Skip to main content
Log in

A new mathematical approach for handling DVH criteria in IMRT planning

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The appropriate handling of planning criteria on the cumulative dose-volume histogram (DVH) is a highly problematic issue in intensity-modulated radiation therapy (IMRT) plan optimization. The nonconvexity of DVH criteria and globality of the resulting optimization problems complicate the design of suitable optimization methods, which feature numerical efficiency, reliable convergence and optimality of the results. This work examines the mathematical structure of DVH criteria and proves the valuable properties of isotonicity/antitonicity, connectedness, invexity and sufficiency of the Karush–Kuhn–Tucker condition. These properties facilitate the use of efficient and goal-oriented optimization methods. An exemplary algorithmic realization with feasible direction methods gives rise to a functional framework for interactive IMRT planning on DVH criteria. Numerical examples on real world planning cases prove its practical capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Langer, M., Brown, R., Urie, M., Leong, J., Stracher, M., Shapiro, J.: Large scale optimization of beam weights under dose-volume restrictions. Int. J. Radiat. Oncol. Biol. Phys. 18, 887–893 (1990)

    Article  Google Scholar 

  2. Lee, E.K., Fox, T., Crocker, I.: Optimization of radiosurgery treatment planning via mixed integer programming. Med. Phys. 27, 995–1004 (2000)

    Article  Google Scholar 

  3. Bednarz, G., Michalski, D., Houser, C., Huq, M.S., Xiao, Y., Anne, P.R., Galvin, J.M.: The use of mixed-integer programming for inverse treatment planning with pre-defined field segments. Phys. Med. Biol. 47, 2235–2245 (2002)

    Article  Google Scholar 

  4. Romeijn, H.E., Dempsey, J.F., Li, J.G.: A unifying framework for multi-criteria fluence map optimization models. Phys. Med. Biol. 49, 1991–2013 (2004)

    Article  Google Scholar 

  5. Deasy, J.O.: Multiple local minima in radiotherapy optimization problems with dose-volume constraints. Med. Phys. 24, 1157–1161 (1997)

    Article  Google Scholar 

  6. Wu, C., Jeraj, R., Mackie, T.R.: The method of intercepts in parameter space for the analysis of local minima caused by dose volume constraints. Phys. Med. Biol. 48, N149–N157 (2003)

    Article  Google Scholar 

  7. Carol, M.P., Nash, R.V., Campbell, R.C., Huber, R., Sternick, E.: The development of a clinically intuitive approach to inverse treatment planning: partial volume prescription and area cost function. In: Leavitt, D.D., Starkschall, G. (eds.) Proceedings of the XIIth International Conference on the Use of Computers in Radiation Therapy, Salt Lake City, pp. 317–319. Medical Physics Publishing (1997)

  8. Cho, P.S., Lee, S., Marks II, R.J., Redstone, J.A., Oh, S.: Comparison of algorithms for intensity modulated beam optimization: Projections onto convex sets and simulated annealing. In: Leavitt, D.D., Starkschall, G. (eds.) Proceedings of the XIIth International Conference on the Use of Computers in Radiation Therapy, Salt Lake City, pp. 310–312. Medical Physics Publishing (1997)

  9. Holdsworth, C., Kim, M., Liao, J., Phillips, M.H.: A hierarchical evolutionary algorithm for multiobjective optimization in IMRT. Med. Phys. 37, 4986–4997 (2010)

    Article  Google Scholar 

  10. Bortfeld, T.R., Stein, J., Preiser, K.: Clinically relevant intensity modulation optimization using physical criteria. In: Leavitt, D.D., Starkschall, G. (eds.) Proceedings of the XIIth International Conference on the Use of Computers in Radiation Therapy, Salt Lake City, pp. 1–4. Medical Physics Publishing (1997)

  11. Michalski, D., Xiao, Y., Censor, Y., Galvin, J.M.: The dose-volume constraint satisfaction problem for inverse treatment planning with field segments. Phys. Med. Biol. 49, 601–616 (2004)

    Article  Google Scholar 

  12. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A new linear programming approach to radiation therapy treatment planning problems. Oper. Res. 54, 201–216 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zinchenko, Y., Craig, T., Keller, H., Terlaky, T., Sharpe, M.: Controlling the dose distribution with gEUD-type constraints within the convex radiotherapy optimization framework. Phys. Med. Biol. 53, 3231–3250 (2008)

    Article  Google Scholar 

  14. Xiao, Y., Michalski, D., Censor, Y., Galvin, J.M.: Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms. Phys. Med. Biol. 49, 3227–3245 (2004)

  15. Kratt, K., Scherrer, A.: The integration of DVH-based planning aspects into a convex intensity modulated radiation therapy optimization framework. Phys. Med. Biol. 54, N239–N246 (2009)

    Article  Google Scholar 

  16. Zarepisheh, M., Shakourifar, M., Trigila, G., Ghomi, P.S., Couzens, S., Abebe, A., Norena, L., Shang, W., Jiang, S.B., Zinchenko, Y.: A moment-based approach for DVH-guided radiotherapy treatment plan optimization. Phys. Med. Biol. 58, 1869–1887 (2013)

    Article  Google Scholar 

  17. Spirou, S.V., Chui, C.S.: A gradient inverse planning algorithm with dose-volume constraints. Med. Phys. 25, 321–333 (1998)

    Article  Google Scholar 

  18. Halabi, T.F., Craft, D.L., Bortfeld, T.R.: Dose-volume objectives in multi-criteria optimization. Phys. Med. Biol. 51, 3809–3818 (2006)

    Article  Google Scholar 

  19. Censor, Y., Ben-Israel, A., Xiao, Y., Galvin, J.M.: On linear infeasibility arising in intensity-modulated radiation therapy inverse planning. Linear Algebra Appl. 428, 1406–1420 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Küfer, K.H., Monz, M., Scherrer, A., Süss P., Alonso, F., Azizi Sultan, A.S., Bortfeld, T.R., Thieke, C.: Multicriteria optimization in intensity-modulated radiotherapy planning. In: Pardalos, P.M., Romeijn, H.E. (eds.) Handbook of Optimization in Medicine, chapter 5, pp. 123–168. Kluwer, Dordrecht (2009)

  21. Monz, M., Küfer, K.H., Bortfeld, T.R., Thieke, C.: Pareto navigation—algorithmic foundation of interactive multi-criteria IMRT planning. Phys. Med. Biol. 53, 985–998 (2008)

    Article  Google Scholar 

  22. Craft, D.L., Bortfeld, T.R.: How many plans are needed in an IMRT multi-objective plan database? Med. Phys. 53, 2785–2796 (2008)

    Article  Google Scholar 

  23. Niemierko, A.: Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med. Phys. 24, 103–110 (1997)

    Article  Google Scholar 

  24. Niemierko, A.: A generalized concept of equivalent uniform dose (EUD). Med. Phys. 26, 1100 (1999)

    Google Scholar 

  25. Yaneva, F.: Modeling and Navigation of Tumor Conformality in IMRT Planning. Master’s thesis. Faculty of Mathematics, Technical University of Kaiserslautern, Germany (2009)

  26. Lünberger, D.: Linear and Nonlinear Programming. Addison Wesley, Reading, MA (1984)

    MATH  Google Scholar 

  27. Bazaraa, M., Sherali, H.D., Shetty, C.M.: Nonlinear Programming—Theory and Algorithms. Wiley, New York (1993)

    MATH  Google Scholar 

  28. Zangwill, W.: Nonlinear Programming: A Unified Approach. Prentice-Hall Inc., Englewood Cliffs, NJ (1969)

    MATH  Google Scholar 

  29. Hanson, M.A., Mond, B.: Necessary and sufficient conditions in constrained optimization. Math. Program. 37, 51–58 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  31. Süss, P.: A Primal-Dual Barrier Algorithm for the IMRT Planning Problem—An Application of Optimization-Driven Adaptive Discretization. PhD thesis. Faculty of Mathematics, Technical University of Kaiserslautern, Germany (2008)

  32. Craft, D.L., Halabi, T.F., Shih, H.A., Bortfeld, T.R.: Approximating convex Pareto surfaces in multiobjective radiotherapy planning. Med. Phys. 33, 3399–3407 (2006)

    Article  Google Scholar 

  33. Serna, J.I., Monz, M., Küfer, K.H., Thieke, C.: Trade-off bounds for the Pareto surface approximation in multi-criteria IMRT planning. Phys. Med. Biol. 54, 6299–6311 (2009)

    Article  Google Scholar 

  34. Bentzen, S.M., Constine, L.S., Deasy, J.O., Eisbruch, A., Jackson, A., Marks, L.B., Ten Haken, R.K., Yorke, E.D.: Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int. J. Radiat. Oncol. Biol. Phys. 76, S3–S9 (2010)

    Article  Google Scholar 

  35. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Computer Science and Applied Mathematics. Academic Press, New York (1970)

  36. Craven, B.D., Glover, B.M.: Invex functions and duality. J. Aust. Math. Soc. Ser. A 39, 1–20 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hanson, M.A.: On sufficiency of the Kuhn–Tucker condition. J. Math Anal. Appl. 80, 545–550 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The fundamental research was partly supported by the U.S. National Institutes of Health, Grant No. 2R01CA103904-05 and German Federal Ministry of Education and Research (BMBF), Grant No. 01 IS 08002D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Scherrer.

Appendix: Mathematical terminology

Appendix: Mathematical terminology

Definition 1

(Isotone/antitone functions [35, Section 2.4]) A function

$$\begin{aligned} g: \mathbb {R}^I&\longrightarrow \mathbb {R}, \nonumber \\ \mathbf {x}&\longmapsto g(\mathbf {x}) \nonumber \end{aligned}$$

is called isotone, if for all \( \mathbf {x}, \mathbf {x}' \in \mathbb {R}^I \) with \( \mathbf {x} \le \mathbf {x}' \), which means \( x_k \le x'_k \) in each component, the corresponding function values fulfill \( g(\mathbf {x}) \le g(\mathbf {x}') \). It is called antitone, if the same implication holds with \( g(\mathbf {x}) \ge g(\mathbf {x}') \).

Definition 2

(Path-connected sets [35, Section 4.2]) A set \( \mathcal {X} \subseteq \mathbb {R}^I \) is path-connected, if for all \( \mathbf {x}, \mathbf {x}' \in \mathcal {X} \) there is a continuous function

$$\begin{aligned} \Lambda _{\mathbf {x}, \mathbf {x}'}: [0,1]&\longrightarrow \mathbb {R}^I, \nonumber \\ \lambda&\longmapsto \Lambda (\lambda ) \nonumber \end{aligned}$$

with \( \Lambda _{\mathbf {x}, \mathbf {x}'}(0) = \mathbf {x} \), \( \Lambda _{\mathbf {x}, \mathbf {x}'}(1) = \mathbf {x}' \) and \( \Lambda _{\mathbf {x}, \mathbf {x}'}(\lambda ) \in \mathcal {X} \) for each \( \lambda \).

Definition 3

(Connected functions, [35, Section 4.2]) A function

$$\begin{aligned} g: \mathbb {R}^I&\longrightarrow \mathbb {R}, \nonumber \\ \mathbf {x}&\longmapsto g(\mathbf {x}) \nonumber \end{aligned}$$

is called connected, if its sublevelsets

$$\begin{aligned} \mathcal {X}_{\le u}(g) = \left\{ \mathbf {x} \in \mathbb {R}^I: \ g(\mathbf {x}) \le u \right\} \end{aligned}$$

are path-connected in the sense of Definition 2 for all value bounds \( u \in \mathbb {R} \).

Definition 4

(Invex functions, [36, 37]) A function

$$\begin{aligned} g: \mathbb {R}^I&\longrightarrow \mathbb {R}, \nonumber \\ \mathbf {x}&\longmapsto g(\mathbf {x}) \nonumber \end{aligned}$$

is called invex, if it is continuously differentiable and

  • \( \nabla g(\mathbf {x}) = 0 \) if and only if \( \mathbf {x} \) is a global minimum of \( g \), or equivalently

  • there is a kernel function \( \Theta _g: \mathbb {R}^I \times \mathbb {R}^I \rightarrow \mathbb {R}^I \), such that for all \( \mathbf {x}, \mathbf {x}' \in \mathbb {R}^I \)

    $$\begin{aligned} g(\mathbf {x}') - g(\mathbf {x}) \ge \Theta _g(\mathbf {x},\mathbf {x}')^T \cdot \nabla g(\mathbf {x}) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherrer, A., Yaneva, F., Grebe, T. et al. A new mathematical approach for handling DVH criteria in IMRT planning. J Glob Optim 61, 407–428 (2015). https://doi.org/10.1007/s10898-014-0202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0202-2

Keywords

Mathematics Subject Classification

Navigation