Skip to main content
Log in

Computing the nadir point for multiobjective discrete optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We investigate the problem of finding the nadir point for multiobjective discrete optimization problems (MODO). The nadir point is constructed from the worst objective values over the efficient set of a multiobjective optimization problem. We present a new algorithm to compute nadir values for MODO with \(p\) objective functions. The proposed algorithm is based on an exhaustive search of the \((p-2)\)-dimensional space for each component of the nadir point. We compare our algorithm with two earlier studies from the literature. We give numerical results for all algorithms on multiobjective knapsack, assignment and integer linear programming problems. Our algorithm is able to obtain the nadir point for relatively large problem instances with up to five-objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. \(\mathcal {Y}_P^k\) represents the list of nondominated solutions until \(y_k^N\) is obtained. At termination, \(\mathcal {Y}_P^k\) may not include all nondominated solutions, i.e. \(\mathcal {Y}_P^k \subseteq \mathcal {Y}_{ND}\) for each \(k \in \{1,\ldots ,p\}\).

References

  1. Abbas, M., Chaabane, D.: Optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 174(2), 1140–1161 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alves, M.J., Costa, J.P.: An exact method for computing the nadir values in multiple objective linear programming. Eur. J. Oper. Res. 198(2), 637–646 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. An, L.T.H., Tao, P.D., Muu, L.D.: Numerical solution for optimization over the efficient set by dc optimization algorithms. Oper. Res. Lett. 19(3), 117–128 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ben-Tal, A.: Characterization of pareto and lexicographic optimal solutions. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Application. Lecture Notes in Economics and Mathematical Systems, vol. 177, pp. 1–11. Springer, Berlin (1980)

    Chapter  Google Scholar 

  5. Benson, H.P.: Optimization over the efficient set. J. Math. Anal. Appl. 98(2), 562–580 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benson, H.P.: An all-linear programming relaxation algorithm for optimizing over the efficient set. J. Glob. Optim. 1(1), 83–104 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benson, H.P.: A finite, nonadjacent extreme-point search algorithm for optimization over the efficient set. J. Optim. Theory Appl. 73(1), 47–64 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Benson, H.P.: A bisection-extreme point search algorithm for optimizing over the efficient set in the linear dependence case. J. Glob. Optim. 3(1), 95–111 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Benson, H.P., Lee, D., McClure, J.P.: Global optimization in practice: an application to interactive multiple objective linear programming. J. Glob. Optim. 12(4), 353–372 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bolintineanu, S.: Minimization of a quasi-concave function over an efficient set. Math. Program. 61(1), 89–110 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bonnel, H., Kaya, C.Y.: Optimization over the efficient set of multi-objective convex optimal control problems. J. Optim. Theory Appl. 147(1), 93–112 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cplex: IBM ILOG Cplex Optimization Studio 12.4 (2012)

  13. Dauer, J.P.: Optimization over the efficient set using an active constraint approach. Math. Methods Oper. Res. 35(3), 185–195 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dauer, J.P., Fosnaugh, T.A.: Optimization over the efficient set. J. Glob. Optim. 7(3), 261–277 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ecker, J.G., Song, J.H.: Optimizing a linear function over an efficient set. J. Optim. Theory Appl. 83(3), 541–563 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Ehrgott, M., Tenfelde-Podehl, D.: Computation of ideal and nadir values and implications for their use in MCDM methods. Eur. J. Oper. Res. 151(1), 119–139 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Granat, J., Guerriero, F.: The interactive analysis of the multicriteria shortest path problem by the reference point method. Eur. J. Oper. Res. 151(1), 103–118 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Haimes, Y.Y., Lasdon, L.S., Wismer, D.A.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1(3), 296–297 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  20. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, New York (1995)

    Google Scholar 

  21. Isermann, H., Steuer, R.E.: Computational experience concerning payoff tables and minimum criterion values over the efficient set. Eur. J. Oper. Res. 33(1), 91–97 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jorge, J.M.: An algorithm for optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 195(1), 98–103 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kirlik, G., Sayın, S.: A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232(3), 479–488 (2014)

    Article  MATH  Google Scholar 

  24. Köksalan, M.M., Sagala, P.N.S.: Interactive approaches for discrete alternative multiple criteria decision making with monotone utility functions. Manag. Sci. 41(7), 1158–1171 (1995)

    Article  MATH  Google Scholar 

  25. Laumanns, M., Thiele, L., Zitzler, E.: An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper. Res. 169(3), 932–942 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Le Thi Hoai, A., Tao, P.D.: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J. Glob. Optim. 11(3), 253–285 (1997)

    Article  MATH  Google Scholar 

  27. Miettinen, K., Eskelinen, P., Ruiz, F., Luque, M.: NAUTILUS method: an interactive technique in multiobjective optimization based on the nadir point. Eur. J. Oper. Res. 206(2), 426–434 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Özlen, M., Azizoğlu, M.: Multi-objective integer programming: a general approach for generating all non-dominated solutions. Eur. J. Oper. Res. 199(1), 25–35 (2009)

    Article  MATH  Google Scholar 

  29. Reeves, G.R., Reid, R.C.: Minimum values over the efficient set in multiple objective decision making. Eur. J. Oper. Res. 36(3), 334–338 (1988)

    Article  MathSciNet  Google Scholar 

  30. Sayın, S.: Optimizing over the efficient set using a top-down search of faces. Oper. Res. 48(1), 65–72 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yamamoto, Y.: Optimization over the efficient set: overview. J. Glob. Optim. 22(1), 285–317 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by TUBITAK (Scientific & Technical Research Council of Turkey), Project No. 112M217. We thank anonymous reviewers whose comments improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serpil Sayın.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirlik, G., Sayın, S. Computing the nadir point for multiobjective discrete optimization problems. J Glob Optim 62, 79–99 (2015). https://doi.org/10.1007/s10898-014-0227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0227-6

Keywords

Navigation