Skip to main content
Log in

A proximal method with logarithmic barrier for nonlinear complementarity problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study the proximal method with the regularized logarithmic barrier, originally stated by Attouch and Teboulle for positively constrained optimization problems, in the more general context of nonlinear complementarity problems with monotone operators. We consider two sequences generated by the method. We prove that one of them, called the ergodic sequence, is globally convergent to the solution set of the problem, assuming just monotonicity of the operator and existence of solutions; for convergence of the other one, called the proximal sequence, we demand some stronger property, like paramonotonicity of the operator or the so called “cut property” of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch, H., Teboulle, M.: Regularized Lotka–Volterra dynamical system as a continuous proximal-like method in optimization. J. Optim. Theory Appl. 121, 541–570 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequalities. Comput. Optim. Appl. 12, 31–40 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burachik, R., Dutta, J.: Inexact proximal point methods for variational inequality problems. SIAM J. Optim. 20, 2653–2678 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burachik, R.S., Iusem, A.N.: A generalized proximal point algorithm for the nonlinear complementarity problem. RAIRO Recherche Opérationalle 33, 447–479 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of maximal monotone operators with application to variational inequalities. Set Valued Anal. 5, 159–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burachik, R.S., Svaiter, B.F.: \(\varepsilon \)-enlargement of maximal monotone operators in Banach spaces. Set Valued Anal. 7, 117–132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burachik, R.S., Svaiter, B.F.: A relative error tolerance for a family of generalized proximal point methods. Math. Oper. Res. 26(4), 816831 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Censor, Y., Zenios, S.A.: Proximal minimization algorithm with D-functions. J. Optim. Theory Appl. 73, 451–464 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM J. Optim. 3, 538–543 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crouzeix, J.P., Marcotte, P., Zhu, D.: Conditions ensuring the applicability of cutting-plane methods for solving variational inequalities. Math. Program. 88, 521–539 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eggermont, P.P.B.: Multiplicative iterative algorithms for convex programming. Linear Algebra Appl. 130, 25–42 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erlander, S.: Entropy in linear programs. Math. Program. 21, 137–151 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Güler, O.: Ergodic convergence in proximal point algorithms with Bregman functions. In Advances in Optimization and Approximation, pp. 155–165. Kluwer, Dordrecht (1994)

  14. Hadjisavvas, N., Schaible, S.: On a generalization of paramonotone maps and its application to solving the Stampacchia variational inequality. Optimization 55, 593–604 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iusem, A.N.: Some properties of generalized proximal point methods for quadratic and linear programming. J. Optim. Theory Appl. 85, 593–612 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iusem, A.N.: On some properties of paramonotone operators. J. Convex Anal. 5, 269–278 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Iusem, A.N.: Augmented Lagrangian methods and proximal point methods for convex optimization. Investigación Operativa 8, 12–49 (1999)

    Google Scholar 

  18. Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Math. Oper. Res. 19, 790–814 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iusem, A.N., Teboulle, M.: On the convergence rate of entropic proximal optimization algorithms. Comput. Appl. Math. 12, 153–168 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Iusem, A.N., Teboulle, M.: Convergence rate analysis of nonquadratic proximal and augmented Lagrangian methods for convex and linear programming. Math. Oper. Res. 20, 657–677 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaplan, A., Tichatschke, R.: Interior proximal method for variational inequalities: case of nonparamonotone operators. Set Valued Anal. 12, 357–382 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kiwiel, K.C.: Proximal minimization methods with generalized Bregman functions. SIAM J. Control Optim. 35, 1142–1168 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Langenberg, N.: On the cutting plane property and the Bregman proximal point algorithm. J. Convex Anal. 18, 601–619 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Revue Française de Informatique et Recherche Opérationnelle 4, 154–158 (1970)

    MathSciNet  MATH  Google Scholar 

  25. Minty, G.: A theorem on monotone sets in Hilbert spaces. J. Math. Anal. Appl. 11, 434–439 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Silva, P.J.S., Eckstein, J., Humes Jr, C.: Rescaling and stepsize selection in proximal methods using separable generalized distances. SIAM J. Optim. 12, 238–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Silva, P.J.S., Eckstein, J.: Double-regularization proximal methods, with complementarity applications. Comput. Optim. Appl. 33(2–3), 115156 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Gárciga Otero.

Additional information

The work of this author was partially supported by PRONEX-Optimization. Partially supported by CNPq Grant No. 301280/86.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gárciga Otero, R., Iusem, A. A proximal method with logarithmic barrier for nonlinear complementarity problems. J Glob Optim 64, 663–678 (2016). https://doi.org/10.1007/s10898-015-0266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0266-7

Keywords

Navigation