finally, we denote by Q∞ the space of fourth order tensor fields given by

Q∞ =
{

E = (Ei jkl) : Ei jkl = E j ikl = Ekli j ∈ L∞(
), 1 ≤ i, j, k, l ≤ d
}
,

and we recall that Q∞ is a real Banach space with the norm

‖E‖Q∞ = max
1≤i, j,k,l≤d

‖Ei jkl‖L∞(
).

Moreover, a simple calculation shows that

‖Eτ‖Q ≤ d ‖E‖Q∞‖τ‖Q ∀ E ∈ Q∞, τ ∈ Q. (4.10)

In the study of the mechanical problem (4.1)–(4.7) we assume that the elasticity tensor

E , the nonlinear constitutive function G, the normal compliance function and the stiffness

function k satisfy the following conditions.

⎧
⎪⎪⎨
⎪⎪⎩

(a) E = (Ei jkl) : 
 × S
d → S

d .

(b) Ei jkl = Ekli j = E j ikl ∈ L∞(
), 1 ≤ i, j, k, l ≤ d.

(c) There exists mE > 0 such that

Eτ · τ ≥ mE‖τ‖2 ∀ τ ∈ S
d , a.e. in 
.

(4.11)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) G : 
 × S
d × S

d → S
d .

(b) There exists LG > 0 such that

‖G(x, σ 1, ε1) − G(x, σ 2, ε2)‖

≤ LG (‖σ 1 − σ 2‖ + ‖ε1 − ε2‖)

∀ σ 1, σ 2, ε1, ε2 ∈ S
d , a.e. x ∈ 
.

(c) The mapping x �→ G(x, σ , ε) is measurable in 
,

for any σ , ε ∈ S
d .

(d) The mapping x �→ G(x, 0, 0) belongs to Q.

(4.12)
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⎧
⎪⎪⎨
⎪⎪⎩

(a) p : R → R+.

(b) There exists L p > 0 such that

|p(r1) − p(r2)| ≤ L p|r1 − r2| ∀ r1, r2 ∈ R.

(c) There exists p0 > 0 such that |p(r)| ≤ p0 ∀ r ∈ R.

(4.13)

⎧
⎪⎪⎨
⎪⎪⎩

(a) k : R+ → R+.

(b) There exists Lk > 0 such that

|k(r1) − k(r2)| ≤ Lk |r1 − r2| ∀ r1, r2 ∈ R.

(c) There exists k0 > 0 such that |k(r)| ≤ k0 ∀ r ∈ R.

(4.14)

We also assume that the densities of the body forces and surface tractions have the regularity

f 0 ∈ C
(
R+; L2(
)d

)
, f 2 ∈ C

(
R+; L2(Ŵ2)

d
)

, (4.15)

the penetration bound satisfies

g ∈ C(R+; R+), (4.16)

and the initial data are such that

u0 ∈ V, σ 0 ∈ Q. (4.17)

Finally, we assume that

there exists θ̃ ∈ V such that θ̃ν = 1 a.e. on Ŵ3 (4.18)

where, recall, θ̃ν = θ̃ · v.

Next, we define the sets K ⊂ V and � ⊂ D, the bilinear form b : V × D → R and the

function f : R+ → V by equalities

K = { v ∈ V : vν ≤ 0 a.e. on Ŵ3 }, (4.19)

� = { µ ∈ D : 〈µ, v〉Ŵ3 ≤ 0 ∀ v ∈ K }, (4.20)

b(v, µ) = 〈µ, v〉Ŵ3 ∀ v ∈ V, µ ∈ D, (4.21)

(f (t), v)V =

∫




f 0(t) · v dx +

∫

Ŵ2

f 2(t) · v da ∀ v ∈ V, t ∈ R+. (4.22)

Assume now that u and σ are regular functions which verify (4.1)–(4.7), t ∈ R+, v ∈ V

and µ ∈ �. Then, we integrate (4.1) with the initial condition (4.7) to find that

σ (t) = E ε(u(t)) +

t∫

0

G(σ (s), ε(u(s))) ds + σ 0 − Eε(u0). (4.23)

Next, using Green’s formula (4.9) and the equation of equilibrium (4.2) we have

(σ (t), ε(v))Q = (f 0(t), v)L2(
)d +

∫

Ŵ

σ (t)v · v da. (4.24)

Then, since v = 0 on Ŵ1, using (4.4), (4.6) and (4.22) we obtain that

(σ (t), ε(v))Q = (f (t), v)V +

∫

Ŵ3

σν(t)vν da. (4.25)
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Let λ(t) ∈ D be the Lagrange multiplier defined by

〈λ(t), w〉Ŵ3 = −

∫

Ŵ3

(σν(t) + k(ζu(t))p(uν(t))wν da ∀ w ∈ S. (4.26)

Then, taking into account (4.21) we can write
∫

Ŵ3

σν(t)vν da = −b(v,λ(t)) −

∫

Ŵ3

k(ζu(t))p(uν(t))vν da ∀ v ∈ V (4.27)

and, combining this equality with (4.25) we obtain that

(σ (t), ε(v))Q + b(v,λ(t)) +

∫

Ŵ3

k(ζu(t))p(uν(t))vν da = (f (t), v)V . (4.28)

On the other hand, using (4.5), (4.19) and (4.20) we deduce that λ(t) ∈ �. Moreover,

using assumption (4.18) and the definition (4.21) of the bilinear form b it it is easy to see that

b(u(t),µ − λ(t)) = b(u(t) − g(t )̃θ ,µ − λ(t)) + b(g(t )̃θ ,µ − λ(t))

= 〈µ − λ(t), u(t) − g(t )̃θ〉Ŵ3 + b(g(t )̃θ ,µ − λ(t))

and, therefore,

b(u(t),µ − λ(t)) = 〈µ, u(t) − g(t )̃θ〉Ŵ3 − 〈λ(t), u(t) − g(t )̃θ〉Ŵ3 + b(g(t )̃θ ,µ − λ(t)).

(4.29)

In addition, (4.5) and (4.18) imply that

u(t) − g(t )̃θ ∈ K , 〈λ(t), u〉Ŵ3 = 〈λ(t), g(t )̃θ〉Ŵ3 ,

which show that

〈µ, u(t) − g(t )̃θ〉Ŵ3 ≤ 0, 〈λ(t), u − g(t )̃θ〉Ŵ3 = 0. (4.30)

We combine now (4.29) and (4.30) to deduce that

b(u(t),µ − λ(t)) ≤ b(g(t )̃θ ,µ − λ(t)). (4.31)

We now gather equalities (4.23), (4.28) and inequality (4.31) to obtain the following

variational formulation of the mechanical problem P .

Problem 4 Find a displacement field u:R+ → V, a stress field σ :R+ → Q and a Lagrange

multiplier λ:R+ → � such that

σ (t) = E ε(u(t)) +

t∫

0

G(σ (s), ε(u(s))) ds + σ 0 − Eε(u0), (4.32)

(σ (t), ε(v))Q + b(v,λ(t)) +

∫

Ŵ3

k(ζu(t))p(uν(t))vν da = (f (t), v)V ∀ v ∈ V, (4.33)

b(u(t),µ − λ(t)) ≤ b(g(t )̃θ ,µ − λ(t)) ∀ µ ∈ �, (4.34)

for all t ∈ R+.
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Note that Problem 4 represents a mixed variational formulation which couples a nonlinear

implicit integral equation for the stress field, a history-dependent variational equation for the

displacement field, and a first-order time-dependent variational inequality for the Lagrange

multiplier. This formulation is quite different to that in Problem 1. Nevertheless, we shall see

in the next section that we can associate to Problem 4 a mixed variational formulation of the

form (1.1)–(1.2) and, therefore, the analysis of Problem (4.32)–(4.34) can be carried out by

using the abstract results we obtained in the previous two sections of this paper.

5 Weak solvability

In the study of Problem 4 we have the following existence and uniqueness result.

Theorem 5.1 Assume (4.11)–(4.18). There exists e0 > 0 which depends only on E , 
, Ŵ1

and Ŵ3 such that, if k0 L p < e0, then Problem 4 has a unique solution (u, σ ,λ). Moreover,

the solution satisfies

u ∈ C(R+; X), σ ∈ C(R+; Q), λ ∈ C(R+;�). (5.1)

The proof of Theorem 5.1 will be carried out in several steps. To this end, we assume in

what follows that (4.11)–(4.18) hold. The first step is given by the following result.

Lemma 5.2 For each function u ∈ C(R+; V ) there exists a unique function σ I (u) ∈

C(R+; Q) such that

σ I (u)(t) =

t∫

0

G(σ I (u)(s) + Eε(u(s)), ε(u(s))) ds + σ 0 − Eε(u0) ∀ t ∈ R+. (5.2)

Moreover, the operator σ I : C(R+; V ) → C(R+; Q) satisfies the following property: for

every n ∈ N there exists r̃n > 0 such that

‖σ I (u1)(t) − σ I (u2)(t)‖Q ≤ r̃n

t∫

0

‖u1(s) − u2(s)‖V ds (5.3)

∀ u1, u2 ∈ C(R+; V ), ∀ t ∈ [0, n].

Proof Let u ∈ C(R+; V ) and consider the operator L : C(R+; Q) → C(R+; Q) defined as

follows

Lτ (t) =

t∫

0

G(τ (s) + Eε(u(s)), ε(u(s)))ds + σ 0 − Eε(u0) (5.4)

∀ τ ∈ C(R+; Q), t ∈ R+.

14



The operator L depends on u but, for simplicity, we do not indicate explicitly this dependence.

Let τ 1, τ 2 ∈ C(R+; Q) and let t ∈ R+. Then, using (5.4) and (4.12) we have

‖Lτ 1(t) − Lτ 2(t)‖Q

≤

t∫

0

‖G(τ 1(s) + Eε(u(s)), ε(u(s))) − G(τ 2(s) + Eε(u(s)), ε(u(s)))‖Q ds

≤ LG

t∫

0

‖τ 1(s) − τ 2(s)‖Q ds.

Next, we use Theorem 1.1 to see that L has a unique fixed point in C(R+; Q), denoted σ I (u).

And, finally, we combine (5.4) with equality Lσ I (u) = σ I (u) to see that (5.2) holds.

To proceed, let u1, u2 ∈ C(R+; V ), n ∈ N and let t ∈ [0, n]. Then, using (5.2) and taking

into account (4.10)–(4.12) we write

‖σ I (u1)(t) − σ I (u2)(t)‖Q

≤ LG

( t∫

0

d ‖E‖Q∞‖u1(s) − u2(s)‖V ds +

t∫

0

‖σ I (u1)(s) − σ I (u2)(s)‖Q ds

)

= ω

( t∫

0

‖u1(s) − u2(s)‖V ds +

t∫

0

‖σ I (u1)(s) − σ I (u2)(s)‖Q ds

)
,

where ω = LG(d ‖E‖Q∞ + 1). Using now a Gronwall argument we deduce that

‖σ I (u1)(t) − σ I (u2)(t)‖Q ≤ ω en ω

t∫

0

‖u1(s) − u2(s)‖V ds.

This inequality shows that (5.3) holds with r̃n = ω en ω. ⊓⊔

We now use the Riesz’s representation theorem and Lemma 5.2 to define the operators

A : V → V and R : C(R+; V ) → C(R+; V ) by equalities

(Av, w)V = (Eε(v), ε(w))Q ∀ v, w ∈ V, (5.5)

(Ru(t), v)V = (σ I (u)(t), ε(v))Q (5.6)

+

∫

Ŵ3

k(ζu(t))p(uν(t))vν da ∀ v ∈ V, t ∈ R+.

Then, we have the following equivalence result.

Lemma 5.3 Let (u, σ ,λ) be a triple of functions with regularity (5.1). Then (u, σ ,λ) is a

solution of Problem 4 if and only if

σ (t) = Eε(u(t)) + σ I (u)(t), (5.7)

(Au(t), v)V + (Ru(t), v)V + b(v,λ(t)) = (f(t), v)V ∀ v ∈ V, (5.8)

b(u(t),µ − λ(t)) ≤ b(g(t )̃θ ,µ − λ(t)) ∀ µ ∈ �, (5.9)

for all t ∈ R+.
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Proof Assume that (u, σ ,λ) is a solution of Problem 4 and let t ∈ R+. Then, using (4.32)

we have

σ (t) − Eε(u(t))

=

t∫

0

G(σ (s) − Eε(u(s)) + Eε(u(s)), ε(u(s))) ds + σ 0 − Eε(u0)

and, using the definition (5.2) of the operator σ I , we obtain (5.7). Equality (5.8) follows from

(4.33) combined with (5.7) and the definition of the operators A and R and, finally, (5.9)

coincides with (4.34).

Conversely, assume that (u, σ ,λ) satisfies (5.7)–(5.9). Then by (5.7) and the definition

(5.2) of σ I (u) we obtain (4.32). Moreover, using (5.7), (5.8) and the definition of the operators

A and S we obtain (4.33), which concludes the proof. ⊓⊔

We now proceed with the following existence and uniqueness result.

Lemma 5.4 There exists e0 > 0 which depends only on E , 
, Ŵ1 and Ŵ3 such that, if

k0 L p < e0, then there exists a unique couple of functions (u,λ), which satisfies (5.8)–(5.9)

for all t ∈ R+. Moreover, u ∈ C(R+; V ) and λ ∈ C(R+;�).

Proof We shall apply Theorem 2.1, with X = V , Y = D, h = gθ and S : C(R+; V ) ×

C(R+; D) → C(R+; V ) given by

S(u,λ) = R(u) ∀ (u,λ) ∈ C(R+; V ) × C(R+; D). (5.10)

To this end, we use assumption (4.11) to see that the operator A defined by (5.5) verifies

condition (2.1). Moreover, the bilinear form b(·, ·) is continuous and satisfies the “inf-sup”

condition, i.e. there exists α > 0 which depends only on 
, Ŵ1 and Ŵ3 such that

inf
µ∈D, µ �=0D

sup
v∈V, v �=0V

b(v,µ)

‖v‖V ‖µ‖D

≥ α,

see [21], for instance. We conclude from here that condition (2.3) holds. Also, taking into

account (4.15) and (4.22) it follows that f ∈ C(R+, V ). Finally, since h = gθ , it follows

from (4.16) that h ∈ C(R+, V ) and we conclude that condition (2.4) holds, too.

Let us now check (2.2). To this end, let n ∈ N, t ∈ [0, n] and v ∈ V . According to the

definition (5.6) of the operator R we have

(Ru1(t) − Ru2(t), v)V = (σ I (u1)(t) − σ I (u2)(t), ε(v))Q

+

∫

Ŵ3

(k(ζu1(t))p(u1ν(t)) − k(ζu2(t))p(u2ν(t)))vν da.

Then, by a standard calculus based on the trace inequality (4.8) and the properties of the

functions p and k we deduce that

|(Ru1(t) − Ru2(t), v)V | ≤ ‖σ I (u1)(t) − σ I (u2)(t)‖Q‖v‖V

+ c2
tr k0 L p‖u1 − u2‖V ‖v‖V + ctr p0 Lk‖ζu1(t) − ζu2(t)‖L2(Ŵ3)

d ‖v‖V .
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Using now estimate (5.3) in Lemma 5.2 and the definition of the function ζ we can write

|(Ru1(t) − Ru2(t), v)V | ≤ r̃n

( t∫

0

‖u1(s) − u2(s)‖ ds

)
‖v‖V

+ c2
tr

(
k0 L p‖u1 − u2‖V + p0 Lk

t∫

0

‖u1(s) − u2(s)‖V ds

)
‖v‖V

and, therefore,

‖Ru1(t) − Ru2(t)‖V ≤ c2
tr k0 L p‖u1 − u2‖V (5.11)

+ (̃rn + c2
tr p0 Lk)

t∫

0

‖u1(s) − u2(s)‖V ds.

Inequality (5.11) combined with definition (5.10) shows that the operator S satisfies condition

(2.2) with dn = c2
tr k0 L p and rn = r̃n + c2

tr p0 Lk .

We are now in position to apply Theorem 2.1. According to this theorem there exists

d0 > 0 which depends only on A and b such that if dn < d0 for all positive integers n, then

there exists a unique couple of functions (u,λ) which satisfies (5.8)–(5.9) for all t ∈ R+.

We now take

e0 = d0c−2
tr (5.12)

which, clearly, depends only on E , 
, Ŵ1 and Ŵ3. We note that dn < d0 iff k0 L p ≤ e0 which

concludes the proof. ⊓⊔

We now have all the ingredients to prove Theorem 5.1.

Proof Let e0 be defined by (5.12) and assume that k0 L p < e0. Under this condition, Lemma

5.4 implies that there exists a unique couple of functions (u,λ), such that (5.8)–(5.9) hold,

for all t ∈ R+. Define σ = Eε(u) + σ I (u) and note that, obviously, σ ∈ C(R+; Q). Then

the triple (u, σ ,λ) represents a solution to problem (5.7)–(5.9) with regularity (5.1). The

existence part of the theorem follows now from Lemma 5.3. The uniqueness part follows

from Lemma 5.3 combined with the uniqueness of the solution of the system (5.8)–(5.9)

guaranteed by Lemma 5.4. ⊓⊔

We end this section with the remark that the inequality k0 L p < e0, which guarantees

uniqueness solvability of Problem 4, represents a smallness condition on the normal compli-

ance function p and the stiffness function k. It is satisfied if, for instance, either the Lipschitz

constant L p or the bound k0 is small enough.

6 Continuous dependence with respect to the data

In this section we study the behavior of the solution of Problem 4 with respect to a perturbation

of the data. To this end we assume in what follows that (4.11)–(4.18) hold and k0 L p < e0,

where e0 is defined in Theorem 5.1. Also, we denote by (u, σ ,λ) the solution of Problem 4

obtained in Theorem 5.1. In addition, for each ρ > 0 we denote by Gρ, pρ , kρ, f 0ρ, f 2ρ,

gρ , u0ρ , σ 0ρ a perturbation of G, p, k, f 0, f 2, g, u0 and σ 0, respectively, which satisfies the

following conditions.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) Gρ : 
 × S
d × S

d → S
d .

(b) There exists L
ρ
G

> 0 such that

‖Gρ(x, σ 1, ε1) − Gρ(x, σ 2, ε2)‖

≤ L
ρ
G

(‖σ 1 − σ 2‖ + ‖ε1 − ε2‖)

∀ σ 1, σ 2, ε1, ε2 ∈ S
d , a.e. x ∈ 
.

(c) The mapping x �→ Gρ(x, σ , ε) is measurable in 
,

for any σ , ε ∈ S
d .

(d) The mapping x �→ Gρ(x, 0, 0) belongs to Q.

(6.1)

⎧
⎪⎪⎨
⎪⎪⎩

(a) pρ : R → R+.

(b) There exists L
ρ
p > 0 such that

|pρ(r1) − pρ(r2)| ≤ L
ρ
p|r1 − r2| ∀ r1, r2 ∈ R.

(c) There exists p
ρ
0 > 0 such that |pρ(r)| ≤ p

ρ
0 ∀ r ∈ R.

(6.2)

⎧
⎪⎪⎨
⎪⎪⎩

(a) kρ : R+ → R+.

(b) There exists L
ρ
k > 0 such that

|kρ(r1) − kρ(r2)| ≤ L
ρ
k |r1 − r2| ∀ r1, r2 ∈ R.

(c) There exists k
ρ
0 > 0 such that |kρ(r)| ≤ k

ρ
0 ∀ r ∈ R.

(6.3)

f 0ρ ∈ C(R+; L2(
)d), f 2ρ ∈ C(R+; L2(Ŵ2)
d), (6.4)

gρ ∈ C(R+; R+) (6.5)

u0ρ ∈ V, σ 0ρ ∈ Q. (6.6)

With these data we define the function f ρ : R+ → V by equality

(f ρ(t), v)V =

∫




f 0ρ(t) · v dx +

∫

Ŵ2

f 2ρ(t) · v da ∀ v ∈ V, t ∈ R+ (6.7)

and we consider the following problem.

Problem 5 Find a displacement field uρ : R+ → V, a stress field σ ρ : R+ → Q and a

Lagrange multiplier λρ : R+ → � such that

σ ρ(t) = E ε(uρ(t)) +

t∫

0

Gρ(σ ρ(s), ε(uρ(s))) ds + σ 0ρ − Eε(u0ρ), (6.8)

(σ ρ(t), ε(v))Q + b(v,λρ(t)) +

∫

Ŵ3

kρ(ζuρ(t))pρ(uρν(t))vν da (6.9)

= (f ρ(t), v)V ∀ v ∈ V,

b(uρ(t),µ − λρ(t)) ≤ b(gρ(t )̃θ ,µ − λρ(t)) ∀ µ ∈ �, (6.10)

for all t ∈ R+.

Note that, here and below, uρν(t) represents the normal component of the function uρ(t),

i.e. uρν(t) = uρ(t) · v, for all t ∈ R+.

Under the assumptions above, if k
ρ
0 L

ρ
p < e0, Theorem 5.1 guarantees the existence of a

unique solution (uρ, σ ρ,λρ) to Problem 5 such that

uρ ∈ C(R+; V ), σ ρ ∈ C(R+; Q), λρ ∈ C(R+;�). (6.11)
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Our interest in what follows lies in the behavior of the solution as ρ tends to zero. To this

end we consider the following additional assumptions.
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

There exist L0 > 0, p̃0 > 0, k̃0 > 0, ẽ0 > 0 and K0 > 0 such that

(a) L
ρ
G

< L0 for all ρ > 0.

(b) p
ρ
0 ≤ p̃0 for all ρ > 0.

(c) k
ρ
0 ≤ k̃0 for all ρ > 0.

(d) k
ρ
0 L

ρ
p ≤ ẽ0 < e0 for all ρ > 0.

(e) L
ρ
k ≤ K0 for all ρ > 0.

(6.12)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

There exist M, N , P : R+ → R+ such that

(a) ‖Gρ(x, σ , ε) − G(x, σ , ε)‖ ≤ M(ρ)(‖σ‖ + ‖ε‖ + 1)

for all σ , ε ∈ S
d , a.e. x ∈ 
.

(b) |pρ(r) − p(r)| ≤ N (ρ)(|r | + 1) for all r ∈ R.

(c) |kρ(r) − k(r)| ≤ P(ρ)(|r | + 1) for all r ∈ R.

(d) lim
ρ→0

M(ρ) = 0, lim
ρ→0

N (ρ) = 0, lim
ρ→0

P(ρ) = 0.

(6.13)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) f 0ρ → f 0 in C(R+; L2(
)d) as ρ → 0.

(b) f 2ρ → f 2 in C(R+; L2(Ŵ2)
d) as ρ → 0.

(c) gρ → g in C(R+; R) as ρ → 0.

(d) u0ρ → u0 in V as ρ → 0.

(e) σ 0ρ → σ 0 in Q as ρ → 0.

(6.14)

Our main result in this section is the following.

Theorem 6.1 Assume (6.12)–(6.14). Then the solution (uρ, σ ρ,λρ) of Problem 5 converges

to the solution (u, σ ,λ) of Problem 4, i.e.
⎧
⎨
⎩

(a) uρ → u in C(R+; V ) as ρ → 0.

(b) σ ρ → σ in C(R+; Q) as ρ → 0.

(c) λρ → λ in C(R+; D) as ρ → 0.

(6.15)

Proof We use the operators A, σ I , R and S defined by (5.5), (5.2), (5.6) and (5.10), respec-

tively. Moreover, for each ρ > 0 we define the operators σ I
ρ : C(R+, V ) → C(R+, Q),

Rρ : C(R+; V ) → C(R+; V ) and Sρ : C(R+; V ) × C(R+; D) → C(R+; V ) by equalities

σ I
ρ(u)(t) =

t∫

0

Gρ(σ I
ρ(u)(s) + Eε(u(s)), ε(u(s))) ds + σ 0ρ − Eε(u0ρ), (6.16)

(Rρu(t), v)V = (σ I
ρ(u)(t), ε(v))Q +

∫

Ŵ3

kρ(ζu(t))pρ(uν(t))vν da, (6.17)

Sρ(u,λ) = Rρ(u) (6.18)

for all u ∈ C(R+; V ), t ∈ R+, v ∈ V and λ ∈ C(R+; D). Then, Lemma 5.3 states that

(5.7)–(5.9) hold for all t ∈ R+ and, moreover,

σ ρ(t) = Eε(uρ(t)) + σ I
ρ(uρ)(t), (6.19)

(Auρ(t), v)V + (Rρuρ(t), v)V + b(v,λρ(t)) = (f ρ(t), v)V ∀ v ∈ V, (6.20)

b(uρ(t),µ − λρ(t)) ≤ b(gρ(t )̃θ ,µ − λρ(t)) ∀ µ ∈ �, (6.21)

for all t ∈ R+. We note that the system (5.8)–(5.9) is of the form (1.1)–(1.2) with S given

by (5.10) while the system (6.20)–(6.21) is of the form (3.1)–(3.2) with Sρ given by (6.18).
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Therefore, in order to apply Theorem 3.1, we check in what follows the validity of the

conditions (3.5)–(3.7).

To start, we fix ρ > 0, n ∈ N, t ∈ [0, n], u ∈ C(R+; V ), λ ∈ C(R+; D) and v ∈ V . We

write

|(Rρu(t) − Ru(t), v)V | ≤ ‖σ I
ρ(u)(t) − σ I (u)(t)‖Q‖v‖V

+

∫

Ŵ3

(
kρ(ζu(t))pρ(uν(t)) − k(ζu(t))p(uν(t))

)
vν da. (6.22)

We now use (6.16), (5.2) to see that

‖σ I
ρ(u)(t) − σ I (u)(t)‖Q ≤

t∫

0

‖Gρ(σ I
ρ(u)(s) + Eε(u(s)), ε(u(s)))

− G(σ I (u)(s) + Eε(u(s)), ε(u(s)))‖Q ds + ‖σ 0ρ − σ 0‖Q + ‖Eε(u0ρ) − Eε(u0)‖Q

and, therefore, (4.10) yields

‖σ I
ρ(u)(t) − σ I (u)(t)‖Q

≤

t∫

0

‖Gρ(σ I
ρ(u)(s) + Eε(u(s)), ε(u(s))) − Gρ(σ I (u)(s) + Eε(u(s)), ε(u(s)))‖Q ds

+

t∫

0

‖Gρ(σ I (u)(s) + Eε(u(s)), ε(u(s))) − G(σ I (u)(s) + Eε(u(s)), ε(u(s)))‖Q ds

+‖σ 0ρ − σ 0‖Q + d ‖E‖Q∞‖u0ρ − u0‖V .

Using now (6.1), (6.12)(a), (6.13)(a) and (4.10) we obtain

‖σ I
ρ(u)(t) − σ I (u)(t)‖Q ≤ L0

t∫

0

‖σ I
ρ(u)(s) − σ I (u)(s)‖Q ds

+ c M(ρ)

t∫

0

(‖σ I (u)(s)‖Q + ‖ε(u(s))‖Q + 1) ds + c
(
‖σ 0ρ − σ 0‖Q + ‖u0ρ − u0‖V

)

where, here and below, c is a positive constant which does not depend on ρ and n, and

whose value will change from line to line. Applying now a Gronwall argument and using the

inequality t ≤ n we have

‖σ I
ρ(u)(t) − σ I (u)(t)‖Q ≤ c

(
‖σ 0ρ − σ 0‖Q + ‖u0ρ − u0‖V

+ M(ρ)

n∫

0

(‖σ I (u)(s)‖Q + ‖u(s)‖V + 1) ds

)
eL0n . (6.23)
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We turn now to the second term into the right side of the inequality (6.22). We write

∫

Ŵ3

(
kρ(ζu(t))pρ(uν(t)) − k(ζu(t))p(uν(t))

)
vν da

≤

∫

Ŵ3

(
kρ(ζu(t))pρ(uν(t)) − kρ(ζu(t))p(uν(t))

)
vν da

+

∫

Ŵ3

(
kρ(ζu(t))p(uν(t)) − k(ζu(t))p(uν(t))

)
vν da

and, using (6.3)(c), (6.12)(c) and (4.13)(c) we find that

∫

Ŵ3

(
kρ(ζu(t))pρ(uν(t)) − k(ζu(t))p(uν(t))

)
vν da

≤ c

∫

Ŵ3

|pρ(uν(t)) − p(uν(t))||vν | da + c

∫

Ŵ3

|kρ(ζu(t)) − k(ζu(t))||vν | da.

Then, using (6.13)(b),(c) and the trace inequality (4.8), after some algebra we obtain that

∫

Ŵ3

(
kρ(ζu(t))pρ(uν(t)) − k(ζu(t))p(uν(t))

)
vν da (6.24)

≤ c

(
N (ρ) + P(ρ) + N (ρ) max

r∈[0,n]
‖u(r)‖V + P(ρ)

n∫

0

‖u(s)‖V ds

)
‖v‖V .

We now combine the inequalities (6.22)–(6.24) to deduce that

|(Rρu(t) − Ru(t), v)V | ≤ c

(
‖σ 0ρ − σ 0‖Q + ‖u0ρ − u0‖V

+ M(ρ)

n∫

0

(‖σ I (u)(s)‖Q + ‖u(s)‖V + 1) ds

)
eL0n‖v‖V

+ c

(
N (ρ) + P(ρ) + N (ρ) max

r∈[0,n]
‖u(r)‖V + P(ρ)

n∫

0

‖u(s)‖V ds

)
‖v‖V .

Therefore, since v is an arbitrary element in V , we find that

‖Rρu(t) − Ru(t)‖V ≤ c

(
‖σ 0ρ − σ 0‖Q + ‖u0ρ − u0‖V + N (ρ) + P(ρ)

)

+ c M(ρ)

( n∫

0

(‖σ I (u)(s)‖Q + ‖u(s)‖V + 1) ds

)
eL0n

+ c

(
N (ρ) max

r∈[0,n]
‖u(r)‖V + P(ρ)

n∫

0

‖u(s)‖V ds

)
.
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Denote

J̃n(u) = 1 + eL0n

n∫

0

(‖σ I (u)(s)‖Q + ‖u(s)‖V + 1) ds

+ max
r∈[0,n]

‖u(r)‖V +

n∫

0

‖u(s)‖V ds.

Then, it follows from the previous inequality that

‖Rρu(t) − Ru(t)‖V

≤ c

(
‖σ 0ρ − σ 0‖Q + ‖u0ρ − u0‖V + M(ρ) + N (ρ) + P(ρ)

)
J̃n(u).

Therefore, denoting

H̃(ρ) = c

(
‖σ 0ρ − σ 0‖Q + ‖u0ρ − u0‖V + M(ρ) + N (ρ) + P(ρ)

)
, (6.25)

we deduce that

‖Rρu(t) − Ru(t)‖V ≤ H̃(ρ) J̃n(u). (6.26)

We now combine equalities (6.18), (5.10) and inequality (6.26) to conclude that condition

(3.5)(a) holds with Hn(ρ) = H̃(ρ) and Jn(u,λ) = J̃n(u).

Also, the proofs of Lemmas 5.4 and 5.2 show that the operator Sρ satisfies condition (3.3)

with

dρn = c2
tr k

ρ
0 Lρ

p and rρn = r̃ρn + c2
tr p

ρ
0 L

ρ
k (6.27)

where

r̃ρn = L
ρ
G
(d ‖E‖Q∞ + 1)e

n L
ρ

G
(d ‖E‖Q∞+1)

.

Therefore, using assumption (6.12)(a),(b) and (e) it follows that

rρn ≤ L0(d ‖E‖Q∞ + 1)enL0(d ‖E‖Q∞+1) + c2
tr p̃0 K0.

We conclude from above that condition (3.5)(b) holds with

Rn = L0(d ‖E‖Q∞ + 1)enL0(d ‖E‖Q∞+1) + c2
tr p̃0 K0.

In addition, using assumptions (6.13)(d), (6.14)(d), (e), we deduce that the function

Hn(ρ) = H̃(ρ) defined by (6.25) is such that

lim
ρ→0

Hn(ρ) = 0.

Therefore, condition (3.5)(c) is satisfied, too.

Moreover, using assumption (6.12)(d) and equality (5.12) we deduce that

c2
tr k

ρ
0 Lρ

p ≤ c2
tr ẽ0 < d0 ∀ n ∈ N, ∀ ρ > 0

and, using the first equality in (6.27) we obtain that

dρn ≤ c2
tr ẽ0 < d0 ∀ n ∈ N, ∀ ρ > 0.

We conclude from here that (3.6) holds with d̃0 = c2
tr ẽ0.
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Finally, we note that assumption (6.14)(a)–(c) imply that

f ρ → f in C(R+; V ), gρ θ̃ → gθ̃ in C(R+; V )

as ρ → 0 and, therefore, (3.7) holds.

The convergence (6.15)(a) and (c) represent now a direct consequence of Theorem 3.1,

applied for the systems (6.20)–(6.21) and (5.8)–(5.9).

Next, to provide the convergence (6.15)(b) we use equalities (6.16), (5.2), assumptions

(6.1)(b), (6.12)(a) and arguments similar to those used in the proof of (6.23) to find that

‖σ I
ρ(uρ)(t) − σ I (u)(t)‖Q ≤ c

(
‖σ 0ρ − σ 0‖Q + ‖u0ρ − u0‖V +

n∫

0

‖uρ(s) − u(s)‖V ds

+ M(ρ)

n∫

0

(‖σ I (u)(s)‖Q + ‖u(s)‖V + 1) ds

)
eL0n .

Then, using (6.19), (5.7) and (4.10) we deduce that

‖σ ρ(t) − σ (t)‖Q ≤ c ‖uρ(t) − u(t)‖V

+ c

(
‖σ 0ρ − σ 0‖Q + ‖u0ρ − u0‖V +

n∫

0

‖uρ(s) − u(s)‖V ds

+ M(ρ)

n∫

0

(
‖σ I (u)(s)‖Q + ‖u(s)‖V + 1

)
ds

)
eL0n . (6.28)

We now combine inequality (6.28) with assumptions (6.14)(d), (e), (6.13)(d) and the

convergence (6.15)(a). As a result we obtain that

max
t∈[0,n]

‖σ ρ(t) − σ (t)‖Q → 0 as ρ → 0. (6.29)

Finally, we use (6.29) and (1.3) to deduce that (6.15)(b) holds, which concludes the

proof. ⊓⊔

In addition to the mathematical interest in the convergence result (6.15) it is of importance

from mechanical point of view, since it states that the weak solution of the problem (4.1)–

(4.7) depends continuously on the viscoplastic function, the normal compliance function, the

stiffness coefficient, the penetration bound, the densities of body forces and surface tractions,

and the initial data, as well.
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