Skip to main content
Log in

Extracting from the relaxed for large-scale semi-continuous variable nondominated frontiers

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Because of size and covariance matrix problems, computing much of anything along the nondominated frontier of a large-scale (1000–3000 securities) portfolio selection problem with semi-continuous variables is a task that has not previously been achieved. But given (a) the speed at which the nondominated frontier of a classical portfolio problem can now be computed and (b) the possibility that there might be overlaps between the nondominated frontier of the classical problem and that of the same problem but with semi-continuous variables, the paper shows how considerable amounts of the nondominated frontier of a large-scale mean-variance portfolio selection problem with semi-continuous variables can be computed in very little time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Also known as the “efficient frontier”.

  2. For more about the \(\varepsilon \)-constraint method than utilized here, see Mavrotas [19] and Miettinen [20].

  3. All times in this paper are from an i7-2720 2.20 GHz computer. Sample sizes are 10 throughout.

  4. In the pension fund arena alone, the 300th largest pension fund has assets in excess of $11 billion (Towers Watson, The World’s 300 Largest Pension Funds—Year End 2012, www.towerswatson.com).

  5. A word about the bottommost hyperbolic “segment” of the nondominated frontier: In portfolio selection there is the minimum standard deviation boundary as shown in Sharpe [22]. It is entirely constructed out of hyperbolic segments, and the upper portion of this boundary is the nondominated frontier, that is, from the global minimum standard deviation point upward. With the global minimum standard deviation point likely falling within the relative interior of one of the hyperbolic segments of the minimum standard deviation boundary, the bottommost hyperbolic segment of the nondominated frontier will normally be observed to be a subset of this generally larger hyperbolic segment.

  6. Or stop in the case of the lower endpoint of the bottommost hyperbolic segment, see footnote 5.

References

  1. Anagnostopoulos, K.P., Mamanis, G.: Multiobjective evolutionary algorithms for complex portfolio optimization problems. CMS 8(3), 259–279 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bartholomew-Biggs, M.C., Kane, S.J.: A global optimization problem in portfolio selection. CMS 6, 329–345 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonami, P., Lejeune, M.A.: An exact solution approach for portfolio optimization problems under stochastic and integer constraints. Oper. Res. 57(3), 650–670 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Calvo, C., Ivorra, C., Liern, V.: The geometry of the efficient frontier of the portfolio selection problem. J. Financ. Decis. Mak. 7(1), 27–36 (2011)

    Google Scholar 

  5. Calvo, C., Ivorra, C., Liern, V.: On the computation of the efficient frontier of the portfolio selection problem. J. Appl. Math. (2012). doi:10.1155/2012/105616

  6. Chang, T.-J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinally constrained portfolio optimisation. Comput. Oper. Res. 27(13), 1271–1302 (2000)

    Article  MATH  Google Scholar 

  7. Cplex. IBM ILOG CPLEX Optimization Studio, version 12.6 (2013)

  8. Faisca, N.P., Dua, V., Pistikopoulos, E.N.: Multiparametric linear and quadratic programming. In: Pistikopoulos, E.N., Georgiadis, M.C., Dua, V. (eds.) Multi-parametric Programming: Volume 1: Theory, Algorithms, and Applications, pp. 3–23. Wiley-VCH Verlag, Weinheim (2007)

    Google Scholar 

  9. Hirschberger, M., Qi, Y., Steuer, R.E.: Randomly generating portfolio-selection covariance matrices with specified distributional characteristics. Eur. J. Oper. Res. 177(3), 1610–1625 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hirschberger, M., Qi, Y., Steuer, R.E.: Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming. Eur. J. Oper. Res. 204(3), 581–588 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jobst, N.B., Horniman, M.D., Lucas, C.A., Mitra, G.: Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quant. Finance 1(5), 1–13 (2001)

    Article  MathSciNet  Google Scholar 

  12. Konno, H., Wijayanayake, A.: Portfolio optimization under D.C. transaction costs and minimal transaction unit constraints. J. Glob. Optim. 22(2), 137–154 (2001)

    MathSciNet  Google Scholar 

  13. Konno, H., Yamamoto, R.: Global optimization versus integer programming in portfolio optimization under nonconvex transaction costs. J. Glob. Optim. 32(5), 207–219 (2005a)

    Article  MATH  MathSciNet  Google Scholar 

  14. Konno, H., Yamamoto, R.: Integer programming approaches in mean-risk models. CMS 2(5), 339–351 (2005b)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lin, C.-C., Liu, Y.-T.: Genetic algorithms for portfolio selection problems with minimum transaction lots. Eur. J. Oper. Res. 185(1), 393–404 (2008)

    Article  MATH  Google Scholar 

  16. Mansini, R., Speranza, M.G.: Heuristic algorithms for the portfolio selection problem with minimum transaction lots. Eur. J. Oper. Res. 114(2), 219–233 (1999)

    Article  MATH  Google Scholar 

  17. Markowitz, H.M.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  18. Markowitz, H.M.: The optimization of a quadratic function subject to linear constraints. Nav. Res. Logist. Q. 3(1–2), 111–133 (1956)

    Article  MathSciNet  Google Scholar 

  19. Mavrotas, G.: Effective implementation of the \(\varepsilon \)-constraint method in multiobjective mathematical programming. Appl. Math. Comput. 213(2), 455–465 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)

    MATH  Google Scholar 

  21. Niedermayer, A., Niedermayer, D.: Applying Markowitz’s critical line algorithm. In: Guerard, J.B. (ed.) Handbook of Portfolio Construction, pp. 383–400. Springer, Berlin (2010)

    Chapter  Google Scholar 

  22. Sharpe, W.F.: Portfolio Theory and Capital Markets. McGraw-Hill, New York (2000)

    Google Scholar 

  23. Stein, M., Branke, J., Schmeck, H.: Efficient implementation of an active set algorithm for large-scale portfolio selection. Comput. Oper. Res. 35(12), 3945–3961 (2008)

    Article  MATH  Google Scholar 

  24. Steuer, R.E., Qi, Y., Hirschberger, M.: Comparative issues in large-scale mean-variance efficient frontier computation. Decis. Support Syst. 51(2), 250–255 (2011)

    Article  Google Scholar 

  25. Woodside-Oriakhi, M., Lucas, C., Beasley, J.E.: Heuristic algrithms for the cardinality constrained efficient frontier. Eur. J. Oper. Res. 213, 538–550 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Xidonas, P., Mavrotas, G.: Multiobjective portfolio optimization with non-convex policy constraints: evidence from the Eurostoxx 50. Eur. J. Finance 20(11), 957–977 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge helpful comments from the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph E. Steuer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steuer, R.E., Hirschberger, M. & Deb, K. Extracting from the relaxed for large-scale semi-continuous variable nondominated frontiers. J Glob Optim 64, 33–48 (2016). https://doi.org/10.1007/s10898-015-0305-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0305-4

Keywords

Navigation