
A penalty approach to a discretized double obstacle
problem with derivative constraints

Song Wang
Department of Mathematics & Statistics

Curtin University
GPO Box U1987, Perth, WA6845, Australia

song.wang@curtin.edu.au

Abstract

This work presents a penalty approach to a nonlinear optimization problem with
linear box constraints arising from the discretization of an infinite-dimensional dif-
ferential obstacle problem with bound constraints on derivatives. In this approach,
we first propose a penalty equation approximating the mixed nonlinear complemen-
tarity representing the Karush-Kuhn-Tucker conditions of the optimization problem.
We then show that the penalty solution converges to that of the complementarity
problem with an exponential convergence rate depending on the parameters used in
the penalty equation. Numerical experiments, carried out on non-trivial test prob-
lems to verify the theoretical finding, show that the computed rates of convergence
match the theoretical ones well.

Keywords. Double obstacle problem, mixed nonlinear complementarity problem, varia-
tional inequalities, bounded linear constraints, global optimizer, penalty method, conver-
gence rates.

1 Introduction

Many real-world problems in engineering, physics, finance and investment are governed

by infinite-dimensional constrained optimization problems of the following form:

min
u∈H

F(u) (1.1)

subject to g1 ≤ Lu ≤ g2, (1.2)

where H is a functional space, F is a functional on H of usually u and its derivatives, L
a given linear differential operators, and g1 and g2 satisfying g1 ≤ g2 are known functions

defining the lower and upper bounds on Lu. Examples of such type of problems are shape-

preserving interpolation in which it is required that the interpolation satisfies prescribed

slope or convexity conditions, various problems in engineering, physics with gradient or
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curl constraints, see, for example, [6, 25, 17, 1, 2] just to name a few. Optimization

problems with derivative constraints also arise in differential game theory and pricing

financial options under transaction costs in financial engineering [3, 7, 9, 31, 20, 21, 22].

The above infinite-dimensional problem cannot be usually solved exactly except for

some trivial cases. In practice, a discretization scheme is usually applied to (1.1)–(1.2)

so that the resulting optimization problem is in finite dimensions. Various effective dis-

cretization schemes such as finite difference, finite volume and finite element methods

are available for the discretization of (1.1)–(1.2) depending on the problem in question

[26, 15, 32, 18, 22]. The discretized problem of (1.1)–(1.2) is usually of the following form:

min
x∈Rm

F (x) (1.3)

subject to −b ≤ Ax ≤ c, (1.4)

where m is a positive integer, F : Rm 7→ R is a nonlinear differentiable function, A :

Rm 7→ Rn is an n×m matrix with n an positive integer, and b, c ∈ Rn are given vectors

satisfying −b < c. Clearly, F,A,−b and c are discretized forms of respectively F ,L, g1

and g2, and the solution x to (1.3)–(1.4) provides an approximation to the solution u to

(1.1)–(1.2). We assume that n ≤ m and both Ax = c and Ax = −b have at least one

feasible solution. In this case, we may simply assume that c = 0 and b > 0, as the case

that c 6= 0 can be transformed into this by a simple substitution z = x − x0, where x0

is a solution to Ax = c, and the lower bound for Ax then becomes −b − c due to the

transformation.

We comment that in [29] we propose a penalty method for a (single) obstacle problem,

i.e., the minimization problem (1.3) subject to the constraint Ax ≤ c with Ax = c having

at least one solution. However, the double obstacle problem (1.3)–(1.4) is completely

different from that in [29] because the former has both lower and upper bounds on Ax.

Thus, the theory developed in [29] does not apply to (1.3)–(1.4). As can be seen below,

both the formulation and analysis for (1.3)–(1.4) are different from and, in particular, the

analysis substantially more difficult than that in [29].

The KKT conditions for (1.3)–(1.4) (with c = 0) and b > 0 are

f(x) + A>µ1 − A>µ2 = 0, (1.5)

µ1 ≥ 0, µ2 ≥ 0, (1.6)

Ax ≤ 0, −Ax ≤ b, (1.7)

µ>1 Ax = 0, µ>2 (Ax+ b) = 0, (1.8)

where f(x) = ∇F (x) : Rm 7→ Rm and µ1, µ2 ∈ Rn are unknown multipliers. The system

(1.5)–(1.8) is a mixed nonlinear complementarity problem (MCP) for the unknowns x, µ1
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and µ2 containing a set of inequalities and equations. Extensive studies on theoretical as-

pects and computational algorithms of conventional nonlinear complementarity problems

(NCP) have been done for the last two decades and many of these results can be found

in a recent outstanding monograph [10] and the references therein. For mixed comple-

mentarity problems, some numerical methods have also been developed. These include

the semi-smooth Newton method [16], the smooth methods [4, 19], the active-set Newton

methods [8] and the interior point method [24], just to name a few.

An NCP or MCP is usually equivalent to a concave minimization problem even for the

linear case, as pointed out in [12, pp.24-25]. Thus, how to find a global optimizer for the

above MCP becomes an issue. Also, popular numerical methods for solving an MCP such

as (1.5)–(1.8) are based on the minimization of a merit function for the MCP. However,

the resulting problem is usually a global optimization problem even when the MCP is

monotone or strictly monotone [16, 23, 30]. The main problem in the global optimization

issue of the aforementioned methods is that either auxiliary cost functions or variables

(multipliers), or both introduced in the methods may change the nature of the original

problem. In this work, we propose a power penalty method for (1.5)–(1.8) and show that

the nonlinear penalty equation from the method is uniquely solvable when the original

mapping is ξ-monotone, and thus this formulation does not introduce any local optimal

solutions. We also show that the solution to the penalty equation converges exponentially

to that of (1.5)–(1.8), and so it provide a global optimal solution to the original problem

when the penalty constants approach infinity.

Let y = −µ1 and z = −µ2, (1.5)–(1.8) can be written as the following problem:

Problem 1.1 Find
(
x> y> z>

)> ∈ Rm × Rn × Rn such that

f(x)− A>y + A>z = 0, (1.9)

y ≤ 0, z ≤ 0, (1.10)

Ax ≤ 0, −Ax ≤ b, (1.11)

y>Ax = 0, z>(Ax+ b) = 0. (1.12)

Let K =
{(
x> y> z>

)> ∈ Rm × Rn × Rn : y ≤ 0, z ≤ 0
}

. It is easy to see that K is

a convex subset of Rm × Rn × Rn. Using K we define a variational inequality as follows.

Problem 1.2 Find u =
(
x> y> z>

)> ∈ K, such that for all v ∈ K,

(v − u)>G(u) ≥ 0, (1.13)

where G : Rm+2n 7→ Rm+2n is given by

G(u) :=

f(x)− A>y + A>z
Ax

−Ax− b

 . (1.14)

3



Using a standard argument it is easy to show that Problems 1.1 and 1.2 are equivalent,

as given in the following theorem.

Theorem 1.1 A vector u =
(
x> y> z>

)> ∈ Rm × Rn × Rn is a solution to Problem

1.1 if and only if it is a solution to Problem 1.2.

The proof of this theorem can be found in [14].

In what follow we use || · ||p to denote the the usual lp-norm on Rk for any p ≥ 1 and

positive integer k. When p = 2, it becomes the usual Euclidean norm. Before further

discussion, we make the following assumptions:

A1. f(x) is continuous on Rm.

A2. f(x) is ξ-monotone, i.e. there exist constants α > 0 and ξ ∈ (1, 2] such that for all

x1, x2 ∈ Rm,

(x1 − x2)>(f(x1)− f(x2)) ≥ α||x1 − x2||ξ2. (1.15)

A3. Without loss of generality, we assume that the linear independent constraint quali-

fication (LICQ) holds for (1.11). i.e., Rank(A) = n.

A4. The set of solutions to (1.3)–(1.4) is non-empty.

Note that Assumption A3 is realistic. When Rank(A) < n, some of the constraints

in (1.11) are linearly dependent on others and thus they can be eliminated from the

constraint set. In the rest of this paper we assume that A1, A2, A3 and A4 are fulfilled.

The following theorem, based on Assumption A1, establishes the monotonicity of G(u).

Lemma 1.1 For any u1 =
(
x>1 y>1 z>1

)>
, u2 =

(
x>2 y>2 z>2

)> ∈ Rm × Rn × Rn, the

mapping G defined in (1.14) satisfies

(u1 − u2)> (G(u1)−G(u2)) ≥ α||x1 − x2||ξ2,

where α is the constant in (1.15).

PROOF. From the definition of G we have

(u1 − u2)> (G(u1)−G(u2))

=

f(x1)− f(x2)− A>(y1 − y2) + A>(z1 − z2)
A(x1 − x2)
−A(x1 − x2)

>x1 − x2y1 − y2
z1 − z2


=(f(x1)− f(x2))

>(x1 − x2)− (y1 − y2)>A(x1 − x2) + (z1 − z2)>A(x1 − x2)

+ (x1 − x2)>A>(y1 − y2)− (x1 − x2)>A>(z1 − z2)

=(f(x1)− f(x2))
>(x1 − x2) ≥ α||x1 − x2||ξ2
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by (1.15). Thus, the lemma is proved. 2

Using this lemma, we establish the following theorem.

Theorem 1.2 Problem 1.2 has a unique solution.

PROOF. From Assumption A4 we see that (1.3)–(1.4) has a solution. Therefore, its KKT

condition Problem 1.1, or, equivalently, Problem 1.2, has at least one solution. In what

follows we show that the solution is unique.

Let ui =
(
x>i y>i z>i

)>
, i = 1, 2, be two solutions to Problem 1.2. Then, for i = 1, 2,

we have

(u− ui)>G(ui) ≥ 0, ∀u ∈ K. (1.16)

Replacing u in (1.16) with u2 and u1 respectively for i = 1, 2, we get

(u2 − u1)>G(u1) ≥ 0 and (u1 − u2)>G(u2) ≥ 0.

Therefore, combining these two inequalities gives

(u2 − u1)> (G(u2)−G(u1)) ≤ 0.

Using the monotonicity of G established in Lemma 1.1, we see ||x1 − x2||2 = 0.

We now assume that the two solutions are ui =
(
x> y>i z>i

)>
, i = 1, 2. Since u1 and

u2 are also solutions to Problem 1.1, they satisfy (1.9), i.e.,

f(x)− A>y1 + A>z1 = 0 and f(x)− A>y2 + A>z2 = 0.

From these we have

A>(y1 − z1) = A>(y2 − z2).

Multiplying both sides of the above by A and noticing that AA> is invertible by Assump-

tion A3, we have

y1 − z1 = y2 − z2. (1.17)

From the KKT conditions (1.10)–(1.11) and the first complementarity in (1.12), it is easy

to see that, for i = 1 or 2, if the jth component of yi is non-zero for some j ∈ {1, 2, ..., n},
i.e., yji < 0, then, (Axi)

j = 0. In this case, the 2nd complementarity condition in (1.12)

gives zji = 0, since bj > 0. Conversely, if zji < 0, then yji = 0. Therefore, yi and zi satisfies

the following complementarity conditions:

yi ≤ 0, zi ≤ 0, y>i zi = 0 for i = 1, 2. (1.18)

In particular, if yj1 < 0 for some j ∈ {1, 2, ..., n}, from (1.17) and (1.18) we have

yj1 = yj2 − z
j
2.
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Using (1.18) again we see that the only solution to the above equation is

yj1 = yj2 < 0 and zj1 = zj2 = 0.

By symmetry we also have that, if zk1 < 0 for a k ∈ {1, 2, ..., n}, then, zk1 = zk2 < 0

and yk1 = yk2 = 0. Combining these two cases we have y1 = y2 and z1 = z2. Therefore,

u1 = u2, and thus this theorem is proved. 2

2 The penalty equation and its sovability

Penalty methods have been used successfully for solving constrained nonlinear optimiza-

tion problems for decades. In recent years, various penalty methods have been developed

for linear and nonlinear complementarity problems in both infinite and finite dimensions

[27, 28, 13, 5, 33]. In [14] the authors proposed such a method for a mixed complemen-

tarity problem in the case that the nonlinear function involved is ξ-monotone. However,

mixed complementarity problems arising from the discretization of continuous obstacle

problems with gradient constraints usually do not satisfy the strong monotonicity condi-

tion used in [14] so that the results in [14] do not apply. In [29], we extend the penalty

method to an obstacle problem with a one-sided derivative constraint. In what follows

we shall extend the method further to Problem 1.1 which contains both lower and upper

bounds on Ax.

Consider the following problem:

Problem 2.1 Find uλ =
(
x>λ y>λ z>λ

)> ∈ Rm × Rn × Rn, such that

G(uλ) + λ

 0

[yλ]
1/k
+

[zλ]
1/k
+

 ≡
f(xλ)− A>yλ + A>zλ

Axλ
−Axλ − b

+ λ

 0

[yλ]
1/k
+

[zλ]
1/k
+

 = 0, (2.1)

where G is the mapping defined in (1.14), λ ≥ 1 and k > 0 are penalty parameters,

[v]+ = max{v, 0} and wσ = (wσ1 , ..., w
σ
n)> for any w = (w1, ..., wn)> ∈ Rn and constant

σ > 0.

Problem 2.1 is to find a solution to the nonlinear algebraic equation (2.1) which is a

penalty equation approximating (1.9)–(1.12). In the penalty equation, the penalty terms

λ[yλ]
1/k
+ and λ[zλ]

1/k
+ penalize the positive components of yλ and zλ respectively. In general,

the constant k can be any positive number, but in this work we assume that k ≥ 1. When

k ∈ (0, 1), the penalty terms in (2.1) are smooth and all of our analysis below hold true.

However, the method with k ∈ (0, 1) provides a slow convergence rate, as will be seen in

the next section. The solvability of Problem 2.1 is given in the following theorem.
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Theorem 2.1 For any λ ≥ 1, Problem 2.1 has a unique solution.

PROOF. In Lemma 1.1 we showed that G is monotone. Since [w]+ is monotone in w for

any function w, λ
(

0 ([yλ]
1/k
+ )> ([zλ]

1/k
+ )>

)>
is also monotone in uλ. Also, the solution

space Rm×Rn×Rn and the usual dot product form a Hilbert space. Therefore, from [11]

we see that there exists a solution to Problem 2.1.

To show that the solution to Problem 2.1 is unique, we let uλ,j =
(
x>λ,j y>λ,j z>λ,j

)>
,

j = 1, 2, be two solutions to Problem 2.1, and we show that uλ,1 = uλ,2. In fact, from the

monotonicity of the function on the left-hand side of (2.1) and Lemma 1.1 we have

α||xλ,1 − xλ,2||ξ2 ≤ (uλ,1 − uλ,2)>
G(uλ,1)−G(uλ,2) + λ

 0

[yλ,1]
1/k
+ − [yλ,2]

1/k
+

[zλ,1]
1/k
+ − [zλ,2]

1/k
+

 = 0.

This gives xλ,1 = xλ,2.

Since xλ,1 = xλ,2, from the 2nd and 3rd blocks of equations in (2.1) it is easy seen that

[yλ,1]+ = [yλ,2]+, [zλ,1]+ = [zλ,2]+. (2.2)

Therefore, the positive parts of both yλ and zλ are uniquely defined.

Now, using the first m scalar equations of (2.1) we have

A>(yλ,1 − zλ,1) = A>(yλ,2 − zλ,2).

Multiplying both sides of the above by A and noticing AA> is invertible we get

yλ,1 − zλ,1 = yλ,2 − zλ,2. (2.3)

Note, for any feasible j, if the jth component of yλ,1 satisfies yjλ,1 ≤ 0, from the 2nd and

3rd blocks of equations in (2.1) we see that zjλ,i > 0 for i = 1, 2. In this case, from (2.3)

we have

yjλ,1 = yjλ,2,

since zjλ,1 = zjλ,2 by (2.2). This implies that [yλ,1]− = [yλ,2]−, where [w]− := −min{w, 0}
for any w.

By symmetry, we also have [zλ,1]− = [zλ,2]−. Combining these with (2.2) we see that

yλ,1 = yλ,2 and zλ,1 = zλ,2 and therefore, uλ,1 = uλ,2. 2

Finally, we note that adding up the 2nd and 3rd blocks of equations in (2.1) gives

λ
(

[yλ]
1/k
+ + [zλ]

1/k
+

)
= b. (2.4)

(Recall that the RHS of (2.4) should be b+c when the constraints in (1.4) are transformed

into the form −b ≤ Ax ≤ 0 as commented before.) We will use this relation to check the

correctness of our numerical solutions late in this work.
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3 Convergence

In this section we establish the convergence of the solution to Problem 2.1 to that of

Problem 1.2. We first show that the x-component of the solution to Problem 2.1 is

bounded for any λ ≥ 1, as given in the following lemma.

Lemma 3.1 For any λ ≥ 1, let uλ =
(
x>λ y>λ z>λ

)>
be a solution to Problem 2.1. Then,

there exists a positive constant M , independent of λ and uλ, such that

||xλ||2 ≤M. (3.1)

PROOF. Left-multiplying both sides of (2.1) by u>λ gives

u>λG(uλ) + λu>λ

 0

[yλ]
1/k
+

[zλ]
1/k
+

 = 0.

Taking u>λG(0) away from both sides of the above equation and re-arranging the resulting

equation, we have

u>λ [G(uλ)−G(0)] = −λ
(
y>λ [yλ]

1/k
+ + z>λ [zλ]

1/k
+

)
− u>λG(0).

Using (1.14) and the monotonicity of G established in Lemma 1.1, we have from the above

equality

α||xλ||ξ2 ≤ −x>λ f(0) + z>λ b− λy>λ [yλ]
1/k
+ − λz>λ [zλ]

1/k
+ . (3.2)

But yλ = [yλ]+ − [yλ]−, and thus

−y>λ [yλ]
1/k
+ = − ([yλ]+ − [yλ]−)> [yλ]

1/k
+ = −[yλ]

>
+[yλ]

1/k
+ ≤ 0, (3.3)

since [yλ]
>
−[yλ]

1/k
+ = 0. Similarly, we have

−z>λ [zλ]
1/k
+ ≤ 0. (3.4)

Also, since b > 0, we have

z>λ b = [zλ]
>
+b− [zλ]

>
−b ≤ [zλ]

>
+b. (3.5)

Now, left-multiplying the last block of n equations in (2.1) by (b1/k)> and rearranging the

result give

λ(b1/k)>[zλ]
1/k
+ = (b1/k)>Axλ + (b1/k)>b ≤ (b1/k)>b, (3.6)

because Axλ ≤ 0 from the middle block of equations of (2.1) containing [yλ]+. Using the

well-known inequality (
∑n

i=1wi)
r ≤

∑n
i=1w

r
i for any wi ≥ 0 and r ∈ [0, 1], we have from

(3.6)

λ(b>[zλ]+)1/k ≤ λ(b1/k)>[zλ]
1/k
+ ≤ (b1/k)>b = ||b||pp,
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where p = 1 + 1/k. Thus, from the above inequality and (3.5) we have

z>λ b ≤
||b||1+kp

λk
,

Finally, combining the above estimate, (3.3) and (3.4), we have from (3.2)

α||xλ||ξ2 ≤ −x>λ f(0) +
||b||1+kp

λk
≤ C

(
||xλ||2 +

1

λk

)
,

where C denotes a positive constant, independent of λ. Since ξ ∈ (1, 2], the above estimate

can be written as

||xλ||2
(
α||xλ||ξ−12 − C

)
≤ C

λk
. (3.7)

We now consider the following two cases:

Case 1. If α||xλ||ξ−12 − C ≤ 1, then ||xλ||2 ≤
(
1+C
α

)1/(ξ−1)
.

Case 2. If α||xλ||ξ−12 − C > 1, from (3.7) we see that ||xλ||2 ≤ C
λk

.

Combining these two cases, we have (3.1) for a positive constant M , independent of λ.

2

We now prove the following lemma.

Lemma 3.2 For any λ ≥ 1, let uλ =
(
x>λ y>λ z>λ

)>
be the solution to (2.1). Then,

there exists a positive constant C, independent of uλ and λ, such that

||[yλ]+||2 + ||[zλ]+||2 ≤
C

λke
(3.8)

where λe = λ/(||x||kq + 1)1/k with q = 1 + k.

PROOF. Left-multiplying (2.1) by
(
0> [yλ]

>
+ 0>

)
yields

[yλ]
>
+Axλ + λ[yλ]

>
+[yλ]

1/k
+ = 0.

Let p = 1 + 1/k and q = 1 + k satisfying 1/p+ 1/q = 1. Then, using Holder’s inequality

we have from the above equality

λ[yλ]
>
+[yλ]

1/k
+ ≡ λ||[yλ]+||pp = −[yλ]

>
+Axλ ≤ C||[yλ]+||p||xλ||q,

from which we have

||[yλ]+||p−1p ≤ C||xλ||q
λ

,

where C is a generic positive constant, independent of λ and uλ. Taking the (p − 1)-th

root on both sides of the above gives

||[yλ]+||p ≤
C||xλ||

1
p−1
q

λ
1

p−1

=
C||xλ||kq
λk

.
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Since all norms in a finite dimensional space are equivalent, we have

||[yλ]+||2 ≤
C||xλ||kq
λk

. (3.9)

Now, left-multiplying (2.1) by
(
0> 0> [zλ]

>
+

)
and re-arranging the resulting equa-

tions, we have

||[zλ]+||pp =
1

λ

(
[zλ]

>
+Axλ + [z]>+b

)
≤ ||[zλ]+||p

||b||q
λ

.

In the above we used the fact that Axλ ≤ 0 and Holder’s inequality. Using the same

argument for (3.9) and noting all norms in a finite dimensional space are equivalent, we

have from the above

||[zλ]+||2 ≤
C

λk
.

Finally, adding up the above inequality and (3.9) we have

||[yλ]+||2 + ||[zλ]+||2 ≤
C

λk
(||xλ||kq + 1) ≤ C

λke

with λe defined above. Thus, we have proved (3.8). 2

Remark 3.1 Note that (3.8) implies that ||[yλ]+||2 + ||[zλ]+||2 converges to zero at the

rate O(λ−k) uniformly in λ, since ||xλ||q is bounded above uniformly by a positive constant

according to Lemma 3.1. However, we leave the upper bound in a form of λe which can be

regarded as an effective penalty constant. Also, though the constant C is independent

of uλ and λ, it does depend on m and n because the equivalence of norms on a finite-

dimension space depends on the dimensions of the space.

We are now ready to prove the following main convergence result.

Theorem 3.1 For any λ ≥ 1, let u =
(
x> y> z>

)>
and uλ =

(
x>λ y>λ z>λ

)>
be the

solutions to Problems 1.1 and 2.1 respectively. There exists a constant C > 0, independent

of uλ and λ, such that

||x− xλ||2 ≤
C

λ
k/(ξ−1)
e

, (3.10)

where λe is the effective penalty constant defined before. Furthermore, we have

lim
λ→∞

(y − yλ) = 0 = lim
λ→∞

(z − zλ). (3.11)

PROOF. Let C be a generic positive constant, independent of uλ and λ. We decompose

u− uλ into

u− uλ = u−

 0
[yλ]+
[zλ]+

+

 −xλ[yλ]−
[zλ])−

 =: rλ −

 0
[yλ]+
[zλ]+

 ,
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where

rλ := u+

−xλ[yλ]−
[zλ]−

 . (3.12)

Since u− rλ =
(
x>λ −[yλ]

>
− −[yλ]

>
−
)> ∈ K, replacing v in (1.13) with u− rλ, we have

−r>λG(u) ≥ 0. (3.13)

Also, left-multiplying both sides of (2.1) by r>λ yields

r>λG(uλ) + λr>λ

 0

[yλ]
1/k
+

[zλ]
1/k
+

 = 0. (3.14)

Adding up both sides of (3.13) and (3.14) and multiplying the resulting inequality by −1,

we get

r>λ (G(u)−G(uλ))− λr>λ

 0

[yλ]
1/k
+

[zλ]
1/k
+

 ≤ 0. (3.15)

From (3.12) and recalling w = [w]+ − [w]− with [w]>[w]− = 0 for any column vector w,

we have

r>λ

 0

[yλ]
1/k
+

[zλ]
1/k
+

 =

 x− xλ
y + [yλ]−
z + [zλ]−

> 0

[yλ]
1/k
+

[zλ]
1/k
+


= (y + [yλ]−)>[yλ]

1/k
+ + (z + [zλ]−)>[zλ]

1/k
+

= y>[yλ]
1/k
+ + z>[zλ]

1/k
+

≤ 0,

since y ≤ 0 and z ≤ 0. Combining the above inequality with (3.15) leads to

r>λ
[
G(u)−G(uλ)

]
≤ 0.

Using (3.12) again we see that the above inequality becomesu+

−xλ[yλ]−
[zλ]−

> (G(u)−G(uλ)
)
≤ 0.

By the definition of G in Problem 1.2, we have from the above inequality,

(u− uλ)> [G(u)−G(uλ)] ≤ −

 0
[yλ]+
[zλ]+

> [G(u)−G(uλ)]

= −[yλ]
>
+A(x− xλ) + [zλ]

>
+A(x− xλ).
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Using Lemma 1.1 and (3.8), we have from the above

α||x− xλ||ξ2 ≤ ||A||2(||[yλ]+||2 + ||[zλ]+||2)||x− xλ||2 ≤
C

λke
||x− xλ||2,

Therefore, (3.10) follows from the above inequality.

Let us now show (3.11). Since u and uλ are solutions to, respectively, (1.9) and (2.1),

taking the difference between the two equations gives

A>(y − z − yλ + zλ) = f(x)− f(xλ),

from which we have

(y − yλ)− (z − zλ) = (AA>)−1A(f(x)− f(xλ)), (3.16)

since A is of rank n by Assumption A3. From (1.18) we have that if the jth component of

y satisfies yj < 0, then zj = 0. Therefore, when yj < 0, the jth component of the above

equality becomes

yj − yjλ + zjλ =
[
(AA>)−1A(f(x)− f(xλ))

]j
. (3.17)

Now, from the proof of Theorem 2.1 we see that if yjλ ≤ 0, then zjλ > 0, and if zjλ ≤ 0,

then yjλ > 0. Therefore, we have the following cases when λ is sufficiently large.

Case 1. yjλ ≤ 0.

In this case, we have from (3.17)

|yj − yjλ| ≤
∣∣∣[(AA>)−1A(f(x)− f(xλ))

]j∣∣∣+
∣∣[zjλ]+∣∣

≤
∣∣∣[(AA>)−1A(f(x)− f(xλ))

]j∣∣∣+
C

λke

by (3.8). Since f is continuous by Assumption A1, from (3.10) we have

lim
λ→∞
|yj − yjλ| = 0. (3.18)

Case 2. yjλ > 0 and zjλ ≤ 0.

In this case, from the 3rd block of equations in (2.1) we have (Axλ)
j = −bj < 0 for

any λ ≥ 1. Since yj < 0, from the first complementarity condition in (1.12) we have

(Ax)j = 0. Clearly, when λ → ∞, these two equations violate the facts that bj > 0 and

xλ → x. Thus, yjλ > 0 will never happen when λ approaches ∞.

Case 3. yjλ > 0 and zjλ > 0.

From (2.4) we have

lim
λ→∞

yjλ = 0 = lim
λ→∞

zjλ, (3.19)
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and this, along with (3.17) violates the assumption that yj < 0.

Combining the above three cases we have that when yj < 0, (3.18) holds.

By symmetry, we have that, when zj < 0 for a feasible j, limλ→∞ |zj − zjλ| = 0. Also,

when yi = 0 = zj, from (3.17) we see that −yjλ + zjλ → 0 as λ → ∞. As commented

above, from the proof of Theorem 2.1 we have if yjλ ≤ 0, then zjλ > 0, and if zjλ ≤ 0, then

yjλ > 0. Therefore, if yjλ ≤ 0 or zjλ ≤ 0, yjλ or zjλ have the same sign, and thus from the

above limit we see that (3.19) holds. Furthermore, if both yjλ > 0 and zjλ ≤ 0, from (2.4)

we also have (3.19). Therefore, we have proved (3.11). 2

In the case that f is Hölder continuous, we have the following convergence results for

yλ and zλ:

Corollary 3.1 For any λ ≥ 1, let u =
(
x> y> z>

)>
and uλ =

(
x>λ y>λ z>λ

)>
be

solutions to Problems 1.1 and 2.1, respectively. If f is Hölder continuous on Rm, i.e.,

there exist constants β > 0 and γ ∈ (0, 1] such that

||f(x1)− f(x2)||2 ≤ β||x1 − x2||γ2 , ∀x1, x2 ∈ Rm, (3.20)

then, we have

||y − yλ||2 + ||z − zλ||2 ≤
C

λ
kγ/(ξ−1)
e

, (3.21)

where C is a positive constant, independent of λ and uλ. Furthermore, when f is strongly

monotone and Lipschitz continuous, i.e, ξ = 2 and γ = 1 in (1.15) and (3.20) respectively,

we have

||u− uλ||2 ≤
C

λke
. (3.22)

PROOF. Let C be a generic constant, independent of λ and uλ. From (3.16) and (3.20)

we have

||y − yλ − (z − zλ)||2 = ||(AA>)−1A||2||f(xλ)− f(x)||2 ≤ Cβ||x1 − x2||γ2 .

Using an argument similar to the proof of (3.11) presented above and (3.10), we have

(3.21).

When ξ = 2 and γ = 1, combining (3.10) and (3.21) we have (3.22). 2

4 Numerical experiments

In this section we present some numerical experimental results to demonstrate the theo-

retical findings in the previous sections. We also use these results to show the practicality
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of the methods. All the numerical experiments have been carried out in double precision

under the Matlab programming environment.

The test problem is chosen to be the following infinite-dimensional optimization prob-

lem with gradient constraints: find u in an appropriate function space1 satisfying u(0) =

u(1) = 0 such that

u = arg

{
min

g1(s)≤v′(s)≤g2(s)

∫ 1

0

(
1

2
(v′(s))2 +

1

4
v4(s)− p(s)v(s)

)
ds,

}
where g1(s), g2(s) and p(s) are given functions on (0, 1).

To discretize the above problem, we divide [0, 1] uniformly into N sub-intervals with

N + 1 mesh points si = ih for i = 0, 1, ..., N for a positive integer N , where h = 1/N . On

this mesh, we approximate the above problem by

min
−b≤Ax≤c

h
N−1∑
i=0

(
1

2

(xi+1 − xi)2

h2
+

1

4
x4i − dixi

)
=: min
−b≤Ax≤c

(
1

2
x>Bx+

1

4
||x2||22 − d>x

)
h, (4.1)

where xi is an approximation to u(si), bi = −g1(si), ci = g2(si), di = p(si), and A and B

are respectively (N −2)× (N −1) bi-diagonal and (N −1)× (N −1) tri-diagonal matrices

defined by

A =
1

h


−1 1

−1 1
. . . . . .

−1 1
−1 1

 , B =
1

h2


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

 .

Clearly, (4.1) is of the form (1.3)–(1.4). Thus, the KKT conditions corresponding to

(4.1) is in the same form as that of Problem 1.1 with m = N − 1, n = N − 2 and

f(x) = Bx+ x3− d (omitting the multiplier h). The mapping f is strongly monotone, as

B is positive definite.

Now, we choose

p(s) = −4π2 sin(2πs) + sin3(2πs),

g1(s) = −2,

g2(s) = π(sin(2πs) + 0.5).

Using the Variation of Calculus, it is easy to show that the solution to the unconstrained

problem, i.e., the problem with g1 = −∞ and g2 =∞, and its derivative are respectively

uunc(s) = − sin(2πs), u′unc(s) = −2π cos(2πs).

1For simplicity, we omit the introduction of Sobolev function spaces.
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We also choose N = 100 (h = 0.01) and consider the solution of the penalty equation (2.1)

corresponding to the above finite-dimensional problem. Note that the penalty equation

is nonlinear, we use a damped Newton’s method to solve it. Also, the penalty term is

non-smooth, and thus in the computations, the function [w]
1/k
+ is smoothed out locally

using the following formula in [13]:

φ(w) =

{
w

1
k , w ≥ ε,

ε
1
k
−2(3− 1

k
)w2 + ε

1
k
−3( 1

k
− 2)w3, w < ε

for any w, where ε is a small positive constant. In all the computational results given

below, we choose ε = 10−12. Replacing [yλ]
1/k
+ and [zλ]

1/k
+ in (2.1) by φ(yλ) and φ(zλ)

respectively, the Jacobian matrix of the nonlinear function on the LHS of (2.1) is given

by

JG(uλ) :=

 B −A A
A> 0 0
−A> 0 0

+ diag(3x>λ , λ∇φ(yλ)
>, λ∇φ(zλ)

>),

where diag(· · · ) denotes the diagonal matrix and ∇ is the gradient operator with respect

to the independent variable of φ. Note that the first part of JG is a singular matrix. Thus,

it is important that the initial guess in the Newton’s method is chosen so that [yλ]+ 6= 0

and [zλ]+ 6= 0. (In what follows we will omit the subscript λ.)

Let us first investigate the computed convergence rates of the method in λ for a fixed

k. Since the exact solution to (4.1) is unknown, we use the numerical solution with k = 2

and λ = 1010 as the ‘exact’ or reference solution u∗. Table 4.1 is a list of the computed

errors in the l2-norm ||u− u∗||2 for different values of λ and k and the ratios between two

consecutive values of λ. From (3.22) it is easy to see that the theoretical ratio for two

consecutive values of λ for a fixed k is equal to λki+1/λ
k
i = 2k. From Table 4.1, we see that

our computed ratios match this theoretical one well for all k = 1, 2, 3 and 4, except when

the numerical solution is too close to the reference solution.

To investigate numerical rates of convergence of the numerical solutions in k, we choose

the sequence k = 1, 2, ..., 6 for a given λ and evaluate the ratios of the errors corresponding

to k and k+ 1 for k = 1, 2, ..., 5. These ratios are listed in Table 4.2 for different values of

λ. From (3.10) and (3.21) we see that theoretically the ratio of the errors for k and k+ 1

is a constant λk+1
e /λke = λe. From Table 4.2 we see that the ratios are almost constants,

coinciding with the theoretical result. The only exception is when λ = 800 and k = 6 in

which the numerical solution is too close to the reference solution.

To further demonstrate the performance of the penalty method, we plot the computed

u and uunc in Figure 4.1(a). We also plot u′, u′unc and the constraints g1 and g2 in Figure

4.1(b) from which we see that u is bounded below by g1 and above by g2. Figure 4.1(c)

contains the computed multipliers y and z, along with the sum of the two penalty terms
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λ = 52−k×2i
h2

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5
k = 1 Errors 1.03e-03 5.15e-04 2.58e-04 1.29e-04 6.44e-05 3.22e-05

Ratios – 2.00 2.00 2.00 2.00 2.00
k = 2 Errors 2.67e-06 6.67e-07 1.67e-07 4.17e-08 1.04e-08 2.60e-09

Ratios – 4.00 4.00 4.00 4.00 4.00
k = 3 Errors 1.88e-07 2.35e-08 2.93e-09 3.67e-10 4.60e-11 7.99e-12

Ratios – 8.00 8.00 8.00 7.97 5.76
k = 4 Errors 3.44e-07 2.15e-08 1.34e-09 8.41e-11 7.93e-12 4.66e-12

Ratios – 16.0 16.0 16.0 10.6 1.70

Table 4.1: Computed rates of convergence in λ for different values of k.

k = 1 2 3 4 5 6
λ = 100 Errors 4.96e-1 2.56e-2 1.41e-3 8.13e-5 4.79e-6 2.88e-7

Ratios – 19.4 18.1 17.4 17.0 16.7
λ = 200 Errors 2.49e-1 6.40e-3 1.77e-4 5.08e-6 1.50e-7 4.50e-9

Ratios – 38.9 36.2 34.8 33.9 33.3
λ = 400 Errors 1.26e-1 1.60e-3 2.21e-5 3.18e-7 4.68e-9 7.05e-11

Ratios – 78.5 72.5 69.6 67.8 66.4
λ = 800 Errors 6.31e-2 4.00e-4 2.76e-6 1.98e-8 1.46e-10 6.25e-12

Ratios – 158 145 139 136 23.4

Table 4.2: Computed rates of convergence in k for different values of λ.
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in (2.1). From Figure 4.1(c) we see that y = 0 = z when the constraints are inactive, and

either y or z < 0 when Ax touches either the upper or lower bound, i.e., when either of

the two constraints is active. Figure 4.1(c) also shows that (2.4) is satisfied by y and z.

5 Conclusion

In this work we proposed a penalty approach to the discretized form of a double ob-

stacle problem with derivative constraints. In this approach, we first write down the

KKT conditions of the discrete problem which form a mixed nonlinear complementarity

problem. The complementarity problem is then approximated by a nonlinear penalty

equation with a term penalizing the parts of the solution violating the constraints. We

have proved that the penalty equation is uniquely solvable and the solution to the penalty

equation converges exponentially to that of the mixed complementarity of variational (or

the inequality) problem. A non-trivial numerical example was solved using this method

to demonstrate the rates of convergence of the method.
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Figure 4.1: Computed solutions using λ = 105 and k = 2.
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