Skip to main content
Log in

Finding nadir points in multi-objective integer programs

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We address the problem of finding the nadir point in a multi-objective integer programming problem. Finding the nadir point is not straightforward, especially when there are more than three objectives. The difficulty further increases for integer programming problems. We develop an exact algorithm to find the nadir point in multi-objective integer programs with integer-valued parameters. We also develop a variation that finds bounds for each component of the nadir point with a desired level of accuracy. We demonstrate on several instances of multi-objective assignment, knapsack, and shortest path problems that the algorithms work well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Korhonen, P., Salo, S., Steuer, R.E.: A heuristic for estimating nadir criterion values in multiple objective linear programming. Oper. Res. 45(5), 751–757 (1997)

    Article  MATH  Google Scholar 

  2. Ehrgott, M., Tenfelde-Podehl, D.: Computation of ideal and nadir values and implications for their use in MCDM methods. Eur. J. Oper. Res. 151, 119–139 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Deb, K., Miettinen, K., Chaudhuri, S.: Toward an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans. Evolut. Comput. 14(6), 821–841 (2010)

    Article  Google Scholar 

  4. Alves, M.J., Costa, J.P.: An exact method for computing the nadir values in multiple objective linear programming. Eur. J. Oper. Res. 198, 637–646 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jorge, J.M.: An algorithm for optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 195, 98–103 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lokman, B., Köksalan, M.: Finding all nondominated points of multi-objective integer programs. J. Glob. Optim. 57, 347–365 (2013)

    Article  MATH  Google Scholar 

  7. Lokman, B., Köksalan, M., Korhonen, P.J., Wallenius, J.: An interactive algorithm to find the most preferred solution of multi-objective integer programs. Ann. Oper. Res. (2014). doi:10.1007/s10479-014-1545-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Köksalan.

Appendix: an example

Appendix: an example

We demonstrate the algorithm on the following four-objective knapsack problem with 10 items:

$$\begin{aligned}&\text {``}\hbox {Max}\text {''}{}\left\{ {\mathbf{Vx}} \right\} \\&\hbox {subject}\;\hbox {to} \\&\mathbf{wx}\le C \\&\mathbf{x}\in \left\{ {0,1} \right\} ^{10} \end{aligned}$$

where

$$\begin{aligned} \begin{array}{ll} \mathbf{V}=\left[ {\begin{array}{llllllllll} 77 &{} 26 &{} 57 &{} 22 &{} 10 &{} 32 &{} 98 &{} 77 &{} 43 &{} 19 \\ 56 &{} 22 &{} 28 &{} 37 &{} 89 &{} 17 &{} 65 &{} 85 &{} 10 &{} 41 \\ 89 &{} 33 &{} 47 &{} 63 &{} 31 &{} 39 &{} 27 &{} 66 &{} 49 &{} 13 \\ 71 &{} 41 &{} 23 &{} 44 &{} 61 &{} 97 &{} 27 &{} 25 &{} 89 &{} 59 \\ \end{array}} \right]&\begin{array}{l} \mathbf{w}=\left[ \begin{array}{llllllllll}91 &{} 95 &{} 87 &{} 42 &{} 12 &{} 55 &{} 24 &{} 17 &{} 96 &{} 77\end{array} \right] \quad \\ {C=\left[ {298} \right] } \\ \mathbf{x}=\left[ {{\begin{array}{llllllllll} {\hbox {x}_{1} }&{} {\hbox {x}_{2} }&{} {\hbox {x}_{3} }&{} {\hbox {x}_{4} }&{} {\hbox {x}_{5} }&{} {\hbox {x}_{6} }&{} {\hbox {x}_{7} }&{} {\hbox {x}_{8} }&{} {\hbox {x}_{9} }&{} {\hbox {x}_{10} } \\ \end{array} }} \right] ^\mathrm{T}\\ \end{array}\\ \end{array} \end{aligned}$$

To find the exact nadir for criterion 1, set \(g^{*}=0,\,n = 1\). Table  5 shows the payoff table.

Table 5 The payoff table for the example problem

1.1 Iteration 0

Step 0 (Initialization) \(t=0\). From the payoff table, \(z_1^{ IP (2)} =\left( {\hbox {3}0\hbox {3, 373, 289, 287}} \right) , \, z_1^{ IP (3)} =\left( {\hbox {327, 342, 325, 317}} \right) ,\) and \(z_1^{ IP (4)} =\left( {\hbox {337, 322, 3}0\hbox {1, 37}0} \right) \). Since \(z_1^{ IP (2)} =\mathop {\min }\limits _{i\ne 1} z_1^{ IP (i)}, \, m=2\). Then, \(lz_3^1 =289+1,\,lz_4^1 =287+1\) and \(uz_1 =303\). \(lz_1 =96\) due to Corollary 1.

Step 1 Since \(\frac{\left( {uz_n -lz_n } \right) }{\left( {z_n^{ IP \left( n \right) } -lz_n } \right) }=\frac{\left( {303-96} \right) }{\left( {351-96} \right) }>g^{*}=0,\,uz_1^*=uz_1 -1=302\) and go to Step 2.

1.2 Iteration 1

Step 2 \(t= 1\). Partition \(P_{1(2)}^1 \) into two submodels using the procedure of Lokman and Köksalan [6]:

$$\begin{aligned}&P_{1(2)}^1 \\&\hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \\&\hbox {subject}\;\hbox {to} \\&z_3 \left( \mathbf{x} \right) \ge 290-M+My_{31} \\&z_4 \left( \mathbf{x} \right) \ge 288-M+M\left( {1-y_{31} } \right) \\&z_1 \left( \mathbf{x} \right) \le 302\\&z_1 \left( \mathbf{x} \right) \ge 96\\&\mathbf{x}\in \mathbf{X} \end{aligned}$$

Submodel 1

Submodel 2

\(\hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

\(\hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

\(\hbox {subject}\;\hbox {to}\)

\(\hbox {subject}\;\hbox {to}\)

\(z_3 \left( \mathbf{x} \right) \ge -M\)

\(z_3 \left( \mathbf{x} \right) \ge 290\)

\(z_4 \left( \mathbf{x} \right) \ge 288\)

\(z_4 \left( \mathbf{x} \right) \ge -M \)

\(z_1 \left( \mathbf{x} \right) \le 302\)

\(z_1 \left( \mathbf{x} \right) \le 302\)

\(z_1 \left( \mathbf{x} \right) \ge 96\quad \;\)

\(z_1 \left( \mathbf{x} \right) \ge 96\quad \;\)

\(\mathbf{x}\in \mathbf{X}\)

\(\mathbf{x}\in \mathbf{X}\)

Optimal solution: (258,334*,239,313)

Optimal solution: (237,325,301,357)

$$\begin{aligned} \mathbf{dz}^{1}=\left( {258,334,239,313} \right) \end{aligned}$$

Step 3 Solve \(D_{1(2)}^1 \). The solution yields \(\mathbf{z}^{1}=\left( {\hbox {327, 342, 325, 317}} \right) \) that dominates \(\mathbf{dz}^{1}\). Set \(lz_3^2 =326\) and \(lz_4^2 =318\).

1.3 Iteration 2

Step 2. \(t = 2\). Partition \(P_{1(2)}^2 \) into three submodels using the procedure of Lokman and Köksalan [6]:

$$\begin{aligned}&P_{1(2)}^2 \\&\hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \quad \\&\hbox {subject}\;\hbox {to} \\&z_3 \left( \mathbf{x} \right) \ge 290-M+My_{31} \\&z_4 \left( \mathbf{x} \right) \ge 288-M+M\left( {1-y_{31} } \right) \\&z_3 \left( \mathbf{x} \right) \ge 326-M+My_{32} \\&z_4 \left( \mathbf{x} \right) \ge 318-M+M\left( {1-y_{32} } \right) \quad \\&z_1 \left( \mathbf{x} \right) \le 302\\&z_1 \left( \mathbf{x} \right) \ge 96\; \\&\mathbf{x}\in \mathbf{X} \end{aligned}$$

Submodel 1

Submodel 2

Submodel 3

\(\hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) \)

\( \hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) \)

\( \hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) \)

\(\quad \quad +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

\( \quad \quad +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

\( \quad \quad +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

\(\hbox {subject}\;\hbox {to} \)

\( \hbox {subject}\;\hbox {to} \)

\( \hbox {subject}\;\hbox {to}\)

\(z_3 \left( \mathbf{x} \right) \ge -M \)

\( z_3 \left( \mathbf{x} \right) \ge 290 \)

\( z_3 \left( \mathbf{x} \right) \ge 326\)

\(z_4 \left( \mathbf{x} \right) \ge 318 \)

\( z_4 \left( \mathbf{x} \right) \ge 318 \)

\( z_4 \left( \mathbf{x} \right) \ge -M \)

\(z_1 \left( \mathbf{x} \right) \le 302 \)

\( z_1 \left( \mathbf{x} \right) \le 302 \)

\( z_1 \left( \mathbf{x} \right) \le 302\)

\(z_1 \left( \mathbf{x} \right) \ge 96\quad \; \)

\( z_1 \left( \mathbf{x} \right) \ge 96\quad \; \)

\( z_1 \left( \mathbf{x} \right) \ge 96\quad \;\)

\(\mathbf{x}\in \mathbf{X} \)

\( \mathbf{x}\in \mathbf{X}\)

\( \mathbf{x}\in \mathbf{X}\)

Optimal Solution: (237,325,301,357)

Optimal Solution: (237,325,301,357)*

Infeasible

  1. *  No need to solve. The solution is identical to that of a previously solved model (see [6] for details)
$$\begin{aligned} \mathbf{dz}^{2}=\left( {237,325,301,357} \right) . \end{aligned}$$

Step 3 Solve \(D_{1(2)}^2 \). The solution yields \(\mathbf{z}^{2}=\left( {237,325,301,357} \right) \). Set \(lz_3^3 =302,\,lz_4^3 =358\). \(\mathbf{z}^{2}=\mathbf{dz}^{2}\) since \(\mathbf{dz}^{2}\) is nondominated. Set \(uz_1 =237\).

Step 1. Since\(\frac{\left( {uz_n -lz_n } \right) }{\left( {z_n^{ IP \left( n \right) } -lz_n } \right) }=\frac{\left( {237-96} \right) }{\left( {351-96} \right) }>g^{*}=0\), set \(uz_1^*=uz_1 -1=236\) and go to Step 2.

1.4 Iteration 3

Step 2. \(t = 3\). Partition \(P_{1(2)}^3 \) into four submodels using the procedure of Lokman and Köksalan [6]:

$$\begin{aligned}&P_{1(2)}^3 \\&\hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \quad \\&\hbox {subject}\;\hbox {to} \\&z_3 \left( \mathbf{x} \right) \ge 290-M+My_{31} \\&z_4 \left( \mathbf{x} \right) \ge 288-M+M\left( {1-y_{31} } \right) \\&z_3 \left( \mathbf{x} \right) \ge 326-M+My_{32} \\&z_4 \left( \mathbf{x} \right) \ge 318-M+M\left( {1-y_{32} } \right) \\&z_3 \left( \mathbf{x} \right) \ge 302-M+My_{33} \\&z_4 \left( \mathbf{x} \right) \ge 358-M+M\left( {1-y_{33} } \right) \\&z_1 \left( \mathbf{x} \right) \le 236\quad \\&z_1 \left( \mathbf{x} \right) \ge 96 \\&\mathbf{x}\in \mathbf{X} \end{aligned}$$

Submodel 1

Submodel 2

Submodel 3

Submodel 4

\(\hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) \)

\( \hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) \)

\( \hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) \)

\( \hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) \)

\(+\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

\(+\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

\( +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

\( +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

subject to

subject to

subject to

subject to

\(z_3 \left( \mathbf{x} \right) \ge -M\)

\( z_3 \left( \mathbf{x} \right) \ge 290 \)

\( z_3 \left( \mathbf{x} \right) \ge 302\)

\( z_3 \left( \mathbf{x} \right) \ge 326\)

\(z_4 \left( \mathbf{x} \right) \ge 358\)

\( z_4 \left( \mathbf{x} \right) \ge 358\)

\( z_4 \left( \mathbf{x} \right) \ge 318\)

\( z_4 \left( \mathbf{x} \right) \ge -M\)

\(z_1 \left( \mathbf{x} \right) \le 236\)

\( z_1 \left( \mathbf{x} \right) \le 236\)

\(z_1 \left( \mathbf{x} \right) \le 236\)

\( z_1 \left( \mathbf{x} \right) \le 236\)

\(z_1 \left( \mathbf{x} \right) \ge 96\quad \;\)

\( z_1 \left( \mathbf{x} \right) \ge 96\quad \; \)

\( z_1 \left( \mathbf{x} \right) \ge 96 \)

\( z_1 \left( \mathbf{x} \right) \ge 96 \)

\(\mathbf{x}\in \mathbf{X}\)

\(\mathbf{x}\in \mathbf{X}\)

\(\mathbf{x}\in \mathbf{X}\)

\( \mathbf{x}\in \mathbf{X}\)

Optimal solution: (184,209,271,362)

Infeasible

Infeasible

Infeasible*

  1. *  No need to solve. The solution is identical to that of a previously solved model (see [6] for details)
$$\begin{aligned} \mathbf{dz}^{3}=\left( {184,209,271,362} \right) . \end{aligned}$$

Step 3 Solve \(D_{1(2)}^3\). The solution yields \(\mathbf{z}^{3}=\left( {\hbox {337, 322, 3}0\hbox {1, 37}0} \right) \). Set \(lz_3^4 =302\), and \(lz_4^4 =371\).

1.5 Iteration 4

Step 2. \(t = 4\). Partition \(P_{1(2)}^4 \) into five submodels using the procedure of Lokman and Köksalan [6]:

$$\begin{aligned}&P_{1(2)}^4 \\&\hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \quad \\&\hbox {subject}\;\hbox {to} \\&z_3 \left( \mathbf{x} \right) \ge 290-M+My_{31} \\&z_4 \left( \mathbf{x} \right) \ge 288-M+M\left( {1-y_{31} } \right) \\&z_3 \left( \mathbf{x} \right) \ge 326-M+My_{32} \\&z_4 \left( \mathbf{x} \right) \ge 318-M+M\left( {1-y_{32} } \right) \quad \\&z_3 \left( \mathbf{x} \right) \ge 302-M+My_{33} \\&z_4 \left( \mathbf{x} \right) \ge 358-M+M\left( {1-y_{33} } \right) \\&z_3 \left( \mathbf{x} \right) \ge 302-M+My_{34} \\&z_4 \left( \mathbf{x} \right) \ge 371-M+M\left( {1-y_{34} } \right) \\&z_1 \left( \mathbf{x} \right) \le 236\\&z_1 \left( \mathbf{x} \right) \ge 96 \\&\mathbf{x}\in \mathbf{X} \end{aligned}$$

Submodel 1

Submodel 2

Submodel 3

Submodel 4

Submodel 5

\( \hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) \)

\( \hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) \)

\( \hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) \)

\( \hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) \)

\( \hbox {Max}\;z_2 \left( \mathbf{x} \right) +\varepsilon _1 z_1 \left( \mathbf{x} \right) \)

\( +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

\( +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

\( +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

\( +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

\( +\varepsilon z_3 \left( \mathbf{x} \right) +\varepsilon z_4 \left( \mathbf{x} \right) \)

subject to

subject to

subject to

subject to

subject to

\( z_3 \left( \mathbf{x} \right) \ge -M\)

\( z_3 \left( \mathbf{x} \right) \ge 290\)

\( z_3 \left( \mathbf{x} \right) \ge 302\)

\( z_3 \left( \mathbf{x} \right) \ge 302 \)

\( z_3 \left( \mathbf{x} \right) \ge 326 \)

\( z_4 \left( \mathbf{x} \right) \ge 371 \)

\( z_4 \left( \mathbf{x} \right) \ge 371\)

\( z_4 \left( \mathbf{x} \right) \ge 371\)

\( z_4 \left( \mathbf{x} \right) \ge 318\)

\( z_4 \left( \mathbf{x} \right) \ge -M\)

\( z_1 \left( \mathbf{x} \right) \le 236\)

\( z_1 \left( \mathbf{x} \right) \le 236 \)

\( z_1 \left( \mathbf{x} \right) \le 236\)

\( z_1 \left( \mathbf{x} \right) \le 236\)

\( z_1 \left( \mathbf{x} \right) \le 236 \)

\( z_1 \left( \mathbf{x} \right) \ge 96\quad \;\)

\( z_1 \left( \mathbf{x} \right) \ge 96\quad \;\)

\( z_1 \left( \mathbf{x} \right) \ge 96 \)

\( z_1 \left( \mathbf{x} \right) \ge 96\)

\( z_1 \left( \mathbf{x} \right) \ge 96\)

\( \mathbf{x}\in \mathbf{X}\)

\( \mathbf{x}\in \mathbf{X}\)

\( \mathbf{x}\in \mathbf{X}\)

\( \mathbf{x}\in \mathbf{X}\)

\( \mathbf{x}\in \mathbf{X}\)

Infeasible

Infeasible*

Infeasible*

Infeasible*

Infeasible*

  1. *  No need to solve. The solution is identical to that of a previously solved model (see [6] for details)

\(P_{1(2)}^4 \) is infeasible. Set \(lz_1 =uz_1^*+1=237\) and go to Step 4.

Step 4 Stop, \(lz_1 =237\le z_1^{ NP \left( 1 \right) } \le 237=uz_1 \) and therefore \(z_1^{ NP \left( 1 \right) } =237\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köksalan, M., Lokman, B. Finding nadir points in multi-objective integer programs. J Glob Optim 62, 55–77 (2015). https://doi.org/10.1007/s10898-014-0212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0212-0

Keywords

Navigation