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Smaller SDP for SOS Decomposition

Liyun Dai - Bican Xia

Abstract A popular numerical method to compute SOS (sum of squareslghpmials)
decompositions for polynomials is to transform the probieto semi-definite programming
(SDP) problems and then solve them by SDP solvers. In thisrpaye focus on reducing the
sizes of inputs to SDP solvers to improve the efficiency afidbiity of those SDP based
methods. Two types of polynomials, convex cover polynosald split polynomials, are
defined. A convex cover polynomial or a split polynomial candecomposed into several
smaller sub-polynomials such that the original polynonsaSOS if and only if the sub-
polynomials are all SOS. Thus the original SOS problem caddm®mposed equivalently
into smaller sub-problems. It is proved that convex covdymmmials are split polynomials
and it is quite possible that sparse polynomials with mamatses are split polynomials,
which can be efficiently detected in practice. Some necgs=arditions for polynomials
to be SOS are also given, which can help refute quickly thatgnpmials which have no
SOS representations so that SDP solvers are not calledsindbe. All the new results lead
to a new SDP based method to compute SOS decompositiond; imficoves this kind of
methods by passing smaller inputs to SDP solvers in somes.cBgperiments show that
the number of monomials obtained by our program is often lemtdan that by other SDP
based software, especially for polynomials with many y@daand high degrees. Numerical
results on various tests are reported to show the perforenafn@ur program.
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1 Introduction

Since Hilbert's seventeenth problem was raised in 1900ethas been a lot of work on SOS
(sums of squares of polynomials) decomposition. To namegdlease see for instance [1,
30/34,19,183,23,24] 2].
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From an algorithmic view of point, writing a multivariatelgpoomial as an SOS to prove
it is non-negative is a crucial part of many applications/I33 23, 11, 311] though the number
of non-negative polynomials are much more than the numbsuf of squares polynomi-
als [2]. Numerical algorithms for SOS decompositions candfe big scale problems and
can be used to get exact results [9]. One main numerical mdtheolve SOS decompo-
sition problem is to convert it to SDP problem. Actually, thexist some well-known free
available SOS solvers which are based on SDP solvelis [232]L4,

Obviously, improving SDP solvers’ efficiency can improve #fficiency of SDP based
SOS solvers. For related work on improving SDP solvers’iefficy, please see for example
[20,17] 3%, 41,27,37,16]. It is known that, in the worst ¢alse size of corresponding SDP
problem isO((dfg”)) which is polynomial in botm (the number of variables) andl (the
degree of given polynomial), if the other one is fixed. In pice; the size of corresponding
SDP can be much smaller thﬁ)((dg”)) [15,/40/33]. Although the complexity of SDP is
polynomial ind andn, the actual complexity of SDP based SOS solvers are verydiigie
the size of corresponding matrices of SDP is very large whegiven polynomial has many
variables and high degree. Moreover, the results of egSIDP solvers may be not reliable
for large problems_[6]. In other words, it is important to ued the size of corresponding
SDP problem so as to improve both the efficiency and religtwli SDP based SOS solvers.

In many practical situations, we do not know more propermiethe given polynomial
except that the polynomial is spars&,., the number of monomials is much smaller than
(dj”). So how to take use of the sparsity to reduce the correspgsilie of SDP is a key
part to improve the efficiency of solving SOS decompositioobfem. For related work on
employing sparsity, see for instance [[28/12,39]. For SO&uhposition of a polynomial
on an algebraic variety, a method which may yield smaller $Proposed in[[25] by
combining Grobner basis techniques with Newton polytaaiction.

In this paper, we focus on reducing the sizes of inputs to SENeEs to improve the
efficiency and reliability of those SDP based methods. Tvpes$yof polynomials, convex
cover polynomials and split polynomials, are defined. A exwover polynomial or a split
polynomial can be decomposed into several smaller sumpatials such that the original
polynomial is SOS if and only if the sub-polynomials are @& Thus the original SOS
problem can be decomposed equivalently into smaller sablgms. It is proved that convex
cover polynomials are split polynomials and it is quite plolesthat sparse polynomials
with many variables are split polynomials, which can be &ffidy detected in practice.
Some necessary conditions for polynomials to be SOS aragyadsn, which can help refute
quickly those polynomials which have no SOS representatsonthat SDP solvers are not
called in this case. For example, the well-known Motzkinypolmial [18] and Choi-Lam
example[[4] do not pass the check of the necessary condithdhthe new results lead to
a new SDP based method to compute SOS decompositions, whprbves this kind of
methods by passing smaller inputs to SDP solvers in somes.cBgperiments show that
the number of monomials obtained by our program is often lemtdan that by other SDP
based software, especially for polynomials with many ya@daand high degrees. Numerical
results on various tests are reported to show the perforenafn@ur program.

The rest part of this paper is organized as follows. Setlidestribes some notations
and existing results on SOS, which will be used in this papenvex cover polynomial is
defined and its property is proved based on the convex psopédorresponding Newton
polytopes in Sectiofl]l 3. Split polynomial is defined and itsparty is proved based on
monomial relation analysis in Sectibh 4. Moreover, thetietship between the two types
of polynomials is given also in Secti@h 4. A new algorithm 80S decomposition based
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on those new results is presented in Sediion 5. We report ssperimental data of our
program with comparison to other SDP based tools in Setion 6

2 Preliminary

The symbolsZ,Z..,Q andR denote the set of integers, natural numbers, rational ncsnbe
and real numbers, respectively. If not specified, “polyradsiiin this paper are polynomials
with real coefficients and are often denotediy, f, g, etc.. By “vectors” we mean vectors
in Z1 (or R") which are denoted by, 3,y, etc.. We use,y denote the variable vectors
(X1,---,%n), (Y1,---,¥n), respectively. A hyperplane iR" is denoted byt(x) = 0.

Consider a polynomial

P = 3 cox® (1)

in the variable vectok € R" with a supportP C Z", WhereZ+d:ef{x € Z,x > 0} and real
coefficientscy # 0 (a € P). Denote bys(p) the support of a polynomigd. For example, if
p=1+x2+x3, thenn=2,5(p) = {(0,0),(2,0),(0,3)}. Whenp = 0, defines(p) = 0.

For anyT C R" andk € R, denote bykT the set{ka | a € T}, wherek(ay,...,an) =
(kag,...,ka,), and by conyT) the convex hull ofT. Let P® be the set ofd € P whose
coordinatesry (k= 1,2,...,n) are all even non-negative integeirs,, P = PN (2Z" ).

Obviously, p(x) can be represented in terms of a sum of squares of polynooiafs
short,pis SOS, if and only if there exist polynomiaig(x), . ..,0s(x) € R[x] such that

S
p(x) =3 aGi(x)%. (2)
2

To find boths and polynomialsy (X), . ..,0s(X), it is necessary to estimate and decide the
supports of unknown polynomiatg(x)(i = 1,...,s). Let Q; be an unknown support of the
polynomialg;(x) (i =1,...,s). Then each polynomiaij;(x) is represented as

ai(x) = % Ci,aX? (3)

acQi
with nonzero coefficients; o) (a € Qi, i=1,...,s).
Supposep(x) is of the form [2), therP C conuP®) [28]. The following relation is also

known by [28]:

{a e€Z) :aeQjandcq) #0 for somei € {1,2,...,s}} C %con\,(Pe). (4)

Hence we can confine effective supports of unknown polynisngigx), ...,qgs(X) to
subsets of

1 n
Q0= <§conv(Pe)> nZ". (5)

Definition 1 For a polynomialp, a setQ C Z is said to satisfy the relatioBOS$p, Q)
(SOSS stands for SOS support) if

S
pis SOS = there existi(i=1,...,s) such thatp = Zq,z ands(qg) € Q.
i=
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For every givenp, the problem is how to find a small such thatSOS$p, Q) holds,
i.e,, prune more unnecessary monomials from the decompositigreneral, one can start
from a coarse&), keep eliminating elements @ which does not satisfy some conditions,
and finally obtain a smalle®. Obviously,Q° of (B) satisfiesSOS$p, Q°) for every given
p. If g; satisfies[(R), the relatioBOS$p, Uis(q;)) holds.

There are two possible approaches to constjuct - , gs.

One approach assumes polynomigls - - , gs do not share common support. Then each
polynomial g (x) is represented as Ed.l (3). Unfortunately, it is difficult todfiexactQ; if
we do not know more information gb. But whenp is correlatively sparse, a correlative
sparsity pattern graph is defined [n_[39] to find a certain spatructure inp. And this
structure can be used to decide different rela@edTheoretically, the relaxations ih [39]
are not guaranteed to generate lower bounds with the sanigy@sthose generated by the
original SOS representation.

The other approach assumes that all polynongg(g), ..., gs(x) share a common un-
known supporQ € QP and each polynomia;(x) is represented as

ai(x) = zQ Cia X (6)

Then Eq.[(2) is equivalent to the existence of a positive s#afinite matrixM such that

p(x) = QT (x)MQ(x), (7)

whereQ(x) is a vector of monomials corresponding to the sup@riSo in the view of
practical computing, finding the SOS representation isvedgmt to solving the feasibility
problem of [T). Thus, the original problem can be solved byPSlvers. This approach
was presented in[21,1.1,/14)32]. There are close connadbietiveen SOS polynomials and
positive semi-definite matrices|[5,/26)22, 13].

Notation 1 We denote bgos(p, Q) an algorithm of finding positive semi-definite matrix M
with Q under constraintd (7).

Let us give a rough complexity analysissifs(p, Q). Letn = #(Q), the number of ele-
ments contained iQ. Then the size of matrik in () isnx n. Letmbe the number of differ-
ent elements occurring QQT . Itis easy to know < m< n?. Supposen= O(n°),c< [1,2]
and we usenterior point methodn sos(p,Q), which is a main method for solving SDP.
Then the algorithm will repeatedly soleast squareproblems withm linear constraints
and@ unknowns. Suppose that the least squares procedure id kaitees. Then, the
total complexity isO(kr?+2¢). So, if n becomes 8, the time consumed will increase by at

least 16 times. So reducirfg's size is a key point to improve such algorithms.

3 Convex cover polynomial

We give a short description of Newton polytope in Secfion BBectior 3.2, we first prove
a necessary condition (Theorémn 1) for a polynomial to be S&®d on the properties of
Newton polytope. Then a new concepanvex cover polynomigDefinition[3), is intro-
duced, which leads to the main result (Theotdm 2) of thisi@ecthat is, a convex cover
polynomial is SOS if and only if some smaller polynomials 8f@S.
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3.1 Newton polytope

Newton polytopés a classic tool. We only introduce some necessary notatiene. For
formal definitions of the concepts, please see for examdg 8 polytopeis a subset of
R" that is the convex hull of a finite set of points. A simple ex#arip the convex hull of
{(0,0,0),(0,1,0),(0,0,1),(0,1,1),(1,0,0),(1,1,0),(1,0,1)(1,1,1)} in R3; this is the reg-
ular 3-cube. Ad-dimensional polytope has mafgces which are again polytopes of various
dimensions from O td — 1. The 0-dimensional faces are callegttices the 1-dimensional
faces are calleddgesand the(d — 1)-dimensional faces are calléacets For instance, the
cube has 8 vertices, 12 edges, and 6 facets=f2 then the edges coincide with the facets.
A 2-dimensional polytope is calledmolygon

For a given polynomiap, each termx® = x3* - .- xé& appearing inp corresponds to an
integer lattice pointay, . ..,a,) in R". The convex hull of all these points (called thepport
of p) is defined adNewton polytopef p and is denoted by

N(p)=conv(s(p)).

Definition 2 For a polynomialp = 5, cax® and a sefl C R", denote byProj(p,T) the
polynomial obtained by deleting the termgx® of pwherea ¢ (T NZ"Y).

Example 1Let p=2x}+4x3—3x3+1 andT = {(0,0,0),(1,0,0),(4,0,0)}, thenProj(p,T)
=2 +1.

3.2 Convex cover polynomial

We guess that Theordm 1 in this section should be a knowntréfwwever, we do not find
a proof in the literature. So, we prove it here. Since theltesfithe following Lemmall are
either obvious or known, we omit the proofs.

Lemmal e Forany two polynomials .y, two real numbersikk, and any TC Z",
Proj(kif +kog, T) = kiProj(f,T)+koProj(g,T).

e Forany TC Z and any ke R\ {0}, we have ki T NZ7) C T.

e Suppose N is an n-dimensional polytope. For any face F of dretis an(n— 1)-
dimensional hyperplanga(y) = 0 such thatri(a) = 0 for anya € F and ri(8) > 0O for
anypB € N\ F.

e Supposer(y) = 0is a hyperplane and K- Z" N (ri(y) = 0). For any polynomial p=
S o CaX? in n variables, we have

8(Proj(p,F)) € 8(Proj(p,8(p) N (1(y) = 0))).

e If f g are two polynomials and(f)Ns(g) =0, thens(f +g) = s(f)uUs(g).
e Let Ty =s(f)and b = s(g) for two polynomials f and g. Theg{fg) C T1 + T, where
Ty + T is theMinkowski sumof T; and .

Lemma 2 Supposet(y) = 0is a hyperplane, TC Z and f,g are two n-variate polyno-
mials. Let T = 5(f), T2 = 5(g). fTC{y\ m(y) =0}, 2T1§{y\ m(y) > 0} and2T, C {y |
n(y) > 0}, thel’lPrOJ(fg T)=
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Proof By Lemmd1s(fg) C T1+ T. By the definition of Minkowski sum, for ang € T; +
T, there existr; € Ty, a2 € T such thatr = a1+ a». Becauset(2a1) > 0 andrn(2a3) >
0, m(a) = m(a1+ az) = 3(m(2a1) + m(202)) > 0. SoTy +T» C {y | m(y) > 0}. Thus,
s(fg) N (m(y) = 0) = 0 which impliesProj(fg,T)) =0 by Lemmdll and C (11(y) = 0).
O

Lemma 3 Suppose p= 55, and F is a face ofi(p). Let k= F NZo,Fz = iIFN
7" ,q =Proj(q, Fz), g =g —¢q,T/ =s(q) and T’ = s(q’), then there is a hyperplane
n(y) = 0 such that

(1) FC{y|n(y) =0},
(2) 21 € {y| n(y) =0}, and
(3) 21" C {y | (y) > O}.

Proof By Lemmall, there is a hyperplamgy) = 0 such that/a € F, i(a) = 0 andva €
N(p) \ F, (a) > 0. We prove thatt is a hyperplane which satisfies the requirement. First,
becausd;’ C Fz, by Lemmdl, I/ C 2F; C F and thus Z/ C {y | ri(y) = 0}.

Second, itis obvious thd" N Fz =0, T'NT” =0andT/ UT” =T, whereT; = s(q;). By
Equation[(#), we havg C 3N(p) and Zi C N(p). Thus 2" C 2T CN(p) C {y| (y) > 0}.
If there is anor € Ti" such thatrt(2a) =0, thena € Fz, which contradicts witfT;” NFz = 0.
Therefore, " C {y | m(y) > 0}. O

Using the above lemmas, we prove Theofém 1 now.
Theorem 1 If p is SOS, theRrroj(p,F) is SOS for every face F aif p).

Proof Supposep = 57 ;g7 andF is a face oft(p). Let F, = FNZ",q = Proj(q, %Fz)
andq’ = g —qf. Thenp= 37 ,(qf +0')* = Y210 + 2571 G’ + Y7, % By Lemma

[, Proj(p, ) = 371 Proj(qf*, ) +237 1 Proj(dfq, Fz) + 371 Proj(qf%, F;). By Lemma

[3, there is a hyperplang(y) = 0 such that (1ya € F, i(a) = 0; (2)Va € N(p) \ F, (a) >

0; (3) for anyq,2s(qi) C {y | m(y) = 0}; and (4) B(qf') € {y | (y) > 0}. By Lemma

2, Proj(q/q’,F,) = 0 andProj(q'?,F,) = 0. Therefore, the intersect between support of
253 19/ +53 ;g% andF, is an emptyset,e.,Proj(p,F) =Proj(p,F;) = 55, Proj(q2, F;)
=33 ,(d)2. The last equality holds becaus@f?) C F,. O

Remark 1Theorenfl is strongly related to Theorem 3.6[0f| [29], whicktex that ifp is
positive semidefinite, thebroj(p,F) is positive semidefinite for every faceof N(p).

Theorent] proposes a necessary condition for a polynomiz ®0S.
Example 2 p=x{ +x3+x3 — 1.

Obviously, the polynomial in Examplé 2 is not SGSqd, p(0,0,0) = —1). By Theorem
(I, one necessary condition fprto be SOS is thatroj(p, {(0,0,0)}) = —1 should be SOS
which can be efficiently checked. On the other hand, if we uswthin polytope based
method to construo® in (), the size ofQ is (?’erz) = 10. The number of constraints is

(*1%) =35.

Definition 3 (Convex cover polynomial) A polynomial p is said to be aconvex cover
polynomialif there exist some pairwise disjoint facégi = 1,...,u) of N(p) such that
s(p) C UL;F.
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It is easy to get the following proposition by the definitidhconvex cover polynomial.

Proposition 1 The support of a convex cover polynomial does not interdecinterior of
its Newton polytope.

The following theorem is a direct corollary of Theorgin 1.

Theorem 2 Suppose p is a convex cover polynomial an(@+F 1,...u) are the faces satis-
fying the condition of Definitionl 3. Letj g= Proj(p,F)(i =1,...u). Then p is SOS if and
only if g is SOSfori=1,...u.

We use the following example to demonstrate the benefit obfidme 2.

Example 3 p= xS +x§+x{ — 2x§x5 +x3.

1 2 3 4 5 6

Fig. 1 Newton polytope of Exampld 3.

For ExampIeEBs(p) = {<6a O)a <0a 6)a <4a O)a <2a Z)a <0a 4)} Letk = {<6a O)}a F= {(Oa 6)},
Fs =conv{(4,0),(2,2),(0,4)}) (shown in Fig[l) be three faceswfp). Becausé, F, F3
satisfy the condition of Definitionl 3y is a convex cover polynomial. Lek = Proj(p,F)
for i = 1,2,3. Then, by Theoreml 2, proving is SOS is equivalent to proving; is SOS
for i = 1,2,3. Therefore, the original problem is divided into three [glien sub-problems.
When using Newton polytope based method to prpve SOS, the size o is 7 and the
number of constraints is 18. However, for, pz, ps, the corresponding data arg 1), (1,1)
and(3,5), respectively.

Dividing the original problem into simpler sub-problemséeprove not only the effi-
ciency but also the reliability of the results. As indicated6], when the scale of problem
is large, the numerical error of SDP solver may lead to a teguich looks like “reliable”
by the output data while it is indeed unreliable.

4 Split polynomial

Another new concepsplit polynomia) is introduced in this section. Every convex cover
polynomial is a split polynomial. The main results of thistsen are Theorein 3 (analogue of
Theoreni]l) and Theorelm 4 (analogue of Thedrem 2), which allmwo block-diagonalize
a wider class of SDPs.
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Definition 4 For a setQ of vectors and anyr € Q +Q, define¢g(a) ={B € Q|3Iye
Q.B+y=a}.

Definition 5 Suppose satisfiesSOS$p, Q) (see Definitior L) for a polynomigd. Define
7 (p,Q) to be the sefa € Q| pg(20) = {a}}.

Definition 6 Suppose&) satisfiesSOS$Ep, Q) for a polynomialp. For anya € Q+Q, define

_ G if gq(a) = {30},
Yo(a) = { U;yeqﬁy’ﬁw:a (Yo(2B)Uiig(2y)) otherwise ’

If a ¢ Q+Q, defineyg(a) = 0.

Sinceyig(a) is a subset of’(p,Q) and obviously? (p,Q) is a finite set, Definitionl6
makes sense.

Lemma 4 Supposé&) satisfies SOSP, Q) for a polynomial p and F is a face abnVQ +
Q).LetT={a|aec?7(pQ)20 € F},Q1=(Q+Q)NF. Thenyg(a) C T for any
ae Ql.

Proof For anyf € (io(a), by the definition ofyig(a), there argBy,---, By, V1, -+, Yk € Q
suchthap; #y; fori=1,--- k=1 a=B1+V1,2B1 =B+ Vo, ,2Bx_1= B+ Vi, Bk =
Y= B andyig(28) = {B}.

We prove B, € F by induction. Because = f3; +y; anda € F, we have B, € F.
Assume that B; € F fori <m. If i =m, since B,,,_1 = B+ Ym and PB,,,_1 € F, we have
2BmeF. ThenPB =2, cFandhenceBT. O

Definition 7 Suppose satisfiesSOS$p, Q) for a polynomialp andT C ¥'(p, Q). Define
o(T)={ylyeQ,yq(2y) CT}.

Lemma 5 Suppose p is SOS, say=py> ; h?, ands(h) € Q. Then for any TC 7 (p,Q)
and anyB € Q+Q, if Yo(B) C T, thenB ¢ s((p— 351 Proj(hi,a(T))?)).

Proof For anyy;,y, € Q with y; + v, = B, we haveyig(2y;) C Yo(B) and yg(2y,) C
Yo (B) by the definition ofyqg. Sinceyo(B) C T, we havey,,y, € o(T) by the definition

of o(T). Itis not difficult to see that the coefficient of the texfiin 55, Proj(hi, o(T))?
equals that of the terx® in ¥5_, h2. Thus,xP does not appear in— 3> ; Proj(hi, o(T))?
sincep—y5 2 =0. O

Theorem 3 Assume =3 cox“ is SOSQ satisfies SO$,Q) and TC ¥ (p, Q). If Yo(a+
B) C T foranya,B € o(T), then . =3 ges(p).yo(a)cT cqx% is SOS.

Proof Supposep = 55, h? andp) = p— p;1. Seth] = Proj(hi,o(T)) andh’ = hj — Y, then
p= 37 a(h)?+ 257 hWh + 574 (h')% By Lemma®,B8 ¢ S(p— 371 (H)?) for any B €
S(pa),i.e, S(p1)Ns(p—35 4(M)?) = 0. Sincey(a +B) C T foranya, B € a(T), by the
definition of o(T), Yo(B) C T for any B € S(33_1(N)?). Thus,s(p}) Ns(3{4(M)?) = 0.
Summarizing the above, we have

L opy+ph =3 (h)? + (p— 3a(M)?),

2. 8(p1)Ns(p—3i4(h)?) =0, and

3. s(P)Ns(ziy(h)?) =0.

Thereforepy = 33 ,(h)2. O
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Definition 8 (Split polynomial) Let Q be a finite set satisfyin§OS$p, Q) for a polyno-
mial p. If there exist some pairwise disjoint nonempty subdgtis= 1,...,u) of ¥ (p,Q)
such that

1. Yo(a+B) C T foranya,B € o(Ti)(see Definitio ) for any=1,---,u, and
2. foranya € s(p), there exist exact ong such thatg(a) C T,

thenpis said to be &plit polynomialwith respect taly, - - -, Ty.

Theorem 4 Suppose = 3 cox? is a split polynomial with respect to - -, Ty, then p is
SOs if and only if eachi p= 3 aes(p) yo(a)cT Cax® is SOS fori= 1,---,u.

Proof Necessity is a direct corollary of Theorér 3. For sufficiemuyte that the second
condition of Definitior 8 guarantees thatp;) Ns(pj) = 0 for anyi # j andp= ', pi.
0

Now, we give the relation between convex cover polynomidlspiit polynomial, which
indicates that split polynomial is a wider class of polynatsi

Theorem 5 If p is a convex cover polynomial, then p is a split polynonildle converse is
not true.

Proof If pis a convex cover polynomial then there exist pairwise disjtacesk (i =
1,...,u) of N(p) such thats(p) C U' ;F. Suppose cor@ + Q) = N(p) andQ satisfies
SOSEP, Q). LetTi={a € ¥(p,Q) | 2a € /},i =1,--- ,u. We prove thap is a split poly-
nomial with respect td,---, Ty.

We claimthato (T;) ={ye Q|2yeF;} for j=1,--- ,u. Ifthere existyy € o(T;),2yy &
Fj, asF; is a face ofi(p), there exist a linear functiorr such that(2y,) > ni(a) for any
a € Fj. By the Definition ofyig(2y,), there existg3, € Yo(2y,) C T; such thatr(2B,) >
T(2y,). This contradicts with B € Fj. Thus,o(Tj) C {ye Q |2y c Fj}.

We then prove thafy € Q | 2y € Fj} C o(Tj). Assume that there existg € Q with
2y, € Fj such thaty, € a(T;). Then there exist8, € Yiq(2y,) such that B, ¢ F;. Because
F; is a face ofN(p), it is not difficult to see that itr; + a2 € Fj wherea, a2 € Q, then
2a1 € Fj,2a; € Fy. Therefore, B € Fj for any B € (ig(2y,), which contradicts with B, ¢
Fi.

Now we haveo (Tj) = {ye€ Q| 2y e Fj}. By Lemmd4yq(a+B) C T, foranya,B
o(Tj). Sinces(p) C U{' ;F andF are pairwise disjoint, there exists exact dheuch that
Yo(a) C T foranya € s(p). As aresultpis a split polynomial with respect o, - - -, Tu.

Note that the Motzkin polynomial in Examplé 7 is a split padymal but not a con-
vex cover polynomial sincexs lies in the interior ofi(p) (see Figur€l3). That means the
converse is not true. O

Remark 20ne may wonder under what condition a split polynomial israve® cover poly-
nomial. A reasonable conjecture may be as this:

Let Q be a finite set satisfying SO§5Q) with con\Q + Q) = N(p) for a polynomial
p. If ¥ (p,Q) contains only vertices afonVQ), then p is a split polynomial if and only if p
is a convex convex polynomial.

Unfortunately, the conjecture is not true. For example, let

P = X$X2X5 4+ XEXaX3 — 23X + X5 + XaX5 4+ X2ax3x4,
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h
en Q= {(211),(12,1),(1,1,1),(0,0,1),(1.1,0),(L1,2)},
A/(p7 Q) = {(27 17 1)7 (17 27 1)7 (07 07 1)7 (17 17 0)7 (17 17 2)}.

Obviously,? (p, Q) contains only vertices of co(Q). SetT; = {(2,1,1),(1,2,1),(0,0,1)},
T,={(1,1,0),(1,1,2)}, thenitis easy to chegkis a split polynomial with respect ff, T.
But p is not a convex cover polynomial by Proposit[dn 1 beca@x%x% lies in the interior
of N(p).

The example indicates that the relation between split motyjial and convex cover poly-
nomial may be complicated. We do not find a good sufficient itamdfor a split polynomial
to be a convex cover polynomial.

5 Algorithm

Existing SDP based SOS solvers consists of the followingrham steps: computing a set
Q which satisfieSOS$p, Q) for a givenp; solving the feasibility problem of{7) related to
Q by SDP solvers. In this section, we give a new algorithm (Athen[2) for SOS decompo-
sition. The algorithm employs the following strategiessEiwe give a different technique
for computing an initial se® which satisfieSSOS$p, Q) for a givenp. Second, we check
one necessary condition (Lemia 8) to refute quickly some3$©@8& polynomials. Third,
if the input polynomial is detected to be a split polynomiak reduce the problem into
several smaller sub-problems based on Thediem 4. Thi®eestiedicated to describe the
strategies in detail and the performance of the algorithrapsrted in the next section.

We first describe the new technique for computing an iniga{y The following lemma
is a direct corollary of the result i [28] (see also Hd. (4Bictiorl 2).

Lemma 6 Suppose p is a polynomial andis a given vector. Let e maX; . 1pe y'a.

For any Q which satisfies SO$/ Q), after deleting every3 in Q such thaty"8 > c,
SOS$p, Q) still holds.

By Lemma®, it is easy to give a method for computing an ing&lQ which satisfies
SOS$p,Q) for a givenp. That is, first choose a coarse §gtvhich satisfiesSOS$p, Q),
e.g, the set defined be Eq.(5); then prune the superfluous elerme@tby choosingan-
domlyy. This is indeed a common method in existing warki [21/, 14, 32].

We employ a different strategy to construct an ini@lsatisfying SOS$p,Q). The
procedure is as follows. For a given polynomlfirstly, we compute the s%Pe (recall
thatP® = PN (2Z"7 ) whereP is the support op) and an over approximation s@tof integer
points in con‘(%Pe). Secondly, leB be the matrix whose columns are all the vector%lé?.
We choose one by one the hyperplanes whose normal direetierise eigenvectors 88"
to delete superfluous lattice points@rby Lemmd.6.

Definition 9 We denote byCAG(p) the above procedure to compute an ini@asatisfying
SOS$p, Q) for a given polynomialp.

We cannot prove the above strategy is better in general Hearandom one. However,
inspired by principal component analysis (PCA), we beligvenany cases the shape of
conv(%Pe) depends on eigenvectors BB". On a group of randomly generated examples
(see ExamplEl4), we show that the siz€obbtained by using random hyperplanes to delete
superfluous lattice points are 10% greater than that of ttubof our algorithnpcac (see
Figurel2).
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degree(d)

Fig. 2 Mean ratio of #Q) between random algorithm a®dAG(p) on every random groupQRk, n,d,t).
Red color corresponds to=4,n= 5t = 3 and green color correspondsde- 5,n = 7,t = 4. For any given
(k,n,d,t), we generate 10 polynomials randomly.

Example 4 SQR,n,d,t) = g2 +---+ g2 where de¢gi) = d, #(S(gi)) =t, #(var(gi)) = n

Lemma 7 [L1l[33] For a polynomial p and a sé which satisfy SOS$,Q), after delet-
ing every elementr in Q which satisfies thaa ¢ P® and ¢q(2a) = {a}, the relation
SOS$p, Q) still holds.

Definition 10 We denote byEXACTG(p) the procedure which deletes superfluous elements
of the output ofPCAG(p) based on Lemnid 7.

The following lemma is a simple but very useful necessandi@mn which can detect
non-SOS polynomials efficiently in many cases.

Lemma 8 Suppos&) satisfies SOSP, Q) for a polynomial p. If pis SOS, thane Q+Q
foranya € s(p).

Proof If pis SOS, since andQ satisfy relationrSOS$p, Q), there arey, .. ., gs such that
p=7y?% .0 ands(qg) C Q. Hence, for every monomial® of p there areg;, X, xY such that
xB,xY are monomials ofj andx® = xPxY. Thereforea € Q+Q foranya € s(p). O

Example 5[4] Let q(x,y,2) = 1+ x2y? +y?72 + 72x? — 4xyz It is easy to know that

lPe {(0,0,0),(1,1,0),(1,0,1),(0,1,1)},
Q0 {(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1) },

andSOS$%y, Q) holds. By Lemmal7, after deleting., 0,0), (0,1,0), (0,0,1) from Q°, we
have Q = ExACTG(q) = {(0,0,0),(1,1,0),(1,0,1),(0,1,1)} and SOS$%q,Q) holds. Since
(1,1,1) ¢ Q+Q, by Lemmd8pis not SOS.

For an input polynomialp, by settingQ = EXACTG(p), we obtain a se@Q satisfying
SOSEp, Q). Now, we check whether or nqtis a split polynomial related to thi®. And if
it is, the original problem can be reduced to several smaliérproblems. The details are
described formally as Algorithfd 1 and AlgoritHmh 2.
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Algorithm 1. MonomialRelation

Input: p e Q[X]

Output: The mapyig defined by Definitiofilo
Q = EXACTG(p);

LetC be a map fronQ to { true, false};

for a € Q do C(a)=false;

Let ¥ (p,Q) be the set defined by Definitigh 5;
Initialize Yo (a) = 0 for anya € Z7;

for a € ¥(p,Q) do

Yo (2a) = {a};

C(a)=true;

0o N O g b~ W N

9 Let run=true;

10 while rundo

11 run=false;

12 for o € Q do

13 if C(a)then

14 C(a)=false;

15 for B € Qdo

16 if Wo(2a) Z Yo(a+ B) then

17 Yo(a+B) = Yo(a+B)U g (2a);
18 if a+ B €227 then

19 | run=true,C((a + B)/2)=true;

o return Yo;

N

Algorithm 2. QuickS0S

Input: pe Q[X]
Output: false that meansp is not SOS; or{q;,...,qs} where p,q; satisfy Eq. (2)
numerically

1 Let Y be the output oflonomialRelation(p);
2 for a € s(p)do if o £ Q+Q then return false // Lemmd3
3 for a € s(p) do
if pis a split polynomial with respect g (a) then
Let p1, p2 be as in Theorem 4;
Let R; be the output ofjuicks0S(p;);
Let R, be the output 0fuicksos(py);
if Ry or Ry is falsethen return false
return Ry URy;

© 00 N o 0 b

10 return S0s(p,Q); // Notation[1

Example 6We illustratequicksos on the polynomiab in Example 3. First,

S(p) = {(076)a(670) (074)7(470)a(272)}7
Q= {(0,2),(0,3) (1,1),(1,2),(2,0),(2,1),(3,0)},
”V(p,Q) = {(0,2),(0,3),(2,0),(3,0)}

Secondiiq((0,4)) ={(0,2)}, ¥o((0,6)) ={(0,3)}, Yo((4,0)) ={(2,0)}, Yo ((6,0)) =
{(3,0)}, 4a((2,2)) ={(0,2),(2,0)}. SetT = l.UQ(( ,2)) ={(2,0),(0,2)}, itis easy to see
thatp is a split polynomial with respect @ andpy = x§ — 2x3x3 +x4, pp = x& +-x5.
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Third, similarly, Quicksos(p;) dividespy into p21 = X8, po2 = x§. Finally, QuicksSos(p)
outputs “10000x X3 + 1.0000« x§ — 2.0000+ X2 + X3 4 1.0000% X} -+ 1.0000«x§ = (—1.00x
X3+ 1.00%x2)% + (1.00%x3)2 + (1.00% x3)2".

Example 7 (Motzkin polynomial) £ x{x3 4 x3x3 — 3xx3 + 1.

Because(f) = {(4,2),(2,2),(2,4),(0,0)} andQ = {(0,0),(1,1),(2,1),(1,2)},
MonomialRelation(f) returnsyo((4,2)) ={(2,1)}, ¢o((2,4)) ={(2,4)}, Yo((2,2)) =
{(1,1)}, go((0,0)) = {(0,0)}. ThenQuicksos(f) will return false when it reaches line 8
fora = (2,2).

Remark 3Let Q = EXACTG(p). By Definition[8, to determine whetheris a split polyno-
mial, one should check all the non-empty subset¥'0p, Q). However, this approach is
obviously inefficient. Therefore, in Algorithfi 2 we only atlewhetherp is a split polyno-
mial with respect tapg(a) for somea € s(p). Although this incomplete check may miss
some split polynomials, as is shown in the next section,éffisctive in many cases.

—(|1/ : —~ (— :
2 3

Fig. 3 N%Wton polytope 0% Ex- 1 2 Fig.5 The ou%put oEXACTZG for
ampldY. Fig. 4 Q° of ExampldY. ExampldY.

6 Experiments

The above algorithms have been implemented as+aprogram,QuicksS0s. Compilation
has been done using g++ version 4.6.3 with optimization fi@gs We useingular [7] to
read polynomials from files or standard input and ¢s#p [3] as SDP solver. The program
has been tested on many benchmarks in the literature and®oflexamples generated
randomly.

We report in this section corresponding experimental datauo program and some
well-known SOS solvers, such 8&L.MIP, SOSTOOLS, SOSOPT. The matlab versionis R2011b
ands0sTooLS'’s version is 3.00. BotlYALMIP and SOSOPT are the latest release. The SDP
solver of YALMIP, SOSTOOLS andS0SOPT is SeDuMi 1.3.

All the numerical examples listed were computed on a 64rbil(R) Core(TM) i5 CPU
650 @ 3.20GHz with 4GB RAM memory and Ubuntu 12.04 GNU/Linux.

6.1 Examples

In this subsection, we define four classes of examples. Tétecfass of examples are mod-
ified from [22], which are positive but not necessarily SOBe Eecond one is from|[8,110].
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The other two classes are sparse polynomials randomly gieaeby Maple’s command
randpoly Where the third class of polynomials are constructed in ¢ihe fof SOS.

The number of elements in a 9@tis denoted by &), ded p) denotes the total degree
of a polynomialp, var(p) denotes the set of variables occuring in a polynorpial

6.1.1 By

— (§3MH2,2)2 3MH2y2¢m 2 _ i ifi .
Bm = (Z21 %) — 230X Y 1L 1 X, 3j+1, WhereXami24r = Xr. Bm is modified from [22].

For anyme Z,, By, is homogeneous and is a positive polynomial.

6.1.2 R

Monotone Column Permanent (MCP) Conjecture was givenlini8jenn = 4, this Con-
jecture is equivalent to decide whethglr2, p13, p22, p23 are positive polynomials and this
case has been studied in [18)].

6.1.3 SQRK,n,d,t) (see Examplel4)

SQRK,n,d,t) = g2 +---+ g2 where de@g) = d, #(S(g))) =t, #(var(g)) = n.

6.1.4 RNn,d)

RN(n,d) = g2+ g2 31 % + 10093 + 100, where de@) = d,deggy) = d — 3,deggs) =
d—2,var(g) = {X1,...,X}. For any given(n,d) wheren € {5,10} and 4<d < 12, we
generate 10 corresponding polynomials.

6.2 Results

If we only compare the timings of different tools, the compan is somehow unfair since
the implementation languages are different. Since the ide# of this paper is to compute
smaller seQ for given polynomialp which make relatiolsOS$p, Q) hold, we also report
the comparison of the size @ computed by different tools. It is reasonable to believé tha
the total time of computing SOS decomposition becomes shag the size o) getting
smaller if we use the same SDP solver and the cost of compstiralerQ is not expen-
sive. In fact, for all the following examples excey, the time taken in computin® by
Quicksos is less than (A seconds.

We explain the notations in the following tables. Edbls) for Quicksos’s #(Q) means
Quicksos divides the polynomial intd polynomialss,. .., pp andsis the largest number
of #(Qj) corresponding tg;. The “—" denotes that there is no corresponding output.

The results orBy, by these tools are listed in Talilé 1. The polynomigisandB, are
SOS, the others are not. All the above tools ex@®SOPT give corred outputs onBy,.
Although B; is not a sparse polynomial, our algorithm can also redy&® #Vhen the size
of polynomial is largeg0soPT takes so much time to solve it. This phenomenon also occurs
in the following examples. For convenience, we do not ligt thsults ofS0SOPT in the
following.
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Table 1 The results ofB.

#(Q) | time(s)
Tools B, B, Bs B4 Bs B, B, Bs Bs Bs
Quicksos (5,1) (1,33) (1,55) (1,94) (1,150) 0.00 0.15 0.62 6.79 73.27
YALMIP 15 36 66 105 153 024 053 0.72 1.26 167.21
SOSTOOLS 15 36 66 105 153 030 042 209 2132 163.05
SOSOPT 15 36 — — — 0.25 3.01 error error error
Table 2 The results ormp; ;.

#Q) | time(s)

Tools P12 P13 P22 P23 P12 Pz P22 P23
Quicksos  (1,77) (5,15) (1,62) (6,39) 1.98 0.01 1.25 0.19
YALMIP 77 29 62 53 4.93 181 4.97 4.10
SOSTOOLS  wrong  wrong 62 wrong wrong wrong 3.77 wrong

The results orp; j by those tools are listed in Talile 2.

Table[3 lists the results on examplBQR(see Exampl€l4). We randomly generate 10
polynomials for everyk, n,d,t). All the outputs ofquicksos andYALMIP are correct. Some
data corresponding 8DSTOOLS are “wrong”, which means th&DsST00LS's output is wrong
or there is an error occurred during its execution. For maayrples ofSQR QuicksS0s can
divide the original polynomial into some simpler polynoisiaBy the complexity analysis
in Sectior 2, this division can greatly improve efficiency.

We demonstrate this fact by one polynomial of gr&@R4, 5,10, 3).

Example 8 p= (—91w*x?yZ — 41k*xy?Z2 — 14kwxCy?z)? + (—40kx"yz+ 16w xy-+65w2y*)2 +
(11kx%y0z— 34k5x3z — 18Ky 2)? + (—26k*W3xyz— 35xyPZ% — 5TkWPX?Z3)2.

Remark 4 As explained beforeéSQRis constructed in the form of SOS. But the polynomial
is expanded before input to the tools.

In Exampld 8Quicksos dividesp into four simpler polynomial®s, p, ps, pa. For each
simpler polynomialp;, QuicksS0S constructs a s&); whose size is 3 an80S$p;, Qi) holds.
YALMIP constructs on€ for p whose size is 97 angbSTO0LS also constructs on@ for p
whose size is 104. If the time consumed by construc€ni short compared with total
time and assume these three tools use the same SDP solvextithef total time of three
tools is 43%+%¢) : 972+2¢ : 104+2¢ where 1< c < 2. In fact, in our experiments, the total
time of these three tools on this example i8Dseconds, 291 seconds and 487 seconds,
respectively.

In addition to efficiency, correction is also important. fig[6 shows the number of
“wrong” of SOSTOOLS on every group of random polynomia®QR As explained above,
“wrong” means thas0STO0LS’s output is wrong or there is an error occurred during its
execution. Those “wrong’s are caused by numerical instabitherefore, the number of
“wrong” increases with the increase of the problem’s size.

The above experiments are all about polynomials which ar€.9@gurel ¥ is about
timings for refuting non-SOS polynomialgor all 180 RN polynomialsQuicksS0s takes
1.07 seconds to refute all of therAnd there are polynomials in these 180 polynomials on

1 The polynomials can be found&ttp://www4.ncsu.edu/~kaltofen/software/mcp_conj_4/.
2 The meaning of correction is that the output is right withpest to a certain numerical error.
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Table 3 #(Q) of random polynomial$SQRK,n,d,t)

Tools 1 2 3 4 5 6 7 8 9 10
#Q)

k=4,n=5d=51t=3

QuicksS0s  (2,15) (1,44) (2,11) (4,4) 4,4) (1,25) (4,5) (3,9) 2,8) ,20

YALMIP 24 45 33 18 23 36 22 20 15 25

SOSTOOLS 24 45 33 18 23 36 22 20 15 25
k=4n=5d=10t=3

Quicksos  (4,3) (4,3) (4,10) (3,6) 2,7) (4,4) 4,3) (4,3) (4,3) (226

YALMIP 97 91 42 23 45 40 101 62 95 52

SOSTOOLS 104 94 36 23 48 41 109 70 104 52
k=5n=7d=5t=4

QuickS0S  (4,7) (5,5) (2,13) (5,4) 411) (B4 (4,7) (3,12) (5,5 1@

YALMIP 21 33 24 24 28 24 21 28 42 33

SOSTOOLS ~ wrong 33 24 24 28 24 21 28 42 33
k=5n=7,d=10t=4

Quicksos  (5,4) (5.,4) (5,5) (5.5) (5,4) (5,4) (5,4) (5,4) (3,11) (5,4)

YALMIP 45 82 74 59 48 70 79 63 41 57

SOSTOOLS wrong wrong  wrong 63 57 76 wrong 67 wrong  wrong
k=5n=7,d=51t=6

Quicksos (1,26) (1,29) (1,28) (1,72) (1,37) (1,30) (1,27) 4,7) ®1 (1,61)

YALMIP 28 38 28 82 48 31 33 34 34 69

SOSTOOLS  wrong 38 28 82 wrong 31 33 wrong 34 wrong
k=5n=7,d=8t=6

Quicksos  (4,7) (4,6) 4,7) 4,7) (4,6) (4,6) (4,6) (2,24) (4,6) (4,6)

YALMIP 38 34 71 121 51 57 75 100 47 29

SOSTOOLS 39 wrong  wrong 128 67 67 78 111 52 31

which s0ST00LS cannot finish execution within 20000 seconds. So we do rndtdisutput.

Figure[T is the mean time GALMIP for every group of polynomials.

wrong

SQR(5,7,d,4) mmiem

degree

Fig. 6 The number of “wrong” o80STOOLS on every group of random polynomials.
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mean(time(RN))
35

YALMIP n=5
YALMIP n=10

time (second)

degree

Fig. 7 Mean running time ofALMIP on every group oRN polynomials.
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