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Smaller SDP for SOS Decomposition

Liyun Dai · Bican Xia

Abstract A popular numerical method to compute SOS (sum of squares of polynomials)
decompositions for polynomials is to transform the probleminto semi-definite programming
(SDP) problems and then solve them by SDP solvers. In this paper, we focus on reducing the
sizes of inputs to SDP solvers to improve the efficiency and reliability of those SDP based
methods. Two types of polynomials, convex cover polynomials and split polynomials, are
defined. A convex cover polynomial or a split polynomial can be decomposed into several
smaller sub-polynomials such that the original polynomialis SOS if and only if the sub-
polynomials are all SOS. Thus the original SOS problem can bedecomposed equivalently
into smaller sub-problems. It is proved that convex cover polynomials are split polynomials
and it is quite possible that sparse polynomials with many variables are split polynomials,
which can be efficiently detected in practice. Some necessary conditions for polynomials
to be SOS are also given, which can help refute quickly those polynomials which have no
SOS representations so that SDP solvers are not called in this case. All the new results lead
to a new SDP based method to compute SOS decompositions, which improves this kind of
methods by passing smaller inputs to SDP solvers in some cases. Experiments show that
the number of monomials obtained by our program is often smaller than that by other SDP
based software, especially for polynomials with many variables and high degrees. Numerical
results on various tests are reported to show the performance of our program.

Keywords SOS, SDP, Newton polytope, convex cover polynomial, split polynomial

1 Introduction

Since Hilbert’s seventeenth problem was raised in 1900, there has been a lot of work on SOS
(sums of squares of polynomials) decomposition. To name a few, please see for instance [1,
30,34,19,13,23,24,2].
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From an algorithmic view of point, writing a multivariate polynomial as an SOS to prove
it is non-negative is a crucial part of many applications [38,13,23,11,31] though the number
of non-negative polynomials are much more than the number ofsum of squares polynomi-
als [2]. Numerical algorithms for SOS decompositions can handle big scale problems and
can be used to get exact results [9]. One main numerical method to solve SOS decompo-
sition problem is to convert it to SDP problem. Actually, there exist some well-known free
available SOS solvers which are based on SDP solvers [21,14,32].

Obviously, improving SDP solvers’ efficiency can improve the efficiency of SDP based
SOS solvers. For related work on improving SDP solvers’ efficiency, please see for example
[20,17,35,41,27,37,16]. It is known that, in the worst case, the size of corresponding SDP
problem isO(

(d+n
d

)

) which is polynomial in bothn (the number of variables) andd (the
degree of given polynomial), if the other one is fixed. In practice, the size of corresponding
SDP can be much smaller thanO(

(d+n
d

)

) [15,40,33]. Although the complexity of SDP is
polynomial ind andn, the actual complexity of SDP based SOS solvers are very highsince
the size of corresponding matrices of SDP is very large when the given polynomial has many
variables and high degree. Moreover, the results of existing SDP solvers may be not reliable
for large problems [6]. In other words, it is important to reduce the size of corresponding
SDP problem so as to improve both the efficiency and reliability of SDP based SOS solvers.

In many practical situations, we do not know more propertiesof the given polynomial
except that the polynomial is sparse,i.e., the number of monomials is much smaller than
(d+n

d

)

. So how to take use of the sparsity to reduce the corresponding size of SDP is a key
part to improve the efficiency of solving SOS decomposition problem. For related work on
employing sparsity, see for instance [28,12,39]. For SOS decomposition of a polynomial
on an algebraic variety, a method which may yield smaller SDPis proposed in [25] by
combining Gröbner basis techniques with Newton polytope reduction.

In this paper, we focus on reducing the sizes of inputs to SDP solvers to improve the
efficiency and reliability of those SDP based methods. Two types of polynomials, convex
cover polynomials and split polynomials, are defined. A convex cover polynomial or a split
polynomial can be decomposed into several smaller sub-polynomials such that the original
polynomial is SOS if and only if the sub-polynomials are all SOS. Thus the original SOS
problem can be decomposed equivalently into smaller sub-problems. It is proved that convex
cover polynomials are split polynomials and it is quite possible that sparse polynomials
with many variables are split polynomials, which can be efficiently detected in practice.
Some necessary conditions for polynomials to be SOS are alsogiven, which can help refute
quickly those polynomials which have no SOS representations so that SDP solvers are not
called in this case. For example, the well-known Motzkin polynomial [18] and Choi-Lam
example [4] do not pass the check of the necessary conditions. All the new results lead to
a new SDP based method to compute SOS decompositions, which improves this kind of
methods by passing smaller inputs to SDP solvers in some cases. Experiments show that
the number of monomials obtained by our program is often smaller than that by other SDP
based software, especially for polynomials with many variables and high degrees. Numerical
results on various tests are reported to show the performance of our program.

The rest part of this paper is organized as follows. Section 2describes some notations
and existing results on SOS, which will be used in this paper.Convex cover polynomial is
defined and its property is proved based on the convex property of corresponding Newton
polytopes in Section 3. Split polynomial is defined and its property is proved based on
monomial relation analysis in Section 4. Moreover, the relationship between the two types
of polynomials is given also in Section 4. A new algorithm forSOS decomposition based
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on those new results is presented in Section 5. We report someexperimental data of our
program with comparison to other SDP based tools in Section 6.

2 Preliminary

The symbolsZ,Z+,Q andR denote the set of integers, natural numbers, rational numbers
and real numbers, respectively. If not specified, “polynomials” in this paper are polynomials
with real coefficients and are often denoted byp,q, f ,g, etc.. By “vectors” we mean vectors
in Zn

+ (or Rn) which are denoted byα ,β ,γ, etc.. We usex,y denote the variable vectors
(x1, . . . ,xn),(y1, . . . ,yn), respectively. A hyperplane inRn is denoted byπ(x) = 0.

Consider a polynomial
p(x) = ∑

α∈P
cαxα (1)

in the variable vectorx ∈ Rn with a supportP ⊆ Zn
+, whereZ+

def
={x ∈ Z,x ≥ 0} and real

coefficientscα 6= 0 (α ∈ P). Denote byS(p) the support of a polynomialp. For example, if
p= 1+x2

1+x3
2, thenn= 2,S(p) = {(0,0),(2,0),(0,3)}. Whenp= 0, defineS(p) = /0.

For anyT ⊆ Rn andk ∈ R, denote bykT the set{kα | α ∈ T}, wherek(a1, . . . ,an) =
(ka1, . . . ,kan), and by conv(T) the convex hull ofT. Let Pe be the set ofα ∈ P whose
coordinatesαk (k= 1,2, . . . ,n) are all even non-negative integers,i.e., Pe = P∩ (2Zn

+).
Obviously, p(x) can be represented in terms of a sum of squares of polynomialsor in

short,p is SOS, if and only if there exist polynomialsq1(x), . . . ,qs(x) ∈ R[x] such that

p(x) =
s

∑
i=1

qi(x)2. (2)

To find boths and polynomialsq1(x), . . . ,qs(x), it is necessary to estimate and decide the
supports of unknown polynomialsqi(x)(i = 1, . . . ,s). Let Qi be an unknown support of the
polynomialqi(x) (i = 1, . . . ,s). Then each polynomialqi(x) is represented as

qi(x) = ∑
α∈Qi

c(i,α)x
α (3)

with nonzero coefficientsc(i,α) (α ∈ Qi , i = 1, . . . ,s).
Supposep(x) is of the form (2), thenP⊆ conv(Pe) [28]. The following relation is also

known by [28]:

{

α ∈ Zn
+ : α ∈ Qi andc(i,α) 6= 0 for somei ∈ {1,2, . . . ,s}

}

⊆
1
2

conv(Pe). (4)

Hence we can confine effective supports of unknown polynomials q1(x), . . . ,qs(x) to
subsets of

Q0 =

(

1
2

conv(Pe)

)

∩Zn
+. (5)

Definition 1 For a polynomialp, a setQ ⊆ Zn
+ is said to satisfy the relationSOSS(p,Q)

(SOSS stands for SOS support) if

p is SOS =⇒ there existqi(i = 1, . . . ,s) such thatp=
s

∑
i=1

q2
i andS(qi)⊆ Q.
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For every givenp, the problem is how to find a smallQ such thatSOSS(p,Q) holds,
i.e., prune more unnecessary monomials from the decomposition.In general, one can start
from a coarseQ, keep eliminating elements ofQ which does not satisfy some conditions,
and finally obtain a smallerQ. Obviously,Q0 of (5) satisfiesSOSS(p,Q0) for every given
p. If qi satisfies (2), the relationSOSS(p,∪iS(qi)) holds.

There are two possible approaches to constructq1, · · · ,qs.
One approach assumes polynomialsq1, · · · ,qs do not share common support. Then each

polynomialqi(x) is represented as Eq. (3). Unfortunately, it is difficult to find exactQi if
we do not know more information ofp. But whenp is correlatively sparse, a correlative
sparsity pattern graph is defined in [39] to find a certain sparse structure inp. And this
structure can be used to decide different relaxedQi . Theoretically, the relaxations in [39]
are not guaranteed to generate lower bounds with the same quality as those generated by the
original SOS representation.

The other approach assumes that all polynomialsq1(x), . . . ,qs(x) share a common un-
known supportQ ⊆ Q0 and each polynomialqi(x) is represented as

qi(x) = ∑
α∈Q

c(i,α)x
α . (6)

Then Eq. (2) is equivalent to the existence of a positive semi-definite matrixM such that

p(x) = QT(x)MQ(x), (7)

whereQ(x) is a vector of monomials corresponding to the supportQ. So in the view of
practical computing, finding the SOS representation is equivalent to solving the feasibility
problem of (7). Thus, the original problem can be solved by SDP solvers. This approach
was presented in [21,11,14,32]. There are close connections between SOS polynomials and
positive semi-definite matrices [5,26,22,13].

Notation 1 We denote bySOS(p,Q) an algorithm of finding positive semi-definite matrix M
with Q under constraints (7).

Let us give a rough complexity analysis ofSOS(p,Q). Let n= #(Q), the number of ele-
ments contained inQ. Then the size of matrixM in (7) isn×n. Letmbe the number of differ-
ent elements occurring inQQT . It is easy to known≤m≤ n2. Supposem=O(nc),c∈ [1,2]
and we useinterior point methodin SOS(p,Q), which is a main method for solving SDP.
Then the algorithm will repeatedly solveleast squaresproblems withm linear constraints
and (n+1)n

2 unknowns. Suppose that the least squares procedure is called k times. Then, the
total complexity isO(kn2+2c). So, if n becomes 2n, the time consumed will increase by at
least 16 times. So reducingQ’s size is a key point to improve such algorithms.

3 Convex cover polynomial

We give a short description of Newton polytope in Section 3.1. In Section 3.2, we first prove
a necessary condition (Theorem 1) for a polynomial to be SOS based on the properties of
Newton polytope. Then a new concept,convex cover polynomial(Definition 3), is intro-
duced, which leads to the main result (Theorem 2) of this section, that is, a convex cover
polynomial is SOS if and only if some smaller polynomials areSOS.
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3.1 Newton polytope

Newton polytopeis a classic tool. We only introduce some necessary notations here. For
formal definitions of the concepts, please see for example [36]. A polytopeis a subset of
Rn that is the convex hull of a finite set of points. A simple example is the convex hull of
{(0,0,0),(0,1,0),(0,0,1),(0,1,1),(1,0,0),(1,1,0),(1,0,1)(1,1,1)} in R3; this is the reg-
ular 3-cube. Ad-dimensional polytope has manyfaces, which are again polytopes of various
dimensions from 0 tod−1. The 0-dimensional faces are calledvertices, the 1-dimensional
faces are callededges, and the(d−1)-dimensional faces are calledfacets. For instance, the
cube has 8 vertices, 12 edges, and 6 facets. Ifd = 2 then the edges coincide with the facets.
A 2-dimensional polytope is called apolygon.

For a given polynomialp, each termxα = xa1
1 · · ·xan

n appearing inp corresponds to an
integer lattice point(a1, . . . ,an) in Rn. The convex hull of all these points (called thesupport
of p) is defined asNewton polytopeof p and is denoted by

N(p)
def
=conv(S(p)).

Definition 2 For a polynomialp = ∑α cαxα and a setT ⊆ Rn, denote byProj(p,T) the
polynomial obtained by deleting the termscαxα of p whereα 6∈ (T ∩Zn

+).

Example 1Let p=2x4
1+4x4

2−3x2
3+1 andT = {(0,0,0),(1,0,0),(4,0,0)}, thenProj(p,T)

= 2x4
1+1.

3.2 Convex cover polynomial

We guess that Theorem 1 in this section should be a known result. However, we do not find
a proof in the literature. So, we prove it here. Since the results of the following Lemma 1 are
either obvious or known, we omit the proofs.

Lemma 1 • For any two polynomials f,g, two real numbers k1,k2 and any T⊆ Zn
+,

Proj(k1 f +k2g,T) = k1Proj( f ,T)+k2Proj(g,T).

• For any T⊆ Zn
+ and any k∈ R\{0}, we have k( 1

kT ∩Zn
+)⊆ T.

• Suppose N is an n-dimensional polytope. For any face F of N, there is an(n− 1)-
dimensional hyperplaneπ(y) = 0 such thatπ(α) = 0 for anyα ∈ F andπ(β ) > 0 for
anyβ ∈ N\F.

• Supposeπ(y) = 0 is a hyperplane and F⊆ Zn
+ ∩ (π(y) = 0). For any polynomial p=

∑α cαxα in n variables, we have

S(Proj(p,F))⊆ S(Proj(p,S(p)∩ (π(y) = 0))).

• If f ,g are two polynomials andS( f )∩S(g) = /0, thenS( f +g) = S( f )∪S(g).
• Let T1 = S( f ) and T2 = S(g) for two polynomials f and g. ThenS( f g) ⊆ T1+T2, where

T1+T2 is theMinkowski sumof T1 and T2.

Lemma 2 Supposeπ(y) = 0 is a hyperplane, T⊆ Zn
+ and f,g are two n-variate polyno-

mials. Let T1 = S( f ),T2 = S(g). If T ⊆ {y | π(y) = 0},2T1 ⊆ {y | π(y)≥ 0} and2T2 ⊆ {y |
π(y)> 0}, thenProj( f g,T) = 0.
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Proof By Lemma 1,S( f g)⊆ T1+T2. By the definition of Minkowski sum, for anyα ∈ T1+
T2 there existα1 ∈ T1,α2 ∈ T2 such thatα = α1+α2. Becauseπ(2α1)≥ 0 andπ(2α2) >
0, π(α) = π(α1 + α2) =

1
2(π(2α1) + π(2α2)) > 0. SoT1 +T2 ⊆ {y | π(y) > 0}. Thus,

S( f g)∩ (π(y) = 0) = /0 which impliesProj( f g,T)) = 0 by Lemma 1 andT ⊆ (π(y) = 0).
⊓⊔

Lemma 3 Suppose p= ∑s
i=1 q2

i and F is a face ofN(p). Let Fz = F ∩Zn
+,Fz

2
= 1

2F ∩

Zn
+,q

′
i = Proj(qi ,Fz

2
), q′′i = qi −q′i ,T

′
i = S(q′i) and T′′i = S(q′′i ), then there is a hyperplane

π(y) = 0 such that

(1) F ⊆ {y | π(y) = 0},
(2) 2T ′

i ⊆ {y | π(y) = 0}, and
(3) 2T ′′

i ⊆ {y | π(y)> 0}.

Proof By Lemma 1, there is a hyperplaneπ(y) = 0 such that∀α ∈ F,π(α) = 0 and∀α ∈
N(p) \F,π(α) > 0. We prove thatπ is a hyperplane which satisfies the requirement. First,
becauseT ′

i ⊆ Fz
2
, by Lemma 1, 2T ′

i ⊆ 2Fz
2
⊆ F and thus 2T ′

i ⊆ {y | π(y) = 0}.
Second, it is obvious thatT ′′

i ∩Fz
2
= /0,T ′

i ∩T ′′
i = /0 andT ′

i ∪T ′′
i =Ti whereTi = S(qi). By

Equation (4), we haveTi ⊆
1
2N(p) and 2Ti ⊆ N(p). Thus 2T ′′

i ⊆ 2Ti ⊆ N(p)⊆ {y | π(y)≥ 0}.
If there is anα ∈ T ′′

i such thatπ(2α) = 0, thenα ∈ Fz
2
, which contradicts withT ′′

i ∩Fz
2
= /0.

Therefore, 2T ′′
i ⊆ {y | π(y)> 0}. ⊓⊔

Using the above lemmas, we prove Theorem 1 now.

Theorem 1 If p is SOS, thenProj(p,F) is SOS for every face F ofN(p).

Proof Supposep = ∑s
i=1q2

i andF is a face ofN(p). Let Fz = F ∩Zn
+,q

′
i = Proj(qi ,

1
2Fz)

andq′′i = qi −q′i . Thenp= ∑s
i=1(q

′
i +q′′i )

2 = ∑s
i=1q′2i +2∑s

i=1q′iq
′′
i +∑s

i=1q′′2i . By Lemma
1,Proj(p,Fz) = ∑s

i=1Proj(q
′2
i ,Fz)+2∑s

i=1Proj(q
′
iq

′′
i ,Fz)+∑s

i=1Proj(q
′′2
i ,Fz). By Lemma

3, there is a hyperplaneπ(y) = 0 such that (1)∀α ∈ F,π(α) = 0; (2)∀α ∈ N(p)\F,π(α)>
0; (3) for anyq′i ,2S(q

′
i) ⊆ {y | π(y) = 0}; and (4) 2S(q′′i ) ⊆ {y | π(y) > 0}. By Lemma

2, Proj(q′iq
′′
i ,Fz) = 0 andProj(q′′2i ,Fz) = 0. Therefore, the intersect between support of

2∑s
i=1q′iq

′′
i +∑s

i=1q′′2i andFz is an emptyset,i.e.,Proj(p,F)= Proj(p,Fz)=∑s
i=1Proj(q

′2
i ,Fz)

= ∑s
i=1(q

′
i)

2. The last equality holds becauseS(q′2i )⊆ Fz. ⊓⊔

Remark 1Theorem 1 is strongly related to Theorem 3.6 of [29], which states that ifp is
positive semidefinite, thenProj(p,F) is positive semidefinite for every faceF of N(p).

Theorem 1 proposes a necessary condition for a polynomial tobe SOS.

Example 2 p= x4
1+x4

2+x4
3−1.

Obviously, the polynomial in Example 2 is not SOS (e.g., p(0,0,0) =−1). By Theorem
1, one necessary condition forp to be SOS is thatProj(p,{(0,0,0)}) =−1 should be SOS
which can be efficiently checked. On the other hand, if we use Newton polytope based
method to constructQ in (7), the size ofQ is

(3+2
2

)

= 10. The number of constraints is
(3+4

4

)

= 35.

Definition 3 (Convex cover polynomial) A polynomial p is said to be aconvex cover
polynomial if there exist some pairwise disjoint facesFi(i = 1, . . . ,u) of N(p) such that
S(p)⊆∪u

i=1Fi .
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It is easy to get the following proposition by the definition of convex cover polynomial.

Proposition 1 The support of a convex cover polynomial does not intersect the interior of
its Newton polytope.

The following theorem is a direct corollary of Theorem 1.

Theorem 2 Suppose p is a convex cover polynomial and Fi(i = 1, . . .u) are the faces satis-
fying the condition of Definition 3. Let pi = Proj(p,Fi)(i = 1, . . .u). Then p is SOS if and
only if pi is SOS for i= 1, . . .u.

We use the following example to demonstrate the benefit of Theorem 2.

Example 3 p= x6
1+x6

2+x4
1−2x2

1x2
2+x4

2.

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

7

x4
1 x6

1

x6
2

x4
2

x2
1x2

2

Fig. 1 Newton polytope of Example 3.

For Example 3,S(p)= {(6,0),(0,6),(4,0),(2,2),(0,4)}. LetF1 = {(6,0)},F2 = {(0,6)},
F3 = conv({(4,0),(2,2),(0,4)}) (shown in Fig. 1) be three faces ofN(p). BecauseF1,F2,F3

satisfy the condition of Definition 3,p is a convex cover polynomial. Letpi = Proj(p,Fi)
for i = 1,2,3. Then, by Theorem 2, provingp is SOS is equivalent to provingpi is SOS
for i = 1,2,3. Therefore, the original problem is divided into three simpler sub-problems.
When using Newton polytope based method to provep is SOS, the size ofQ is 7 and the
number of constraints is 18. However, forp1, p2, p3, the corresponding data are(1,1), (1,1)
and(3,5), respectively.

Dividing the original problem into simpler sub-problems can improve not only the effi-
ciency but also the reliability of the results. As indicatedin [6], when the scale of problem
is large, the numerical error of SDP solver may lead to a result which looks like “reliable”
by the output data while it is indeed unreliable.

4 Split polynomial

Another new concept,split polynomial, is introduced in this section. Every convex cover
polynomial is a split polynomial. The main results of this section are Theorem 3 (analogue of
Theorem 1) and Theorem 4 (analogue of Theorem 2), which allowone to block-diagonalize
a wider class of SDPs.
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Definition 4 For a setQ of vectors and anyα ∈ Q+Q, defineϕQ(α) = {β ∈ Q | ∃γ ∈
Q,β + γ = α}.

Definition 5 SupposeQ satisfiesSOSS(p,Q) (see Definition 1) for a polynomialp. Define
V (p,Q) to be the set{α ∈ Q | ϕQ(2α) = {α}}.

Definition 6 SupposeQ satisfiesSOSS(p,Q) for a polynomialp. For anyα ∈Q+Q, define

ψQ(α) =

{

{1
2α} if ϕQ(α) = {1

2α},
⋃

β ,γ∈Q,β 6=γ,β+γ=α (ψQ(2β )∪ψQ(2γ)) otherwise.

If α /∈ Q+Q, defineψQ(α) = /0.

SinceψQ(α) is a subset ofV (p,Q) and obviouslyV (p,Q) is a finite set, Definition 6
makes sense.

Lemma 4 SupposeQ satisfies SOSS(p,Q) for a polynomial p and F is a face ofconv(Q+
Q). Let T = {α | α ∈ V (p,Q),2α ∈ F},Q1 = (Q+Q) ∩ F. ThenψQ(α) ⊆ T for any
α ∈ Q1.

Proof For anyβ ∈ ψQ(α), by the definition ofψQ(α), there areβ 1, · · · ,β k,γ1, · · · ,γk ∈ Q
such thatβ i 6= γ i for i = 1, · · · ,k−1,α = β 1+γ1,2β 1 = β 2+γ2, · · · ,2β k−1 = β k+γk,β k =
γk = β andψQ(2β ) = {β}.

We prove 2β i ∈ F by induction. Becauseα = β 1+ γ1 andα ∈ F, we have 2β 1 ∈ F.
Assume that 2β i ∈ F for i < m. If i = m, since 2β m−1 = β m+ γm and 2β m−1 ∈ F, we have
2β m ∈ F. Then 2β = 2β k ∈ F and hence,β ∈ T. ⊓⊔

Definition 7 SupposeQ satisfiesSOSS(p,Q) for a polynomialp andT ⊆ V (p,Q). Define
σ(T) = {γ | γ ∈ Q,ψQ(2γ)⊆ T}.

Lemma 5 Suppose p is SOS, say p= ∑s
i=1h2

i , andS(hi) ⊆ Q. Then for any T⊆ V (p,Q)
and anyβ ∈ Q+Q, if ψQ(β )⊆ T, thenβ 6∈ S((p−∑s

i=1Proj(hi ,σ(T))2)).

Proof For anyγ1,γ2 ∈ Q with γ1 + γ2 = β , we haveψQ(2γ1) ⊆ ψQ(β ) andψQ(2γ2) ⊆
ψQ(β ) by the definition ofψQ. SinceψQ(β ) ⊆ T, we haveγ1,γ2 ∈ σ(T) by the definition
of σ(T). It is not difficult to see that the coefficient of the termxβ in ∑s

i=1Proj(hi ,σ(T))2

equals that of the termxβ in ∑s
i=1h2

i . Thus,xβ does not appear inp−∑s
i=1Proj(hi ,σ(T))2

sincep−∑s
i=1h2

i = 0. ⊓⊔

Theorem 3 Assume p=∑cαxα is SOS,Q satisfies SOSS(p,Q) and T⊆V (p,Q). If ψQ(α+
β )⊆ T for anyα ,β ∈ σ(T), then p1 = ∑α∈S(p),ψQ(α)⊆T cαxα is SOS.

Proof Supposep= ∑s
i=1 h2

i andp′1 = p− p1. Seth′i = Proj(hi ,σ(T)) andh′′i = hi −h′i , then
p= ∑s

i=1(h
′
i)

2+2∑s
i=1h′ih

′′
i +∑s

i=1(h
′′
i )

2. By Lemma 5,β 6∈ S(p−∑s
i=1(h

′
i)

2) for anyβ ∈
S(p1), i.e., S(p1)∩S(p−∑s

i=1(h
′
i)

2) = /0. SinceψQ(α +β )⊆ T for anyα ,β ∈ σ(T), by the
definition ofσ(T), ψQ(β ) ⊆ T for anyβ ∈ S(∑s

i=1(h
′
i)

2). Thus,S(p′1)∩ S(∑s
i=1(h

′
i)

2) = /0.
Summarizing the above, we have

1. p1+ p′1 = ∑s
i=1(h

′
i)

2+(p−∑s
i=1(h

′
i)

2),
2. S(p1)∩S(p−∑s

i=1(h
′
i)

2) = /0, and
3. S(p′1)∩S(∑s

i=1(h
′
i)

2) = /0.

Therefore,p1 = ∑s
i=1(h

′
i)

2. ⊓⊔
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Definition 8 (Split polynomial) Let Q be a finite set satisfyingSOSS(p,Q) for a polyno-
mial p. If there exist some pairwise disjoint nonempty subsetsTi(i = 1, . . . ,u) of V (p,Q)
such that

1. ψQ(α +β )⊆ Ti for anyα ,β ∈ σ(Ti)(see Definition 7) for anyi = 1, · · · ,u, and
2. for anyα ∈ S(p), there exist exact oneTi such thatψQ(α)⊆ Ti ,

thenp is said to be asplit polynomialwith respect toT1, · · · ,Tu.

Theorem 4 Suppose p= ∑cαxα is a split polynomial with respect to T1, · · · ,Tu, then p is
SOS if and only if each pi = ∑α∈S(p),ψQ(α)⊆Ti

cαxα is SOS for i= 1, · · · ,u.

Proof Necessity is a direct corollary of Theorem 3. For sufficiency, note that the second
condition of Definition 8 guarantees thatS(pi)∩ S(p j) = /0 for any i 6= j and p= ∑u

i=1 pi .
⊓⊔

Now, we give the relation between convex cover polynomial and split polynomial, which
indicates that split polynomial is a wider class of polynomials.

Theorem 5 If p is a convex cover polynomial, then p is a split polynomial. The converse is
not true.

Proof If p is a convex cover polynomial then there exist pairwise disjoint facesFi(i =
1, . . . ,u) of N(p) such thatS(p) ⊆ ∪u

i=1Fi . Suppose conv(Q+Q) = N(p) and Q satisfies
SOSS(p,Q). Let Ti = {α ∈ V (p,Q) | 2α ∈ Fi}, i = 1, · · · ,u. We prove thatp is a split poly-
nomial with respect toT1, · · · ,Tu.

We claim thatσ(Tj ) = {γ ∈Q | 2γ ∈ Fj} for j = 1, · · · ,u. If there existγ0 ∈ σ(Tj ),2γ0 6∈
Fj , asFj is a face ofN(p), there exist a linear functionπ such thatπ(2γ0) > π(α) for any
α ∈ Fj . By the Definition ofψQ(2γ0), there existsβ 0 ∈ ψQ(2γ0) ⊆ Tj such thatπ(2β 0) ≥
π(2γ0). This contradicts with 2β 0 ∈ Fj . Thus,σ(Tj )⊆ {γ ∈ Q | 2γ ∈ Fj}.

We then prove that{γ ∈ Q | 2γ ∈ Fj} ⊆ σ(Tj ). Assume that there existsγ0 ∈ Q with
2γ0 ∈ Fj such thatγ0 6∈ σ(Tj ). Then there existsβ 0 ∈ ψQ(2γ0) such that 2β 0 6∈ Fj . Because
Fj is a face ofN(p), it is not difficult to see that ifα1 +α2 ∈ Fj whereα1,α2 ∈ Q, then
2α1 ∈ Fj ,2α2 ∈ Fj . Therefore, 2β ∈ Fj for anyβ ∈ ψQ(2γ0), which contradicts with 2β 0 6∈
Fj .

Now we haveσ(Tj ) = {γ ∈ Q | 2γ ∈ Fj}. By Lemma 4,ψQ(α +β )⊆ Tj for anyα ,β ∈
σ(Tj ). SinceS(p) ⊆ ∪u

i=1Fi andFi are pairwise disjoint, there exists exact oneTi such that
ψQ(α)⊆ Ti for anyα ∈ S(p). As a result,p is a split polynomial with respect toT1, · · · ,Tu.

Note that the Motzkin polynomial in Example 7 is a split polynomial but not a con-
vex cover polynomial sincex2

1x2
2 lies in the interior ofN(p) (see Figure 3). That means the

converse is not true.⊓⊔

Remark 2One may wonder under what condition a split polynomial is a convex cover poly-
nomial. A reasonable conjecture may be as this:

Let Q be a finite set satisfying SOSS(p,Q) with conv(Q+Q) = N(p) for a polynomial
p. If V (p,Q) contains only vertices ofconv(Q), then p is a split polynomial if and only if p
is a convex convex polynomial.

Unfortunately, the conjecture is not true. For example, let

p= x4
1x2

2x2
3+x2

1x4
2x2

3−2x2
1x2

2x2
3+x2

3+x2
1x2

2+x2
1x2

2x4
3,
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then
Q = {(2,1,1),(1,2,1),(1,1,1),(0,0,1),(1,1,0),(1,1,2)},

V (p,Q) = {(2,1,1),(1,2,1),(0,0,1),(1,1,0),(1,1,2)}.

Obviously,V (p,Q) contains only vertices of conv(Q). SetT1= {(2,1,1),(1,2,1),(0,0,1)},
T2 = {(1,1,0),(1,1,2)}, then it is easy to checkp is a split polynomial with respect toT1,T2.
But p is not a convex cover polynomial by Proposition 1 becausex2

1x2
2x2

3 lies in the interior
of N(p).

The example indicates that the relation between split polynomial and convex cover poly-
nomial may be complicated. We do not find a good sufficient condition for a split polynomial
to be a convex cover polynomial.

5 Algorithm

Existing SDP based SOS solvers consists of the following twomain steps: computing a set
Q which satisfiesSOSS(p,Q) for a givenp; solving the feasibility problem of (7) related to
Q by SDP solvers. In this section, we give a new algorithm (Algorithm 2) for SOS decompo-
sition. The algorithm employs the following strategies. First, we give a different technique
for computing an initial setQ which satisfiesSOSS(p,Q) for a givenp. Second, we check
one necessary condition (Lemma 8) to refute quickly some non-SOS polynomials. Third,
if the input polynomial is detected to be a split polynomial,we reduce the problem into
several smaller sub-problems based on Theorem 4. This section is dedicated to describe the
strategies in detail and the performance of the algorithm isreported in the next section.

We first describe the new technique for computing an initial setQ. The following lemma
is a direct corollary of the result in [28] (see also Eq. (4) inSection 2).

Lemma 6 Suppose p is a polynomial andγ is a given vector. Let c= maxα∈ 1
2Pe γTα .

For any Q which satisfies SOSS(p,Q), after deleting everyβ in Q such thatγTβ > c,
SOSS(p,Q) still holds.

By Lemma 6, it is easy to give a method for computing an initialsetQ which satisfies
SOSS(p,Q) for a givenp. That is, first choose a coarse setQ which satisfiesSOSS(p,Q),
e.g., the set defined be Eq. (5); then prune the superfluous elements in Q by choosingran-
domlyγ . This is indeed a common method in existing work [21,14,32].

We employ a different strategy to construct an initialQ satisfyingSOSS(p,Q). The
procedure is as follows. For a given polynomialp, firstly, we compute the set12Pe (recall
thatPe= P∩ (2Zn

+) whereP is the support ofp) and an over approximation setQ of integer
points in conv( 1

2Pe). Secondly, letB be the matrix whose columns are all the vectors of1
2Pe.

We choose one by one the hyperplanes whose normal directionsare the eigenvectors ofBBT

to delete superfluous lattice points inQ by Lemma 6.

Definition 9 We denote byPCAG(p) the above procedure to compute an initialQ satisfying
SOSS(p,Q) for a given polynomialp.

We cannot prove the above strategy is better in general than the random one. However,
inspired by principal component analysis (PCA), we believein many cases the shape of
conv( 1

2Pe) depends on eigenvectors ofBBT . On a group of randomly generated examples
(see Example 4), we show that the size ofQ obtained by using random hyperplanes to delete
superfluous lattice points are 10% greater than that of the output of our algorithmPCAG (see
Figure 2).



Smaller SDP for SOS Decomposition 11

Fig. 2 Mean ratio of #(Q) between random algorithm andPCAG(p) on every random groupSQR(k,n,d,t).
Red color corresponds tok= 4,n= 5,t = 3 and green color corresponds tok= 5,n= 7,t = 4. For any given
(k,n,d,t), we generate 10 polynomials randomly.

Example 4 SQR(k,n,d, t) = g2
1+ · · ·+g2

k where deg(gi) = d, #(S(gi)) = t, #(var(gi)) = n.

Lemma 7 [11,33] For a polynomial p and a setQ which satisfy SOSS(p,Q), after delet-
ing every elementα in Q which satisfies that2α 6∈ Pe and ϕQ(2α) = {α}, the relation
SOSS(p,Q) still holds.

Definition 10 We denote byEXACTG(p) the procedure which deletes superfluous elements
of the output ofPCAG(p) based on Lemma 7.

The following lemma is a simple but very useful necessary condition which can detect
non-SOS polynomials efficiently in many cases.

Lemma 8 SupposeQ satisfies SOSS(p,Q) for a polynomial p. If p is SOS, thenα ∈ Q+Q
for anyα ∈ S(p).

Proof If p is SOS, sincep andQ satisfy relationSOSS(p,Q), there areq1, . . . ,qs such that
p= ∑s

i=1q2
i andS(qi)⊆ Q. Hence, for every monomialxα of p there areqi , xβ ,xγ such that

xβ ,xγ are monomials ofqi andxα = xβ xγ . Therefore,α ∈ Q+Q for anyα ∈ S(p). ⊓⊔

Example 5[4] Let q(x,y,z) = 1+x2y2+y2z2+z2x2−4xyz. It is easy to know that

1
2Pe = {(0,0,0),(1,1,0),(1,0,1),(0,1,1)},
Q0 = {(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1)},

andSOSS(q,Q0) holds. By Lemma 7, after deleting(1,0,0),(0,1,0),(0,0,1) from Q0, we
haveQ = EXACTG(q) = {(0,0,0),(1,1,0),(1,0,1),(0,1,1)} andSOSS(q,Q) holds. Since
(1,1,1) /∈ Q+Q, by Lemma 8,p is not SOS.

For an input polynomialp, by settingQ = EXACTG(p), we obtain a setQ satisfying
SOSS(p,Q). Now, we check whether or notp is a split polynomial related to thisQ. And if
it is, the original problem can be reduced to several smallersub-problems. The details are
described formally as Algorithm 1 and Algorithm 2.
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Algorithm 1. MonomialRelation
Input : p∈Q[x]
Output : The mapψQ defined by Definition 6

1 Q = EXACTG(p);
2 Let C be a map fromQ to { true, false};
3 for α ∈ Q do C(α)=false;
4 Let V (p,Q) be the set defined by Definition 5;
5 Initialize ψQ(α) = /0 for anyα ∈ Zn

+;
6 for α ∈ V (p,Q) do
7 ψQ(2α) = {α};
8 C(α)=true;

9 Let run=true;
10 while run do
11 run=false;
12 for α ∈ Q do
13 if C(α) then
14 C(α)=false;
15 for β ∈ Q do
16 if ψQ(2α) 6⊆ ψQ(α +β ) then
17 ψQ(α +β ) = ψQ(α +β )∪ψQ(2α);
18 if α +β ∈ 2Zn

+ then
19 run=true;C((α +β )/2)=true;

20 return ψQ;

Algorithm 2. QuickSOS

Input : p∈Q[x]
Output : false that meansp is not SOS; or{q1, . . . ,qs} where p,qi satisfy Eq. (2)

numerically
1 Let ψQ be the output ofMonomialRelation(p);
2 for α ∈ S(p) do if α 6∈ Q+Q then return false; // Lemma 8
3 for α ∈ S(p) do
4 if p is a split polynomial with respect toψQ(α) then
5 Let p1, p2 be as in Theorem 4;
6 Let R1 be the output ofQuickSOS(p1);
7 Let R2 be the output ofQuickSOS(p2);
8 if R1 or R2 is falsethen return false;
9 return R1∪R2;

10 return SOS(p,Q); // Notation 1

Example 6We illustrateQuickSOS on the polynomialp in Example 3. First,

S(p) = {(0,6),(6,0),(0,4),(4,0),(2,2)},
Q = {(0,2),(0,3),(1,1),(1,2),(2,0),(2,1),(3,0)},

V (p,Q) = {(0,2),(0,3),(2,0),(3,0)}.

Second,ψQ((0,4))= {(0,2)}, ψQ((0,6))= {(0,3)}, ψQ((4,0))= {(2,0)}, ψQ((6,0))=
{(3,0)}, ψQ((2,2)) = {(0,2),(2,0)}. SetT = ψQ((2,2)) = {(2,0),(0,2)}, it is easy to see
that p is a split polynomial with respect toT andp1 = x4

1−2x2
1x2

2+x4
2, p2 = x6

1+x6
2.
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Third, similarly,QuickSOS(p2) dividesp2 into p21= x6
1, p22= x6

2. Finally,QuickSOS(p)
outputs “1.0000∗x4

2+1.0000∗x6
2 −2.0000∗x2

1 ∗x2
2+1.0000∗x4

1 +1.0000∗x6
1 = (−1.00∗

x2
2+1.00∗x2

1)
2+(1.00∗x3

2)
2+(1.00∗x3

1)
2”.

Example 7 (Motzkin polynomial) f= x4
1x2

2+x2
1x4

2−3x2
1x2

2+1.
BecauseS( f ) = {(4,2),(2,2),(2,4),(0,0)} andQ = {(0,0),(1,1),(2,1),(1,2)},

MonomialRelation( f ) returnsψQ((4,2)) = {(2,1)}, ψQ((2,4)) = {(2,4)}, ψQ((2,2)) =
{(1,1)}, ψQ((0,0)) = {(0,0)}. ThenQuickSOS( f ) will return false when it reaches line 8
for α = (2,2).

Remark 3Let Q = EXACTG(p). By Definition 8, to determine whetherp is a split polyno-
mial, one should check all the non-empty subsets ofV (p,Q). However, this approach is
obviously inefficient. Therefore, in Algorithm 2 we only check whetherp is a split polyno-
mial with respect toψQ(α) for someα ∈ S(p). Although this incomplete check may miss
some split polynomials, as is shown in the next section, it iseffective in many cases.

1

2

3

4

1 2 3 4

1

2

3

4

1

x4
1x2

2

x2
1x4

2

x2
1x2

2

Fig. 3 Newton polytope of Ex-
ample 7.

1

2

1 2

1

2

1

x2
1x2

x1x2
2

x1x2

Fig. 4 Q0 of Example 7.

1

2

1 2

1

2

1

x2
1x2

x1x2
2

x1x2

Fig. 5 The output ofEXACTG for
Example 7.

6 Experiments

The above algorithms have been implemented as aC++ program,QuickSOS. Compilation
has been done using g++ version 4.6.3 with optimization flags-O2. We useSingular [7] to
read polynomials from files or standard input and useCsdp [3] as SDP solver. The program
has been tested on many benchmarks in the literature and on lots of examples generated
randomly.

We report in this section corresponding experimental data of our program and some
well-known SOS solvers, such asYALMIP, SOSTOOLS, SOSOPT. The matlab version is R2011b
andSOSTOOLS’s version is 3.00. BothYALMIP andSOSOPT are the latest release. The SDP
solver ofYALMIP, SOSTOOLS andSOSOPT is SeDuMi 1.3.

All the numerical examples listed were computed on a 64-bit Intel(R) Core(TM) i5 CPU
650 @ 3.20GHz with 4GB RAM memory and Ubuntu 12.04 GNU/Linux.

6.1 Examples

In this subsection, we define four classes of examples. The first class of examples are mod-
ified from [22], which are positive but not necessarily SOS. The second one is from [8,10].
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The other two classes are sparse polynomials randomly generated by Maple’s command
randpoly where the third class of polynomials are constructed in the form of SOS.

The number of elements in a setQ is denoted by #(Q), deg(p) denotes the total degree
of a polynomialp, var(p) denotes the set of variables occuring in a polynomialp.

6.1.1 Bm

Bm= (∑3m+2
i=1 x2

i )
2−2∑3m+2

i=1 x2
i ∑m

j=1x2
i+3 j+1, wherex3m+2+r = xr . Bm is modified from [22].

For anym∈ Z+, Bm is homogeneous and is a positive polynomial.

6.1.2 pi, j

Monotone Column Permanent (MCP) Conjecture was given in [8]. Whenn= 4, this Con-
jecture is equivalent to decide whetherp12, p13, p22, p23 are positive polynomials and this
case has been studied in [10].1

6.1.3 SQR(k,n,d, t) (see Example 4)

SQR(k,n,d, t) = g2
1+ · · ·+g2

k where deg(gi) = d, #(S(gi)) = t, #(var(gi)) = n.

6.1.4 RN(n,d)

RN(n,d) = g2
1+g2 ∑n

i=1xi +100g2
3 +100, where deg(g1) = d,deg(g2) = d−3,deg(g3) =

d− 2,var(gi) = {x1, . . . ,xn}. For any given(n,d) wheren ∈ {5,10} and 4≤ d ≤ 12, we
generate 10 corresponding polynomials.

6.2 Results

If we only compare the timings of different tools, the comparison is somehow unfair since
the implementation languages are different. Since the mainidea of this paper is to compute
smaller setQ for given polynomialp which make relationSOSS(p,Q) hold, we also report
the comparison of the size ofQ computed by different tools. It is reasonable to believe that
the total time of computing SOS decomposition becomes shorter as the size ofQ getting
smaller if we use the same SDP solver and the cost of computingsmallerQ is not expen-
sive. In fact, for all the following examples exceptBm, the time taken in computingQ by
QuickSOS is less than 0.1 seconds.

We explain the notations in the following tables. Each(b,s) for QuickSOS’s #(Q) means
QuickSOS divides the polynomial intob polynomialsp1, . . . , pb ands is the largest number
of #(Qi) corresponding topi . The “—” denotes that there is no corresponding output.

The results onBm by these tools are listed in Table 1. The polynomialsB1 andB2 are
SOS, the others are not. All the above tools exceptSOSOPT give correct2 outputs onBm.
AlthoughBi is not a sparse polynomial, our algorithm can also reduce #(Q).When the size
of polynomial is large,SOSOPT takes so much time to solve it. This phenomenon also occurs
in the following examples. For convenience, we do not list the results ofSOSOPT in the
following.



Smaller SDP for SOS Decomposition 15

Table 1 The results onBm.

#(Q) time(s)
Tools B1 B2 B3 B4 B5 B1 B2 B3 B4 B5

QuickSOS (5,1) (1,33) (1,55) (1,94) (1,150) 0.00 0.15 0.62 6.79 73.27
YALMIP 15 36 66 105 153 0.24 0.53 0.72 1.26 167.21
SOSTOOLS 15 36 66 105 153 0.30 0.42 2.09 21.32 163.05
SOSOPT 15 36 — — — 0.25 3.01 error error error

Table 2 The results onpi, j .

#(Q) time(s)
Tools p1,2 p1,3 p2,2 p2,3 p1,2 p1,3 p2,2 p2,3
QuickSOS (1,77) (5,15) (1,62) (6,39) 1.98 0.01 1.25 0.19
YALMIP 77 29 62 53 4.93 1.81 4.97 4.10
SOSTOOLS wrong wrong 62 wrong wrong wrong 3.77 wrong

The results onpi, j by those tools are listed in Table 2.
Table 3 lists the results on examplesSQR(see Example 4). We randomly generate 10

polynomials for every(k,n,d, t). All the outputs ofQuickSOS andYALMIP are correct. Some
data corresponding toSOSTOOLS are “wrong”, which means thatSOSTOOLS’s output is wrong
or there is an error occurred during its execution. For many examples ofSQR, QuickSOS can
divide the original polynomial into some simpler polynomials. By the complexity analysis
in Section 2, this division can greatly improve efficiency.

We demonstrate this fact by one polynomial of groupSQR(4,5,10,3).

Example 8 p=(−91w4x2yz3−41k4xy2z2−14kwx3y2z)2+(−40kx7yz+16w4xy+65w2y4)2+
(11kx2y6z−34k5x3z−18kyz5)2+(−26k4w3xyz−35xy6z3−57kw2x2z3)2.

Remark 4As explained before,SQRis constructed in the form of SOS. But the polynomial
is expanded before input to the tools.

In Example 8,QuickSOS dividesp into four simpler polynomialsp1, p2, p3, p4. For each
simpler polynomialpi , QuickSOS constructs a setQi whose size is 3 andSOSS(pi ,Qi) holds.
YALMIP constructs oneQ for p whose size is 97 andSOSTOOLS also constructs oneQ for p
whose size is 104. If the time consumed by constructingQ is short compared with total
time and assume these three tools use the same SDP solver, theratio of total time of three
tools is 4(32+2c) : 972+2c : 1042+2c where 1≤ c ≤ 2. In fact, in our experiments, the total
time of these three tools on this example is 0.02 seconds, 23.91 seconds and 48.47 seconds,
respectively.

In addition to efficiency, correction is also important. Figure 6 shows the number of
“wrong” of SOSTOOLS on every group of random polynomialsSQR. As explained above,
“wrong” means thatSOSTOOLS’s output is wrong or there is an error occurred during its
execution. Those “wrong”s are caused by numerical instability. Therefore, the number of
“wrong” increases with the increase of the problem’s size.

The above experiments are all about polynomials which are SOS. Figure 7 is about
timings for refuting non-SOS polynomials.For all 180 RN polynomials,QuickSOS takes
1.07 seconds to refute all of them.And there are polynomials in these 180 polynomials on

1 The polynomials can be found athttp://www4.ncsu.edu/~kaltofen/software/mcp_conj_4/.
2 The meaning of correction is that the output is right with respect to a certain numerical error.

http://www4.ncsu.edu/~kaltofen/software/mcp_conj_4/
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Table 3 #(Q) of random polynomialsSQR(k,n,d,t)

Tools 1 2 3 4 5 6 7 8 9 10
#(Q)

k= 4,n= 5,d = 5,t = 3
QuickSOS (2,15) (1,44) (2,11) (4,4) (4,4) (1,25) (4,5) (3,9) (2,8) (2,20)
YALMIP 24 45 33 18 23 36 22 20 15 25
SOSTOOLS 24 45 33 18 23 36 22 20 15 25

k= 4,n= 5,d = 10,t = 3
QuickSOS (4,3) (4,3) (4,10) (3,6) (2,7) (4,4) (4,3) (4,3) (4,3) (2,26)
YALMIP 97 91 42 23 45 40 101 62 95 52
SOSTOOLS 104 94 36 23 48 41 109 70 104 52

k= 5,n= 7,d = 5,t = 4
QuickSOS (4,7) (5,5) (2,13) (5,4) (4,11) (5,4) (4,7) (3,12) (5,5) (4,10)
YALMIP 21 33 24 24 28 24 21 28 42 33
SOSTOOLS wrong 33 24 24 28 24 21 28 42 33

k= 5,n= 7,d = 10,t = 4
QuickSOS (5,4) (5,4) (5,5) (5,5) (5,4) (5,4) (5,4) (5,4) (3,11) (5,4)
YALMIP 45 82 74 59 48 70 79 63 41 57
SOSTOOLS wrong wrong wrong 63 57 76 wrong 67 wrong wrong

k= 5,n= 7,d = 5,t = 6
QuickSOS (1,26) (1,29) (1,28) (1,72) (1,37) (1,30) (1,27) (4,7) (2,14) (1,61)
YALMIP 28 38 28 82 48 31 33 34 34 69
SOSTOOLS wrong 38 28 82 wrong 31 33 wrong 34 wrong

k= 5,n= 7,d = 8,t = 6
QuickSOS (4,7) (4,6) (4,7) (4,7) (4,6) (4,6) (4,6) (2,24) (4,6) (4,6)
YALMIP 38 34 71 121 51 57 75 100 47 29
SOSTOOLS 39 wrong wrong 128 67 67 78 111 52 31

whichSOSTOOLS cannot finish execution within 10000 seconds. So we do not list its output.
Figure 7 is the mean time ofYALMIP for every group of polynomials.

Fig. 6 The number of “wrong” ofSOSTOOLS on every group of random polynomials.
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Fig. 7 Mean running time ofYALMIP on every group ofRNpolynomials.
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