
Journal of Global Optimization manuscript No.
(will be inserted by the editor)

Extended reverse-convex programming: an approximate
enumeration approach to global optimization

Gene A. Bunin

Received: date / Accepted: date

Abstract A new approach to solving a large class of factorable nonlinear programming
(NLP) problems to global optimality is presented in this paper. Unlike the traditional strategy
of partitioning the decision-variable space employed in many branch-and-bound methods,
the proposed approach approximates the NLP problem by a reverse-convex programming
(RCP) problem to a controlled precision, with the latter then solved by an enumerative
search. To establish the theoretical guarantees of the method, the notion of “RCP regularity”
is introduced and it is proven that enumeration is guaranteed to yield a global optimum when
the RCP problem is regular. An extended RCP algorithmic framework is then presented and
its performance is examined for a small set of test problems.

Keywords Reverse-convex programming · Concave programming · Piecewise-concave
approximation · Factorable programming · Implicit enumeration methods

1 Introduction

Consider the following nonlinear programming (NLP) problem:

minimize
y

fNL(y)

subject to gNL,i(y)≤ 0, i = 1, ...,ngNL

hNL,i(y) = 0, i = 1, ...,nhNL ,

(1)

with y∈Rny denoting the decision variables and fNL,gNL,i,hNL,i :Rny→R denoting the cost,
inequality constraint, and equality constraint functions, respectively. In the present work, we
will restrict our attention to factorable NLP problems – i.e., to problems where the functions
fNL, gNL,i, and hNL,i are factorable.

Definition 1 (Factorable functions) Following the definition of Sherali and Wang [24],
the function f : Rny → R is called factorable if it can be written as a sum of m products of
univariate functions φi j:

E-mail: gene.a.bunin@ccapprox.info
Current affiliation: Xinjiang Arts Institute, 734 Tuanjie Road, Urumqi, Xinjiang Uyghur Autonomous Region,
People’s Republic of China, 830000

ar
X

iv
:1

30
8.

28
28

v4
 [

m
at

h.
O

C
]

 2
5

A
pr

 2
01

5

2 Gene A. Bunin

f (y) =
m

∑
i=1

ny

∏
j=1

φi j(y j).

Branch-and-bound methods that intelligently partition the decision-variable space have,
over the past half-century, emerged as the dominant technique for solving the general
factorable NLP problem (1) [16,17]. This is, in part, due to the natural applicability of the
approach, as convex relaxations are easily obtained for the univariate components φ [7,14],
with strong relaxations for certain multivariate functions also available [28,9]. Additionally,
a number of algorithmic advances – notably, the domain reduction techniques used by
solvers such as BARON [23,26,5] – and general improvements in computational power have
made the resulting solvers viable for an increasingly greater number of practical problems.
However, even with these successes such methods can fall to the curse of dimensionality due
to their need to continuously partition the decision-variable space, which becomes difficult
to do efficiently with an increasing number of variables.

While there is no apparent way to “break” the curse, it is important to be aware that
the fundamental nature of the curse may differ depending on the nature of the algorithm
and the optimization problem. Notable examples include mixed integer [18] and concave
minimization [15,19,13] problems, for which the potential solutions may be enumerated and
then compared to obtain a global optimum. Although obtaining a single solution candidate
is often computationally cheap, the difficulty in such methods is generally due to the number
of candidates becoming unacceptably large. A common motif in such problems is that an
optimum must lie at the intersection of ny constraints, which may be integral constraints or
linear inequalities. Consequently, the number of candidates to check reaches – if one lets nc
denote the total number of constraints and supposes the worst case – the binomial coefficient(nc

ny

)
. Clearly, the curse of dimensionality in this case is due not only to ny but rather to both

ny and nc. Of interest is the observation that for problems where the gap between ny and nc is
innately bounded, or can be made bounded, the worst-case computational effort is bounded
as O(nnc−ny

y): e.g.,
(nc

ny

)
= ny + 1 when nc = ny + 1 and

(nc
ny

)
= 0.5(ny + 2)(ny + 1) when

nc = ny + 2. The natural conclusion is that enumeration techniques may scale and perform
better for certain problems than methods relying on the partitioning of the decision-variable
space.

The main contribution of this work consists in proposing a framework where the
factorable NLP problem is approximated by a problem for which enumeration may be
applied. Namely, one approximates (1) by the reverse-convex programming (RCP) problem

minimize
x

cT x

subject to gi(x)≤ 0, i = 1, ...,ng
Cx = d,

(2)

where x ∈ Rn denotes the vector of variables, c ∈ Rn the cost vector, gi : Rn → R a set of
ng concave (“reverse-convex”) constraint functions, and C ∈RnC×n, d ∈RnC the matrix and
vector defining the linear equality constraints. The formulation in (2) will be referred to as
the “standard” RCP form. The choice to use a linear cost function is merely a preference
that allows one to lump all of the nonlinearity into the inequality constraints, equivalent
formulations with a general concave cost also being possible [27,12].

The key message that this paper aims to convey is thus the following:

By solving the RCP approximation (2), one may solve the general factorable NLP
problem (1) by an enumerative method for which the curse of dimensionality is
different than for schemes that branch directly on the decision-variable space.

Extended reverse-convex programming 3

So as to avoid misleading the reader, it must be noted that “different” does not imply
“better”. However, the proposed approach may be seen as a potential alternative for those
problems where branching on the decision-variable space proves inefficient. Because the
RCP formulation is used as a tool for solving problems for which it was not originally
intended, the term extended reverse-convex programming is used.

In presenting the extended RCP framework, the quality of the approximation

minimize
y

fNL(y)

subject to gNL,i(y)≤ 0, i = 1, ...,ngNL

hNL,i(y) = 0, i = 1, ...,nhNL

≈
minimize

x
cT x

subject to gi(x)≤ 0, i = 1, ...,ng
Cx = d

is addressed first in Section 2, and it is proven that this approximation may be arbitrarily
good provided that:

A1. The functions φ obtained in the decomposition of fNL, gNL,i, and hNL,i are
Lipschitz-continuous over any finite interval.
A2. The feasible domain of (1),

Y = {y : gNL,i(y)≤ 0, i = 1, ...,ngNL ; hNL,i(y) = 0, i = 1, ...,nhNL},

is bounded.

An algorithm to obtain an arbitrarily good approximation is also provided.
The properties of global solutions of (2) are then discussed in Section 3. Letting

X = {x : gi(x)≤ 0, i = 1, ...,ng; Cx = d} denote the feasible domain of (2), the following
assumptions are imposed for the case when X 6=∅:

B1. Each gi is concave and continuously differentiable over an open set containing X .
B2. The rank of C is nC, with nC < n.
B3. cT x attains its global minimum at x∗ ∈X .
B4. The linear independence constraint qualification (LICQ) holds at x∗.

Generalizing previously reported results [12], the notion of “RCP regularity” is introduced
so that an optimal solution x∗ to any regular RCP problem can be obtained by solving the
convex problem

x∗ = arg maximize
x

cT x

subject to gi(x)≥ 0, ∀i ∈ iA∗
Cx = d,

(3)

where iA∗ is the index set of n−nC constraints that are active at x∗. From this crucial property
follows the familiar combinatorial motif, as one may find x∗ by enumerating all of the

(ng
n−nC

)
possible active sets and solving the problem

maximize
x

cT x

subject to gi(x)≥ 0, ∀i ∈ iA
Cx = d

(4)

for each candidate iA.
Finally, Section 4 proposes an extended RCP algorithm that performs better than the

brute enumeration of the
(ng

n−nC

)
possibilities. At its core, this algorithm is similar to that

proposed by Ueing [27] in that it builds up to the set of n− nC active constraints by first
constructing their subsets in a familiar branching-and-fathoming manner. An algorithmic

4 Gene A. Bunin

contribution of this work consists in adding a number of elements to speed up this scheme.
This comes in the form of several fathoming techniques that quickly eliminate active-set
candidates that cannot occur at x∗. Some of these techniques are original in the sense that
they make use of the extended RCP framework explicitly in fathoming certain sets. Others,
such as the powerful technique of domain reduction [26,5], are already well established but
are nevertheless original in how they are applied here. The strengths and drawbacks of the
algorithm are then demonstrated for a small set of test problems in Section 5, with general
reflections and an outline of future work concluding the paper in Section 6.

Some notes with regard to notation and terminology:

– All vectors are, unless otherwise stated, column vectors.
– Given a vector x, xi will refer to its ith element. Given a matrix X , Xi. will refer to its ith

row. If the vector or matrix already has a subscript (e.g., xa or Xa), a comma will be used
to separate the index – i.e., xa,i denoting the ith element of xa and Xa,i. the ith row of Xa.
The notation Xi j will refer to the element of X corresponding to the ith row and the jth

column, with parentheses used to avoid ambiguity when needed – e.g., Xi(j+1) denoting
the element of X corresponding to the ith row and the (j+1)th column.

– The matrix In will denote an n× n identity matrix. The dagger symbol, †, will denote
the Moore-Penrose pseudoinverse.

– The symbol⊆B will be used to indicate that a given binary vector is a member of another
binary vector in the sense that all of the elements that are equal to unity in the former
are also so in the latter, e.g., [0 1 1 0 0]⊆B [0 1 1 1 0], but [0 1 1 0 0] 6⊆B [0 1 0 1 0].

– The symbol # will be employed to denote the cardinality of a set.
– The matricial “max norm”, ‖ ·‖max, will be used to denote the maximum of the absolute

values of the matrix elements, i.e., ‖X‖max = max
i, j
|Xi j|.

– The adjectives “reverse-convex” and “concave” are identical and will be used
interchangeably throughout the text.

2 The RCP Approximation

The idea of approximating the general NLP (1) by the RCP problem (2) has its roots in the
works of Zangwill [29] and Rozvany [20,21,22]. Both authors mention the possibility of
approximating a more general function by a piecewise-concave function, which may in turn
be easily decomposed into a set of reverse-convex (concave) ones. The procedure outlined
here is essentially a two-step process consisting of (i) obtaining a factored decomposition
of (1) and (ii) approximating the nonlinear components of the decomposition by a set of
concave functions.

2.1 The Factored Decomposition of the NLP Problem (1)

The decomposition outlined here largely follows that already discussed in the literature
[26,18]. Namely, it is shown that (1) may be decomposed into an equivalent problem
with a linear cost, linear equalities, and a finite number of inequality constraints whose
nonlinear elements are either univariate or bilinear. The key result presented next establishes
equivalence for a single factorable constraint.

Lemma 1 (Decomposing a factorable constraint) Consider the constraint f (y) ≤ 0,
where the function f is factorable as per Definition 1. This constraint may be replaced

Extended reverse-convex programming 5

by an equivalent set of m(4ny−3) inequalities and m linear equalities. The nonlinear terms
will be univariate in 2mny of the inequality constraints and will be bilinear in the rest.

Proof Employing Definition 1, the constraint is first rewritten as

m

∑
i=1

ny

∏
j=1

φi j(y j)≤ 0. (5)

Introducing m−1 auxiliary variables, denoted by za,1, ...,za,m−1, and employing the epigraph
transformation yields the constraint set

ny

∏
j=1

φ1 j(y j)+
m−1

∑
i=1

za,i ≤ 0

ny

∏
j=1

φi j(y j)− za,i−1 ≤ 0, i = 2, ...,m,

(6)

which is equivalent to (5) as any y,za satisfying (6) implies that (5) is satisfied, and as for any
y satisfying (5) there always exists a choice of za (namely, za,i−1 = ∏

ny
j=1 φi j(y j), i = 2, ...,m)

that leads to the satisfaction of (6).
Consider the matrix of auxiliary variables Zb ∈Rm×ny , with the restriction that φi j(y j)−

Zb,i j = 0. The set (6) may then be replaced by the equivalent set

ny

∏
j=1

Zb,1 j +
m−1

∑
i=1

za,i ≤ 0

ny

∏
j=1

Zb,i j− za,i−1 ≤ 0, i = 2, ...,m

φi j(y j)−Zb,i j = 0, i = 1, ...,m; j = 1, ...,ny.

(7)

Finally, following the introduction of the auxiliary-variable matrix Zc ∈ Rm×(ny−1), the
product term ∏

ny
j=1 Zb,i j may be decomposed by recursive substitution as follows:

ny

∏
j=1

Zb,i j = Zb,i1Zc,i1

Zc,i j−Zb,i(j+1)Zc,i(j+1) = 0, j = 1, ...,ny−2

Zc,i(ny−1)−Zb,iny = 0,

thereby allowing for (7) to be replaced by the equivalent set

Zb,11Zc,11 +
m−1

∑
i=1

za,i ≤ 0

Zb,i1Zc,i1− za,i−1 ≤ 0, i = 2, ...,m

Zc,i j−Zb,i(j+1)Zc,i(j+1) = 0, i = 1, ...,m; j = 1, ...,ny−2

Zc,i(ny−1)−Zb,iny = 0, i = 1, ...,m

φi j(y j)−Zb,i j = 0, i = 1, ...,m; j = 1, ...,ny.

Breaking the nonlinear equalities then yields

6 Gene A. Bunin

Zb,11Zc,11 +
m−1

∑
i=1

za,i ≤ 0

Zb,i1Zc,i1− za,i−1 ≤ 0, i = 2, ...,m

Zc,i j−Zb,i(j+1)Zc,i(j+1) ≤ 0, i = 1, ...,m; j = 1, ...,ny−2

Zb,i(j+1)Zc,i(j+1)−Zc,i j ≤ 0, i = 1, ...,m; j = 1, ...,ny−2

Zc,i(ny−1)−Zb,iny = 0, i = 1, ...,m

φi j(y j)−Zb,i j ≤ 0, i = 1, ...,m; j = 1, ...,ny

−φi j(y j)+Zb,i j ≤ 0, i = 1, ...,m; j = 1, ...,ny,

(8)

with the final 2mny constraints nonlinear only in the univariate functions φ , and the other
inequality constraints nonlinear only in the bilinear terms. ut

The decomposition of the entire NLP problem (1) follows readily.

Corollary 1 (Factored decomposition of the NLP problem (1)) The factorable NLP
problem (1) may be decomposed into an equivalent problem with a linear cost and a feasible
set defined by a finite number of linear equality and nonlinear inequality constraints. The
nonlinear terms in the inequalities are either univariate or bilinear.

Proof By the epigraph transformation [14] and the splitting of equality constraints, one first
obtains the equivalence

minimize
y

fNL(y)

subject to gNL,i(y)≤ 0, i = 1, ...,ngNL

hNL,i(y) = 0, i = 1, ...,nhNL

⇔

minimize
y,t

t

subject to fNL(y)− t ≤ 0
gNL,i(y)≤ 0, i = 1, ...,ngNL

hNL,i(y)≤ 0, i = 1, ...,nhNL

−hNL,i(y)≤ 0, i = 1, ...,nhNL ,

(9)

Since the functions fNL(y), gNL,i(y), hNL,i(y), and −hNL,i(y) are all factorable, the result of
Lemma 1 may be exploited for each. Note that the addition of the epigraph variable, t, does
not affect the derivation or the validity of Lemma 1 – i.e., one simply replaces Zb,11Zc,11 +

∑
m−1
i=1 za,i ≤ 0 by Zb,11Zc,11 +∑

m−1
i=1 za,i− t ≤ 0 in (8). ut

2.2 Approximation by the Piecewise-Concave Function

Having decomposed the original NLP problem into an equivalent problem with a linear cost
function and constraint functions whose nonlinearity only appears via univariate and bilinear
terms, it is now possible to approximate this problem by a reverse-convex one by obtaining
reverse-convex (concave) approximations of the univariate and bilinear elements. To make
the link between the two problems more explicit, let x = (y, t,zall), where zall is the vector
of all the auxiliary variables (za, Zb, Zc) added during the decomposition of all of the NLP
problem elements.

The key tool for carrying out the approximation is the piecewise-concave function,
defined by Zangwill [29] as

Extended reverse-convex programming 7

p(x) = max
i=1,...,np

pi(x),

with the restriction that all pi : Rn→ R are concave.
The ability of the piecewise-concave function to act as an arbitrarily good approximation

of several commonly encountered functions was discussed and proven in a supplement to
the present work [4]. The following two results will be needed here.

Lemma 2 (Piecewise-concave approximation of a Lipschitz-continuous univariate
function over a bounded interval) For a given univariate function φ of variable xi and
for εp > 0, there exists a piecewise-concave approximation p : R→ R such that

max
xi∈[xi,xi]

|p(xi)−φ(xi)| ≤ εp, (10)

provided that φ is Lipschitz-continuous on the interval [xi,xi]:

|φ(xa
i)−φ(xb

i)|< κ|xa
i − xb

i |, ∀xa
i ,x

b
i ∈ [xi,xi] (xa

i 6= xb
i),

with κ < ∞ denoting the Lipschitz constant of φ .

Proof The proof proceeds by showing that one can always approximate φ by a sequence of
evenly spaced concave parabolas, with the approximation becoming arbitrarily good as the
number of parabolas increases. The reader is referred to [4]. ut

Lemma 3 (Piecewise-concave approximation of a bilinear function over a box) For the
bilinear function ±xix j and for εp > 0, there exists a piecewise-concave approximation
p : R2→ R such that

max
xi ∈ [xi,xi]
x j ∈ [x j,x j]

|p(xi,x j)∓ xix j| ≤ εp. (11)

Proof The bilinear term may be decomposed into the difference-of-convex (D. C.) form as
±xix j = ±0.5(xi + x j)

2∓0.5x2
i ∓0.5x2

j , for which (11) is a specific case of a more general
result where the convex component is approximated by a piecewise-linear function [4]. ut

In approximating the NLP problem, one may prefer either an outer or an inner
approximation. The former, obtained by underapproximating all of the nonlinear
components, is desirable as it guarantees that feasibility is not lost in the approximation, with
feasibility of the NLP problem guaranteeing the feasibility of the RCP. On the other hand,
overapproximating is potentially useful as any solution that solving the RCP problem returns
is guaranteed to be feasible for the original problem. The following lemma establishes that
one can obtain either kind of approximation while maintaining precision.

Lemma 4 (Under- and overapproximations) Let P(x, ·) be a set of approximations
satisfying

max
x∈X
|P(x,εp)− f (x)| ≤ εp

for all εp > 0. It follows that there exist under- and overapproximations – denoted by p−

and p+, respectively – such that, for ε−p ,ε
+
p > 0,

f (x)− ε
−
p ≤ p−(x)≤ f (x)≤ p+(x)≤ f (x)+ ε

+
p , ∀x ∈X .

.

8 Gene A. Bunin

Proof Set p−(x) = P(x,0.5ε−p)−0.5ε−p and p+(x) = P(x,0.5ε+p)+0.5ε+p . ut

The main approximation theorem follows and states that a factorable NLP problem
decomposed by the procedure outlined in Lemma 1 and Corollary 1 has an outer RCP
approximation, and that the solution of this approximation yields a solution y∗app that (a)
has a lower cost function value than y∗ and (b) satisfies the NLP problem constraints to
tolerances that go to 0 as ε−p → 0 (i.e., as more precise piecewise-concave approximations
are used). The proof is long, but may be outlined as:

(i) The constraint family (8) appears 1 + ngNL + 2nhNL times in the decomposition of
(9), and the RCP approximation is derived by showing how piecewise-concave
underapproximations may be obtained for all of the nonlinear elements of (8). This
requires first verifying that the domains of the variables remain bounded, and then
applying Lemmas 2 and 3.

(ii) Having derived the RCP approximation, it is then proven that the solution that results,
y∗app, must have a lower cost function value than y∗ because of the approximation
having a relaxed constraint set.

(iii) Finally, it is shown that the tolerances with which y∗app satisfies the constraints of
the NLP problem are upper bounded by finite-degree polynomials of the individual
approximation errors (i.e., the specific errors from the interval [−ε−p ,ε

−
p] incurred at

the solution for the different elements of (8)). For simplicity, all such individual errors
will be denoted by the single scalar ζp, with the vectors ζgi , ζ

+
hi

, and ζ
−
hi

denoting
the collections of errors incurred for the decomposed sets of gNL,i, hNL,i, and −hNL,i,
respectively. Clearly, ζgi ,ζ

+
hi
,ζ−hi
→ 0 as ε−p → 0.

Theorem 1 (Reverse-convex approximation of the NLP problem (1)) Let Problem (1)
be decomposed into an equivalent problem with a linear cost, linear equality constraints,
and inequality constraints as outlined in Lemma 1 and Corollary 1. It follows that

(i) there exists an outer RCP approximation of the decomposed problem with the global
solution x∗, such that the approximate solution y∗app,i = x∗i (i = 1, ...,ny) satisfies

(ii) fNL(y∗app)≤ fNL(y∗),

(iii) gNL,i(y∗app)≤ qg,i(ζgi), ∀i = 1, ...,ngNL , and |hNL,i(y∗app)| ≤max
(

q+h,i(ζ
+
hi
),q−h,i(ζ

−
hi
)
)
,

∀i = 1, ...,nhNL , where qg,i, q+h,i, and q−h,i are finite-degree polynomials satisfying
qg,i(0) = q+h,i(0) = q−h,i(0) = 0, ∀i.

Proof (i) The decomposition outlined in Lemma 1 and Corollary 1 results in 1+ ngNL +
2nhNL families of constraints, with each family having the form of (8). Because the
approximation procedure is identical for each family, only the approximation of the general
form (8) will be considered here.

First, let p1
φ ,i j and p2

φ ,i j denote piecewise-concave underapproximations of the univariate
functions φi j and −φi j, respectively. These approximations must exist in view of Lemma 2,
Lemma 4, and the conditions imposed by Assumptions A1 and A2. The constraints

φi j(y j)−Zb,i j ≤ 0, −φi j(y j)+Zb,i j ≤ 0

are replaced by the relaxed constraints

p1
φ ,i j(y j)−Zb,i j ≤ 0, p2

φ ,i j(y j)+Zb,i j ≤ 0.

Because φi j(y j)− ε−p ≤ p1
φ ,i j(y j) and −φi j(y j)− ε−p ≤ p2

φ ,i j(y j) for all y j in Y , it follows
that

Extended reverse-convex programming 9

p1
φ ,i j(y j)−Zb,i j ≤ 0

p2
φ ,i j(y j)+Zb,i j ≤ 0

⇒
φi j(y j)− ε−p −Zb,i j ≤ 0

−φi j(y j)− ε−p +Zb,i j ≤ 0

⇔ φi j(y j)− ε−p ≤ Zb,i j ≤ φi j(y j)+ ε−p .

(12)

It is thus clear that Zb,i j is bounded by the range of φi j over Y and the approximation error,
with the boundedness of φi j following from Assumptions A1 and A2. Let Zb,i j,Zb,i j denote
the corresponding bounds.

From the equality Zc,i(ny−1)− Zb,iny = 0, it follows that Zc,i(ny−1) may be bounded by
Zc,i(ny−1) = Zb,iny and Zc,i(ny−1) = Zb,iny . Proceeding up the list of constraints in (8), the
constraint pair

Zc,i j−Zb,i(j+1)Zc,i(j+1) ≤ 0, Zb,i(j+1)Zc,i(j+1)−Zc,i j ≤ 0

is now considered for j = ny−2, i.e.:

Zc,i(ny−2)−Zb,i(ny−1)Zc,i(ny−1) ≤ 0, Zb,i(ny−1)Zc,i(ny−1)−Zc,i(ny−2) ≤ 0.

Since Zb,i(ny−1) and Zc,i(ny−1) are both bounded, it follows that Lemma 3 may be applied to
yield ε−p -accurate underapproximations of both −Zb,i(ny−1)Zc,i(ny−1) and Zb,i(ny−1)Zc,i(ny−1)

– denoted by p1
i(ny−1) and p2

i(ny−1), respectively. Replacing the constraints by the
approximations yields:

Zc,i(ny−2)+ p1
i(ny−1)(Zb,i(ny−1),Zc,i(ny−1))≤ 0, p2

i(ny−1)(Zb,i(ny−1),Zc,i(ny−1))−Zc,i(ny−2) ≤ 0.

Noting that

−Zb,i(ny−1)Zc,i(ny−1)− ε−p ≤ p1
i(ny−1)(Zb,i(ny−1),Zc,i(ny−1))

Zb,i(ny−1)Zc,i(ny−1)− ε−p ≤ p2
i(ny−1)(Zb,i(ny−1),Zc,i(ny−1))

for all possible (Zb,i(ny−1),Zc,i(ny−1)) in the box defined by Zb,i(ny−1) ≤ Zb,i(ny−1) ≤ Zb,i(ny−1)

and Zc,i(ny−1) ≤ Zc,i(ny−1) ≤ Zc,i(ny−1) thus leads to the implication

Zc,i(ny−2)+ p1
i(ny−1)(Zb,i(ny−1),Zc,i(ny−1))≤ 0

p2
i(ny−1)(Zb,i(ny−1),Zc,i(ny−1))−Zc,i(ny−2) ≤ 0

⇒
Zc,i(ny−2)−Zb,i(ny−1)Zc,i(ny−1)− ε−p ≤ 0

Zb,i(ny−1)Zc,i(ny−1)− ε−p −Zc,i(ny−2) ≤ 0

⇔ Zb,i(ny−1)Zc,i(ny−1)− ε−p ≤ Zc,i(ny−2) ≤ Zb,i(ny−1)Zc,i(ny−1)+ ε−p .

Because the bilinear terms are bounded, it follows that Zc,i(ny−2) be bounded as well, with
Zc,i(ny−2),Zc,i(ny−2) used to denote the bounds.

Repeating this procedure another ny− 1 times for j = ny− 3, ...,1, one can prove the
existence of the analogous bounds Zc,i j ≤ Zc,i j ≤ Zc,i j and the analogous approximations

Zc,i j + p1
i(j+1)(Zb,i(j+1),Zc,i(j+1))≤ 0, p2

i(j+1)(Zb,i(j+1),Zc,i(j+1))−Zc,i j ≤ 0.

Finally, one arrives at the constraints

Zb,11Zc,11 +
m−1

∑
i=1

za,i ≤ 0, Zb,i1Zc,i1− za,i−1 ≤ 0,

which may be underapproximated by

10 Gene A. Bunin

p11(Zb,11,Zc,11)+
m−1

∑
i=1

za,i ≤ 0, pi1(Zb,i1,Zc,i1)− za,i−1 ≤ 0,

the existence of pi1 for i = 1, ...,m following from the boundedness of Zb,i1 and Zc,i1.
Noting that all of the nonlinear constraints of (8) have been replaced by

piecewise-concave approximations, the general equivalence

max
i

fi(x)≤ 0 ⇔ fi(x)≤ 0, ∀i

may now be used to transform the constraint set into an equivalent set of concave constraints.
(ii) To prove that fNL(y∗app) ≤ fNL(y∗), it is first established that the feasibility of (9)

implies the feasibility of the RCP approximation. Letting (ỹ, t̃) denote a feasible point of
(9), consider first the decomposed problem prior to approximation, with the corresponding
auxiliary variables implicitly fixed as Z̃b,i j = φi j(ỹ j). By recursively exploiting the relation
Zb,i(j+1)Zc,i(j+1) = Zc,i j, one readily obtains the implication

ny

∏
j=1

φ1 j(ỹ j)+
m−1

∑
i=1

za,i ≤ 0

ny

∏
j=1

φi j(ỹ j)− za,i−1 ≤ 0, i = 2, ...,m

⇒ f (ỹ)≤ 0,

which then implies that gNL,i(ỹ) ≤ 0, hNL,i(ỹ) ≤ 0, and −hNL,i(ỹ) ≤ 0, ∀i. Since the
epigraph variable t may be added to the implication above without affecting the validity
of the derivation, the inequality fNL(ỹ)− t̃ ≤ 0 is satisfied as well. Because the RCP
approximation is obtained by relaxing the constraints via underapproximations, it follows
that there would exist a set of auxiliary variables zall = z̃all such that the set (ỹ, t̃, z̃all) be
feasible for the approximation – the choices dictated by z̃a,i−1 =∏

ny
j=1 φi j(ỹ j), Z̃b,i j = φi j(ỹ j),

Z̃b,i(j+1)Z̃c,i(j+1) = Z̃c,i j, and Z̃c,i(ny−1) = Z̃b,iny being one example.
Because (y∗, t∗) = (y∗, fNL(y∗)) is feasible for (9), it follows that there exists a set of

auxiliary variables zall = z∗all such that the decision-variable set (y∗, fNL(y∗),z∗all) is feasible
for the RCP approximation. This point has a cost function value of fNL(y∗), which ensures
that fNL(y∗app) ≤ fNL(y∗) since the global optimum of the RCP approximation can only
improve upon this value.

(iii) Finally, it remains to prove that the potential constraint violations when applying
y∗app to the original problem are bounded by finite-degree polynomials of the approximation
errors. So as to avoid long, messy expressions, any finite-degree polynomial of the vector
of errors ζ with a zero at the origin will be expressed as q(ζ). Because such polynomials
are closed under addition and multiplication, they will be manipulated, for convenience, in
the equivalence sense – e.g., q(ζ) ≡ q(ζ)q(ζ) ≡ asq(ζ), with as ∈ R. The set of all such
polynomials will be denoted by Q.

From (12), it follows that the auxiliary variable Z∗b,i j at the global solution of the RCP
approximation must satisfy

Z∗b,i j = φi j(y∗app, j)+ζp.

Since ζp ∈Q, this may be equivalently restated as

Z∗b,i j ≡ φi j(y∗app, j)+q(ζ).

Following the same recursive procedure as before, note that Z∗c,i(ny−1) ≡ φiny(y
∗
app,ny)+

q(ζ). Starting the chain of implications, one has that

Extended reverse-convex programming 11

Z∗b,i(ny−1)Z
∗
c,i(ny−1) ≡

[
φi(ny−1)(y∗app,ny−1)+q(ζ)

][
φiny(y

∗
app,ny)+q(ζ)

]
≡ φi(ny−1)(y∗app,ny−1)φiny(y

∗
app,ny)+q(ζ),

since φiny(y
∗
app,ny)q(ζ), φi(ny−1)(y∗app,ny−1)q(ζ), and q(ζ)q(ζ) all belong to Q, and thus so

does their sum. Because

Zb,i(ny−1)Zc,i(ny−1)− ε
−
p ≤ Zc,i(ny−2) ≤ Zb,i(ny−1)Zc,i(ny−1)+ ε

−
p

and q(ζ)+ζp ∈Q, it follows that

Z∗c,i(ny−2) = Z∗b,i(ny−1)Z
∗
c,i(ny−1)+ζp ≡ φi(ny−1)(y

∗
app,ny−1)φiny(y

∗
app,ny)+q(ζ).

Generalizing the recursion, it is easy to show that

Z∗c,i j ≡
ny

∏
k= j+1

φik(y∗app,k)+q(ζ),

which then allows the implications

Z∗b,11Z∗c,11 +
m−1

∑
i=1

za,i ≤ 0

Z∗b,i1Z∗c,i1− za,i−1 ≤ 0, i = 2, ...,m

≡

ny

∏
j=1

φ1 j(y∗app, j)+q(ζ)+
m−1

∑
i=1

za,i ≤ 0

ny

∏
j=1

φi j(y∗app, j)+q(ζ)− za,i−1 ≤ 0, i = 2, ...,m

⇒ f (y∗app)+mq(ζ)≤ 0≡ f (y∗app)≤ q(ζ).

The final result, f (y∗app) ≤ q(ζ), yields gNL,i(y∗app) ≤ qg,i(ζgi) for f = gNL,i, q = qg,i,
and ζ = ζgi . The results hNL,i(y∗app) ≤ q+h,i(ζ

+
hi
) and −hNL,i(y∗app) ≤ q−h,i(ζ

−
hi
) follow in the

same manner, and in turn imply that |hNL,i(y∗app)| ≤max
(

q+h,i(ζ
+
hi
),q−h,i(ζ

−
hi
)
)

. ut

From Theorem 1, one sees that it is possible to make the overall errors, as described by
the polynomials q, arbitrarily small as ε−p → 0. This is due to ε−p → 0⇒ ζp→ 0 and the fact
that the polynomials are Lipschitz-continuous with zero values at the origin.

2.3 A Basic Piecewise-Concave Approximation Algorithm

An approximation algorithm for univariate functions that is consistent with Lemma 2 is now
proposed. This algorithm is largely based on the proof of the lemma as given in [4], and may
be qualitatively outlined as follows:

1. The approximation interval is discretized into two evenly spaced grids. One of the
discretizations is coarse and generates wider subintervals intended for the corresponding
pieces of the piecewise-concave function. The other discretization is fine and is used to
obtain a relatively tight bound on the error of the approximation.

2. Concave parabolas that intersect the approximated function at the midpoints of their
respective (coarse) subintervals are constructed. As an additional restriction, the
parabolas are forced to have sufficiently large curvature – enforced via constraints
on their derivatives at the subinterval edges – so as to ensure that each piece of the
piecewise-concave function is only maximal over a single interval.

12 Gene A. Bunin

3. The piecewise maximum of the parabolas is shifted up or down to guarantee an over-
or underapproximation, with the shift corresponding to the error bound as computed for
the fine discretization.

Algorithm 1 (A piecewise-concave approximation by parabolas)
User input: φ : R→ R, κ , np, n f ine

p (a large integer satisfying n f ine
p >> np), x j, x j, ρ (equal

to 1 if an overapproximation is desired and to −1 if an underapproximation).
Output: β2,β1,β0 ∈ Rnp , with p(x j) = max

i=1,...,np

(
β2,ix2

j +β1,ix j +β0,i
)
≈ φ(x j) over [x j,x j].

1. (Discretizations) Define the discretization interval ∆x = (x j − x j)/np and the discrete
coordinate set xd = {x j,x j + ∆x, ...,x j − ∆x,x j}. Define a finer version of both as
∆x f ine = (x j− x j)/n f ine

p and x f ine
d = {x j,x j +∆x f ine, ...,x j−∆x f ine,x j}.

2. (Calculating parabola coefficients) For i = 1, ...,np, compute the coefficients
β2,i,β1,i,β0,i asβ2,i

β1,i
β0,i

 :=

 (xd,i +0.5∆x)2 xd,i +0.5∆x 1
2xd,i 1 0

2xd,i+1 1 0

−1 φ(xd,i +0.5∆x)
2κ

−2κ

 .

3. (Shift to ensure under/overapproximation) For i = 1, ...,n f ine
p + 1, compute the

approximation errors as ε̄p,i := p(x f ine
d,i)−φ(x f ine

d,i) and bound the worst-case error as

min
i=1,...,n f ine

p

ε̄p,i−2.5κ∆x f ine < p(x j)−φ(x j)< max
i=1,...,n f ine

p

ε̄p,i +2.5κ∆x f ine.

If ρ = 1, set β0,i := β0,i + 2.5κ∆x f ine − min
j=1,...,n f ine

p

ε̄p, j, ∀i = 1, ...,np. If ρ = −1, set

β0,i := β0,i−2.5κ∆x f ine− max
j=1,...,n f ine

p

ε̄p, j, ∀i = 1, ...,np.

To make a clean link with the result of Lemma 2, note that to obtain the error bound (10)
provided a certain εp, it is sufficient to set np such that ∆x≤ εp/(2.5κ) [4].

A demonstration of the algorithm when applied to a sinusoidal function is given in Fig. 1,
where one sees that increasing the number of pieces eventually leads to the function being
approximated almost perfectly. Though computationally light and theoretically rigorous,
the algorithm is not very efficient as it does not attempt to adapt to the innate local
concave structures of the approximated function – instead, it simply constructs parabolas
that become more and more needlelike as np is increased. More efficient alternatives are
certainly possible, but are outside the scope of the present work.

For the case when the approximated function is convex, as occurs when approximating
decomposed bilinear terms, the procedure of gridding and obtaining a piecewise-linear
approximation is used. For the composite case of f (aT x+ b), with f convex and a ∈ Rn,
b ∈ R, this is done by adding an auxiliary variable and the linear equality z = aT x+b, and
then approximating the univariate f (z) so as to avoid gridding in higher dimensions.

2.4 A Decomposition and Approximation Example

The decomposition procedure of Lemma 1 together with the approximation steps of
Theorem 1 are sufficient to obtain an arbitrarily good RCP approximation of any factorable
NLP problem that satisfies Assumptions A1 and A2. However, such a procedure is usually

Extended reverse-convex programming 13

0 2 4 6 8 10
−100

−50

0

50

100

0 2 4 6 8 10
−40

−20

0

20

40

60

0 2 4 6 8 10
−30

−20

−10

0

10

20

30

40

0 2 4 6 8 10
−20

−10

0

10

20

30

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

20

j
x

j
x

()
j
xφ

()
j
xφ

()
j
xφ

5
p
n = 10

p
n =

25
p
n = 50

p
n =

100
p
n = 200

p
n =

Fig. 1 Under/overapproximations (dashed lines) of φ(x j) = ∑
5
i=1 i cos

(
(i+1)x j + i

)
(solid line) on the

interval x j ∈ [0,10] as constructed by Algorithm 1. The Lipschitz constant is taken as κ = 70.

not necessary and may not be the most efficient in practice. As two examples of where
inefficiency could arise, note that (a) there is no need to break an equality constraint that
is linear and that (b) there is no need to decompose an inequality constraint function
that is already concave. The following example illustrates how one may decompose and
approximate a given NLP problem using a more practical approach.

Example 1 (RCP approximation of a factorable NLP problem)

Consider the problem

minimize
y1,y2

(siny1)(−y1 +0.3y2)

subject to y1 ∈ [−2,2], y2 ∈ [−5,5].
(13)

The auxiliary variable t is added to obtain a linear cost via the epigraph transformation:

minimize
y1,y2,t

t

subject to (siny1)(−y1 +0.3y2)− t ≤ 0
y1 ∈ [−2,2], y2 ∈ [−5,5].

14 Gene A. Bunin

Introducing the additional variables z1 = siny1 and z2 =−y1 +0.3y2 leads to

minimize
y1,y2,t,z1,z2

t

subject to z1z2− t ≤ 0
siny1− z1 = 0
y1 ∈ [−2,2], y2 ∈ [−5,5]
−y1 +0.3y2− z2 = 0,

where it is noted that z1 ∈ [−1,1] and z2 ∈ [−3.5,3.5] implicitly.
The inequality constraint z1z2− t ≤ 0 is then decomposed as follows:

z1z2− t ≤ 0 ⇔ 0.5(z1 + z2)
2−0.5z2

1−0.5z2
2− t ≤ 0

⇔ 0.5z2
3−0.5z2

1−0.5z2
2− t ≤ 0

z3− z1− z2 = 0,

ε−p →0
⇔ 0.5pa,i(z3)−0.5z2

1−0.5z2
2− t ≤ 0, i = 1, ...,np,a

z3− z1− z2 = 0,

with pa an np,a-piece piecewise-concave approximation of z2
3 over the interval [−4.5,4.5],

as z3 ∈ [−4.5,4.5] follows implicitly from the bounds on z1 and z2.
The equality constraint siny1− z1 = 0 is broken and decomposed as

siny1− z1 = 0 ⇔ siny1− z1 ≤ 0
−siny1 + z1 ≤ 0

ε−p →0
⇔ pb,i(y1)− z1 ≤ 0, i = 1, ...,np,b

pc,i(y1)+ z1 ≤ 0, i = 1, ...,np,c,

(14)

where pb and pc are np,b- and np,c-piece piecewise-concave approximations, over the
interval y1 ∈ [−2,2], of siny1 and −siny1, respectively.

Defining x = (y1,y2, t,z1,z2,z3), the standard-form RCP approximation of (13) follows:

minimize
x

x3

subject to 0.5pa,i(x6)−0.5x2
4−0.5x2

5− x3 ≤ 0, i = 1, ...,np,a
pb,i(x1)− x4 ≤ 0, i = 1, ...,np,b
pc,i(x1)+ x4 ≤ 0, i = 1, ...,np,c
−x1−2≤ 0, x1−2≤ 0
−x2−5≤ 0, x2−5≤ 0
−x1 +0.3x2− x5 = 0
−x4− x5 + x6 = 0.

(15)

3 RCP Regularity

It has been previously shown [27,12] that Problem (2) may be solved reliably by an
enumeration approach for the case where the cost function is not linear but strictly concave.
In particular, such a method exploits the properties that every local minimum (a) must occur
at an intersection of n constraints whose gradients at the minimum are linearly independent,
and (b) may be found by solving the convex “reverse problem” (4). It thus follows that
one may enumerate all of the

(ng
n−nC

)
inequality constraint combinations, solve the reverse

problem for each, and then compare the cost values for the resulting feasible points.
As pointed out by Hillestad and Jacobsen [12], such an enumeration procedure fails to

generalize to problems with a nonstrict concave cost function since the second property need

Extended reverse-convex programming 15

not hold. Because the strict concavity assumption may be too restrictive for some practical
problems, an attempt to relax this restriction is made here.

Definition 2 (RCP regularity) The RCP problem (2) is called “regular” if (3) holds.

Clearly, any regular RCP problem may be solved by enumeration, as solving (4) for
all possible candidate sets iA must yield x∗ as the solution when iA = i∗A. The question of
whether a given RCP problem is regular or not is open to further investigation. Here, a fairly
general sufficient condition for RCP regularity that may be verified for certain problems is
provided.

Theorem 2 (Sufficient condition for RCP regularity) If the global minimum x∗ is a strict
local minimum of (2), then the RCP problem (2) is regular.

Proof Consider Problem (2) following linearization around x∗:

minimize
x

cT x

subject to gi(x∗)+∇gi(x∗)T (x− x∗)≤ 0, i = 1, ...,ng
Cx = d.

(16)

Because x∗ is a strict local minimum of (2), it follows that it solves (16) uniquely [12,
Theorem 6]. Since gi(x∗) = 0, ∀i ∈ i∗A and those constraints that are inactive at x∗ may be
removed without affecting the solution, one has that x∗ must also uniquely solve

minimize
x

cT x

subject to ∇gi(x∗)T (x− x∗)≤ 0, i ∈ iA∗
Cx = d.

(17)

To prove that #iA∗ = n−nC, first note that #iA∗ > n−nC is impossible due to Assumption
B4, as this would imply linear dependence of the gradients of the active constraints. That
#iA∗ < n− nC cannot be true follows from the property that x∗ must be a basic solution of
(2), which constrains the Jacobian of the active set to have rank equal to n [12].

The vector x∗ must also uniquely solve the reverse linearized problem

maximize
x

cT x

subject to ∇gi(x∗)T (x− x∗)≥ 0, ∀i ∈ iA∗
Cx = d,

(18)

as (17) and (18) have the same optimality conditions.
Finally, as (18) is the linearization of (3) around x∗, it follows from the convexity of (3)

that the latter has a smaller feasible region than (18), which implies that x∗ must solve (3)
uniquely as well. The regularity of (2) then follows from Definition 2. ut

A geometric illustration of the proof is given in Fig. 2. It is not difficult to see that RCP
problems with a strict concave cost must only admit strict local minima and that this property
is retained if the problem is placed into standard form following an epigraph transformation
such as the one in (9).

16 Gene A. Bunin

T
c x

T
c x−

*x

1

2

() 0,

() 0

g x

g x

≤

≤

2 () 0g x ≥

1() 0g x ≥
1

2

() 0

() 0

g x

g x

≥

≥

Fig. 2 Geometrical illustration of Theorem 2 and its proof, with the light and dark areas denoting the feasible
and infeasible spaces, respectively, of an RCP problem whose global minimum is defined by two concave
inequality constraints. The shaded regions represent the feasible spaces of the linearized problems. Clearly,
as x∗ is a strict local minimum for the original problem, it is also the strict local minimum for the original
problem linearized around x∗. It is also clear that the linearized reverse problem has the same solution as the
linearized original problem, and, as the infeasible-side linearized set is a superset of gi(x) ≥ 0, ∀i ∈ iA∗ , it
follows that solving the reverse problem over the latter also yields x∗.

4 An Extended RCP Enumeration Framework

The basic framework for an extended RCP enumeration-based solver is now presented in
three parts. The enumeration scheme is outlined first, as this constitutes the base of the
method and guarantees its finite-time convergence to a global minimum of (2) provided
that the problem is regular. The second part then goes through a number of techniques that
may dramatically speed up the search by reducing the number of active sets to be checked.
These are divided into (a) techniques specific to (extended) RCP and (b) domain reduction
techniques that are common to existing global optimization solvers. Finally, the third part
combines these ideas to provide the RCP algorithm as it is coded in this work.

4.1 Enumeration of Active Sets: General Procedure

The global minimum of a regular RCP problem may be found by simply checking all of
the possible

(ng
n−nC

)
active sets, solving the corresponding convex problem (4) for each, and

then comparing the solutions to find the one with the best value. However, much like the
brute vertex-enumeration techniques of concave minimization [15,19], such an approach,
though guaranteed to solve the problem in finite time, is not computationally enviable when(ng

n−nC

)
is large. The work by Ueing [27] has proposed considering active subsets as a means

of bypassing this difficulty – i.e., by solving versions of (4) with less than n−nC inequality
constraints used in the definition of iA. This is essentially the approach pursued here, with
the key difference being that the feasible domain of (4) is further restricted by the addition
of the constraint x ∈ C , where C is some convex set known to contain x∗ (e.g., a convex
relaxation of X).

Envisioning the possible active sets as the ultimate level of a tree (Fig. 3), the basic
idea of checking active subsets involves starting at the base level of the tree, with a single

Extended reverse-convex programming 17

g
1

g
2

g
3

g
2
g

3
g

4
g

3
g

4
g

4

g
3
g

4
g
5

g
4
g
5

g
5
g

4
g
5

g
5

g
5

g
4
g
5
g
6
g
5
g
6
g
6
g
5
g
6
g
6

g
6
g
5
g
6

g
6

g
6

g
6

Fig. 3 The tree of possible active sets and subsets for a problem with n− nC = 4 and ng = 6. The effect
of fathoming the subset {3,4} is demonstrated, with all the resulting fathomed active sets shown via dotted
branches.

inequality constraint, and building up to the final level of n−nC constraints. For the example
of Fig. 3, the method proposed here would check the subsets, represented by their constraint
indices, in the order {1}, {2}, {3}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3},
{1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, with
the resulting full active sets of cardinality n− nC checked last. Subsets such as {1,6}
would not be considered because this branch cannot be “grown” into a full active set
while maintaining the imposed numerical ordering. While such an enumeration potentially
requires more computations than brute enumeration, much useful information may be
discovered while checking the subsets, which makes it possible to remove certain collections
of sets from consideration entirely, thus ultimately reducing the overall computational
burden to far below that of brute enumeration.

This is now formalized in the following lemma.

Lemma 5 (Fathoming of active subsets) Let iÃ denote the index set of ñ < n− nC
inequality constraints of Problem (2), assumed regular with a global minimum x∗ and the
corresponding active set iA∗ , and consider the problem

x̃∗ ∈ argminimize
x

cT x

subject to gi(x)≥ 0, ∀i ∈ iÃ
Cx = d
x ∈ C .

(19)

It follows that

(i) if (19) is infeasible, then iÃ 6⊂ iA∗ ,
(ii) if (19) is feasible and iÃ ⊂ iA∗ , then cT x̃∗ ≤ cT x∗,

(iii) defining iV = {i : gi(x̃∗)≥ 0}, Problem (19) will be feasible for all iÃ ⊆ iV .

Proof (i) By contradiction, suppose that Problem (19) is infeasible but that iÃ ⊂ iA∗ .
Because gi(x∗)= 0, ∀i∈ iA∗ , it follows that gi(x∗)= 0, ∀i∈ iÃ. The equality constraints
are also satisfied at x∗, while x∗ ∈ C by definition. However, this contradicts the
infeasibility of (19), since x∗ is clearly feasible for this problem.

18 Gene A. Bunin

(ii) Since x∗ ∈ C , the constraint x ∈ C may be added to (3) without affecting the solution:

x∗ = argmaximize
x

cT x

subject to gi(x)≥ 0, ∀i ∈ iA∗
Cx = d
x ∈ C .

Consider now the minimization

x∗ ∈ argminimize
x

cT x

subject to gi(x)≥ 0, ∀i ∈ iA∗
Cx = d
x ∈ C ,

(20)

where it is clear that cT x∗ ≤ cT x∗. Since (19) is obtained from (20) by removing certain
constraints, it follows that cT x̃∗ ≤ cT x∗ and, consequently, that cT x̃∗ ≤ cT x∗.

(iii) Since gi(x̃∗) ≥ 0, ∀i ∈ iV , it follows that x̃∗ will be a feasible point for all problems
(19) where iÃ ⊆ iV . ut

One sees that solving Problem (19) is very useful as it does triple duty by

(a) fathoming subsets that cannot define an optimal active set whenever the problem is
infeasible, thereby saving the computational effort of checking the active sets that
include the fathomed combinations as subsets,

(b) providing a lower bound on the globally optimal cost value potentially attained by
certain active sets, thereby allowing for those sets to be fathomed if a feasible point with
a cost value that is lower than this lower bound is found (i.e., cT x∗ < cT x̃∗⇒ iÃ 6⊂ iA∗),

(c) allowing for computational savings by foregoing Problem (19) when it is known to be
feasible due to iÃ ⊆ iV for some previously found iV .

Of these three points, (a) is the most crucial as it allows for entire branches to be removed
from the enumeration. Fig. 3 illustrates this, where fathoming a single subset immediately
removes 6 of the 15 possible active sets.

To properly manage the tree of active sets, fathoming and validation bases are built to
cut out certain branches entirely (Points (a) and (b) above) and to skip solving (19) for
certain others (Point (c)), respectively. These will be denoted by the matrices F and V , both
of width ng with each column corresponding to one of the ng constraints. For algorithmic
convenience, both F and V will be binary with 0 denoting the absence of a constraint and 1
denoting its presence. In the example of Fig. 3, a particular instance of F and V may be:

F =

 0 0 1 1 0 0
1 1 1 0 0 0
0 0 0 0 1 0

 , V =

[
1 0 0 1 0 1
1 0 1 0 0 1

]
.

For F , this may be read as stating that the index subsets {3,4},{1,2,3},{5} 6⊂ iA∗ , thereby
fathoming those iÃ and iA that are supersets of any of these sets. For V , this means that
Problem (19) will be feasible for any iÃ ⊆{1,4,6} or iÃ ⊆{1,3,6}, and thus may be skipped
for those subsets. With respect to the ordering of the constraints in F and V , the convention
used in this paper will be as follows:

– Any constraints that are known to be active at x∗ will be listed first.

Extended reverse-convex programming 19

– The 2n constraints corresponding to the lower and upper bounds on the decision
variables, which will be required for the algorithms presented here, will be listed in
the last 2n columns of F and V , with the last n columns corresponding to the upper
bounds and the n columns before that corresponding to the lower.

– The remaining constraints will be listed in between in the order specified by the user.

4.2 Fathoming and Domain Reduction Techniques

While Lemma 5 provides a basic means to fathom those active sets that cannot define x∗,
a number of additional fathoming rules may be proposed and exploited to expedite the
enumeration further. Some of these take direct advantage of the concavity, the active-set
nature, and the approximation steps that characterize the extended RCP framework.
Others, however, employ standard domain reduction techniques common to modern global
optimization solvers so as to shrink C as much as possible, thereby increasing the number
of subsets for which (19) is infeasible.

4.2.1 Fathoming Techniques Particular to RCP and Extended RCP

Innate Fathoming

Once the RCP problem has been defined, there are certain constraints or constraint
combinations that are innately known to either never intersect or to not define x∗. These
are stated in the following lemma.

Lemma 6 (Innate fathoming rules) The following iÃ, iA all satisfy iÃ, iA 6⊆ iA∗ :

(i) Any iÃ, iA with

rank
[

JÃ
C

]
< ñ+nC, rank

[
JA
C

]
< n+nC (21)

where JÃ (resp., JA) is the Jacobian, at x∗, of the constraints defined by iÃ (resp., iA).
(ii) Any iÃ, iA that includes the pair of indices corresponding to the constraints

pi(xl)+ f (x)≤ 0, p j(xl)+ f (x)≤ 0,

with i 6= j denoting the indices of different pieces of the piecewise-concave function
p(xl) = max

k=1,...,np
pk(xl), univariate in xl , where

∃k ∈ {1, ...,np} : pi(xl) = p j(xl)⇒ pk(xl)+ f (x)> 0,

or

pi(xl) = p j(xl)⇒ xl 6∈ [xl ,xl].

Here, xl and xl are defined as min{xl : x ∈X } and max{xl : x ∈X }, respectively.
(iii) Any iÃ, iA that includes the pair of indices corresponding to the constraints

p+i (x)+ f1(x)≤ 0, p−j (x)− f1(x)≤ 0,

where max
i=1,...,n+p

p+i (x) < − f2(x) and max
j=1,...,n−p

p−j (x) < f2(x) for all x ∈X . Here, p−

is the strict piecewise-concave underapproximation of the function f2 while p+ is the
strict piecewise-concave underapproximation of its negative.

20 Gene A. Bunin

Proof (i) From Assumption B4, it is required that the Jacobian of the active inequality
and equality constraints at x∗ have full rank, which is precluded by (21) as this implies
linear dependence in some of the components.

(ii) Both constraints being active at x∗ implies pi(x∗l)= p j(x∗l), which in turn either implies
pk(x∗l)+ f (x∗)> 0 or x∗l 6∈ [xl ,xl], both of which contradict the feasibility of x∗.

(iii) By contradiction, suppose that both p+i (x)+ f1(x)≤ 0 and p−j (x)− f1(x)≤ 0 are active
at x∗:

p+i (x
∗)+ f1(x∗) = 0

p−j (x
∗)− f1(x∗) = 0 ⇒ p+i (x

∗)+ p−j (x
∗) = 0. (22)

However, from max
i=1,...,n+p

p+i (x)<− f2(x) and max
j=1,...,n−p

p−j (x)< f2(x), it follows that

p+i (x
∗)<− f2(x∗)

p−j (x
∗)< f2(x∗)

⇒ p+i (x
∗)+ p−j (x

∗)< 0,

which contradicts (22). ut

In extended RCP language, the results of Lemma 6 have the following respective
interpretations:

(i) Any combination of linear inequality and equality constraints that are linearly
dependent may be fathomed. This is particularly relevant for bound constraint pairs
(i.e., xL

i ≤ xi and xi ≤ xU
i for i = 1, ...,n) and means that the fathoming basis F may

always be initialized as F :=
[

0n×(ng−2n) In In
]
.

(ii) The combination of non-adjacent pieces in a piecewise-concave approximation where
each piece is only maximal over a single continuous interval may be fathomed (see
Fig. 4 for an illustration). Note that both Algorithm 1 and the standard piecewise-linear
approximation of a strict univariate convex function enforce such an approximation.

(iii) When a univariate nonlinear equality constraint (e.g., sin y1 − z1 = 0 in (14)) is
split with both parts strictly underapproximated, the pairs coming from the different
approximations cannot define together an optimal active set and may be fathomed. This
is equivalent to saying that a strict overapproximation of a function cannot intersect a
strict underapproximation of the same function.

Fathoming Bound Constraint Combinations

A simple way to ensure that Assumption B3 is satisfied is to set lower and upper
limits – xL and xU , respectively – on all of the decision variables in the RCP problem.
As demonstrated in the proof of Theorem 1, such limits exist implicitly for the auxiliary
variables zall when Assumptions A1 and A2 hold. The auxiliary epigraph variable t may also
be bounded as min{ fNL(y) : y ∈Y } ≤ t ≤max{ fNL(y) : y ∈Y }. For the sake of simplicity,
the algorithm presented in this work requires these constraints for all of the variables, not
only because this validates Assumption B3, but also because it simplifies the presentation of
certain subroutines, which depend on X being bounded.

The 2n bound constraints should, of course, be included in the enumerative search and
the active subsets that include their possible combinations should be considered. However,
all points corresponding to a given active subset of bound constraints may be proven
infeasible, and the constraint combination thereby fathomed, via a cheap computational
procedure when C is a convex polytope defined by a set of linear inequalities

C = {x : AC ,i.x≤ bC ,i, i = 1, ...,nC }.

Extended reverse-convex programming 21

l
(
)

(
)

p
x

f
x

+

lx

1 l() () 0p x f x+ =
2 l() () 0p x f x+ =

3 l() () 0p x f x+ =

lx lx
Fig. 4 Illustration of how a crossing between non-adjacent concave constraints of a piecewise-concave
function is bound to lie in the infeasible region when each piece is maximal only over a single interval. Here,
the cross designates the intersection between p1(xl)+ f (x) = 0 and p3(xl)+ f (x) = 0, seen to be infeasible,
while the two round points indicate the feasible intersections of adjacent constraints p1(xl) + f (x) =
p2(xl)+ f (x) and p2(xl)+ f (x) = p3(xl)+ f (x).

The methods proposed in this work will deal exclusively with sets C having this form.
This procedure is possible since choosing a subset of bound constraints fixes the

corresponding variables and allows for a simple minimization of any linear constraint
over the rest. Without loss of generality, let x1, ...,x ˜̃n denote the ˜̃n variables whose bound
constraints have been fixed and let x ˜̃n+1, ...,xn denote the others. Defining

D = {x : xL
i ≤ xi ≤ xU

i , i = 1, ...,n},

suppose, for the purpose of illustration, that one wants to check if the subset iÃ with the first
˜̃n lower bound constraints active can be fathomed. To do this, one may minimize the linear
portion of each constraint in C as follows:

minimize
x∈D

AC ,i.x

subject to x j = xL
j , ∀ j = 1, ..., ˜̃n,

(23)

and then check if the objective value is strictly superior to bC ,i. If so, then it follows that any
point in D with the first ˜̃n lower bound constraints active will fail to satisfy AC ,i.x ≤ bC ,i,
thereby implying that these bound constraints could not define x∗ since x∗ ∈ C . This check
is carried out for all i = 1, ...,nC , with the failure to satisfy any one constraint sufficient to
fathom the bound constraint combination.

It is easily shown that the minimal objective value of (23) has the analytical expression
˜̃n

∑
j=1

AC ,i jxL
j +

n

∑
j= ˜̃n+1

min
[
AC ,i jxL

j , AC ,i jxU
j
]
.

Although this method can provide useful fathoming information at a very low price,
running this check for all possible active sets and subsets generated by the bound constraints
may nevertheless be computationally expensive. A scheme is therefore proposed to check

22 Gene A. Bunin

the different sets in a branching manner that is similar in nature to the general active-set
enumeration. As in the general enumeration, subsets from lowest to highest cardinality are
built, with each node split in two by activating both the lower and upper bounds of an
additional variable and checking if the resulting subsets may be proven infeasible. To ensure
that the algorithm terminates fairly quickly, early termination is enforced if the number of
nodes grows too large. While this heuristic rule does not rigorously guarantee termination
within a certain number of operations, it has been noted to be sufficient in practice, since
the number of nodes usually either explodes or stays at reasonable levels, with the algorithm
tending to terminate quickly in the latter case.

Subroutine A (Fathoming bound constraints)
User input: C , D , F , and M, with M being the upper limit on the number of nodes.
Output: F (updated).

1. (Initialize tree) Set B := 01×2n.
2. (Check if search has exhausted all nodes) If B =∅, terminate. Otherwise, go to Step 3.
3. (Cardinality and definition of active bound constraints for first node) Set [b1

c b
1
c] := B1.,

with b1
c ,b

1
c ∈ R1×n containing the first and last n elements of B1., respectively. Remove

the first row of B and set bc := b1
c + b

1
c . Let ˜̃n denote the index of the last non-zero

element of bc, with ˜̃n := 0 if bc = 0. If ˜̃n = n, return to Step 2. Otherwise, proceed to
Step 4.

4. (Branching and fathoming) For k := ˜̃n+1, ...,n:
(a) Define bc and bc as the vectors b1

c and b
1
c with their kth indices set to 1.

(b) If

∃i ∈ {1, ...,nC } : ∑
j:bc, j=1

AC ,i jxL
j + ∑

j:b1
c, j=1

AC ,i jxU
j

+ ∑
j:bc, j ,b

1
c, j=0

min
[
AC ,i jxL

j , AC ,i jxU
j
]
> bC ,i

(24)

and

6 ∃i : Fi. = [01×(ng−2n) bc b
1
c], (25)

then the active subset corresponding to bc and b
1
c cannot define x∗ and may be

appended to the fathoming basis:

F :=

[
F

01×(ng−2n) bc b
1
c

]
.

If neither (24) nor (25) is true, then this branch should be grown and explored
further:

B :=

[
B

bc b
1
c

]
.

Likewise, if

∃i ∈ {1, ...,nC } : ∑
j:b1

c, j=1

AC ,i jxL
j + ∑

j:bc, j=1

AC ,i jxU
j

+ ∑
j:b1

c, j ,bc, j=0

min
[
AC ,i jxL

j , AC ,i jxU
j
]
> bC ,i

(26)

Extended reverse-convex programming 23

and

6 ∃i : Fi. = [01×(ng−2n) b1
c bc], (27)

then the active subset corresponding to b1
c and bc cannot define x∗ and may be added

to the fathoming basis:

F :=
[

F
01×(ng−2n) b1

c bc

]
.

If neither (26) nor (27) is true, then this branch should be grown and explored
further:

B :=
[

B
b1

c bc

]
.

5. (Heuristic termination rule if too many nodes) If the number of rows in B is superior to
M, terminate. Otherwise, return to Step 2.

Fathoming Separable Concave Constraints

Let

DC = {x : xL
C ,i ≤ xi ≤ xU

C ,i, i = 1, ...,n}

denote the box defined by the C -induced bounds xL
C ,i = min{xi : x ∈C } and xU

C ,i = max{xi :
x ∈ C }. Clearly, C ⊆DC .

One may prove the inactivity of a given concave constraint over DC , and thereby C , by
computing its maximum value on DC and showing that it is strictly inferior to 0. This may
be done in the general nonseparable case by solving a single convex optimization problem,
and indeed this is what happens in (19) when #iÃ = 1. However, a faster check may be
performed for the separable case since, for a given gi,

max
x∈C

gi(x)≤ max
x∈DC

gi(x) = gi0 +
n

∑
j=1

max
x j∈[xL

C , j ,x
U
C , j]

gi j(x j), (28)

with gi j denoting the univariate components and gi0 in particular denoting the constant term.
Since each component is a univariate concave function on a closed interval, each gi j must
reach its maximum at either xL

C , j, xU
C , j, or a stationary point where dgi j/dx j = 0. As checking

these cases n times is significantly cheaper than maximizing gi over C , (28) offers an easy
way to quickly fathom gi if it is irrelevant.

Subroutine B (Fathoming separable concave constraints)
User input: DC , g, F .
Output: F (updated).
For i = {1, ...,ng−2n}\{i : gi not separable}:

1. (Maximize univariate components) For j = 1, ...,n, compute

max
x j∈[xL

C , j ,x
U
C , j]

gi j(x j) = max
[
gi j(xL

C , j),gi j(xU
C , j),gi j(x0

j)
]

x0
j ∈
{

x j :
dgi j

dx j

∣∣∣
x j
= 0, xL

C , j ≤ x j ≤ xU
C , j

}
,

with gi j(x0
j) := −∞ if no x0

j satisfying the stationarity condition and xL
C , j ≤ x0

j ≤ xU
C , j

exists.

24 Gene A. Bunin

2. (Check potential constraint activity over DC) If

gi0 +
n

∑
j=1

max
x j∈[xL

C , j ,x
U
C , j]

gi j(x j)< 0,

and 6 ∃ j : Fj. = [01×(i−1) 1 01×(ng−2n−i) 01×2n], then set

F :=
[

F
01×(i−1) 1 01×(ng−2n−i) 01×2n

]
.

Mandatory Constraints

Certain constraints are known to be active at x∗ by inspection, and should thus be
included in every iÃ and iA considered (i.e., they are “mandatory”). A very common
occurrence of such constraints arises during the epigraph transformation of the cost as
shown in (9), where the added constraint must be active at an optimum, with at least one
of the constraints obtained following the decomposition/approximation of this constraint
also forced to be active. This may be seen as an implicit fathoming technique since it
removes from consideration those sets that do not contain the mandatory constraints without
attempting to list all such sets explicitly in F .

4.2.2 General Domain Reduction Techniques

Domain reduction techniques [5] are standard in several of the currently available global
optimization solvers [17], and have been credited for reducing the computational effort of a
complete global search significantly [23,28]. This is no different in extended RCP, where the
use of domain reduction techniques to shrink DC and, consequently, C can make solution
times orders of magnitude faster. The particular characteristic of the RCP enumeration with
respect to domain reduction techniques is that domain reduction allows for more subsets to
be fathomed earlier in the search.

A fairly general domain reduction routine, with a slight modification, is presented first.

Subroutine C (Domain reduction)
User input: DC , C , XC , and εX . The matrix XC ∈ Rn×2n contains the 2n coordinates
corresponding to the points where the n variables reach their lower and upper bounds on
C . The tolerance εX > 0 is used to define the termination criterion.
Output: DC (updated), C (updated), XC (updated).

1. (Compute initial coordinates corresponding to xL
C ,x

U
C) If XC 6= ∅, go to Step 3.

Otherwise, for each i = 1, ...,n, compute the point corresponding to the minimum value
that xi can take on C :

xC ∈ argminimize
x

xi

subject to x ∈ C
(29)

and set xL
C ,i := xC ,i. Likewise, compute the point corresponding to the maximum value

that xi can take on C :

xC ∈ argmaximize
x

xi

subject to x ∈ C
(30)

and set xU
C ,i := xC ,i. Set XC ,i. := [xT

C xT
C].

2. (Update C) Use the updated DC to update C accordingly. Set X0
C := XC .

3. (Re-compute coordinates corresponding to xL
C ,x

U
C) For i = 1, ...,n:

Extended reverse-convex programming 25

(a) Set [xT
C xT

C] := XC ,i., with xT
C ,x

T
C ∈ Rn vectors corresponding to the first and last n

columns of XC ,i., respectively.
(b) If xC ∈ C , proceed to Step 3c. Otherwise, reorder the constraints of C so that

AC ,1.xC −bC ,1 ≥ AC ,2.xC −bC ,2 ≥ ...≥ AC ,nC .xC −bC ,nC
.

(i) Set ñC := n−nC.
(ii) Construct

AC ,e :=

C

AC ,1.
...

AC ,ñC .

 , bC ,e :=

d

bC ,1
...

bC ,ñC

 . (31)

(iii) If rank AC ,e < n, set ñC := ñC + 1 and return to (ii). Otherwise, set xC :=
A†

C ,ebC ,e.
(iv) If xC ∈ C , check that xC is an optimal solution of (29) by verifying

the stationarity condition ∃λ ∈ RñC
+ ,µ ∈ RnC : [01×(i−1) 1 01×(n−i)] +

∑
ñC
i=1 λiAC ,i. + ∑

nC
i=1 µiCi. = 0. A cheap way to do this is by taking the

pseudoinverse to solve for the Lagrange multipliers. If this cannot be verified,
or if xC 6∈ C , re-compute xC by solving (29). Set xL

C ,i := xC ,i.
(c) If xC ∈ C , proceed to Step 3d. Otherwise, reorder the constraints of C so that

AC ,1.xC −bC ,1 ≥ AC ,2.xC −bC ,2 ≥ ...≥ AC ,nC .xC −bC ,nC
.

(i) Set ñC := n−nC.
(ii) Construct AC ,e and bC ,e as in (31).

(iii) If rank AC ,e < n, set ñC := ñC +1 and return to (ii). Otherwise, define xC :=
A†

C ,ebC ,e.
(iv) If xC ∈ C , check that xC is an optimal solution of (30) by verifying

the stationarity condition ∃λ ∈ RñC
+ ,µ ∈ RnC : [01×(i−1) − 1 01×(n−i)] +

∑
ñC
i=1 λiAC ,i. + ∑

nC
i=1 µiCi. = 0. If this cannot be verified, or if xC 6∈ C ,

re-compute xC by solving (30). Set xU
C ,i := xC ,i.

(d) Set XC ,i. := [xT
C xT

C].
4. (Termination) If ‖XC −X0

C ‖max < εX , terminate. Otherwise, return to Step 2.

The above subroutine essentially updates the box DC by solving linear programming
(LP) problems to compute the minimal and maximal bounds on the individual variables,
which are then used to redefine and shrink C . The aforementioned “slight modification”
comes via storing the old solution points in XC and using them whenever possible to avoid
solving (29) and (30), either by (a) verifying that the old point is still inside C and thus
does not need updating or by (b) projecting the old point on the “most active” constraints in
hopes of this being the active set that would solve (29) or (30) by simple pseudoinversion. It
should be mentioned that storing XC may reduce the computational burden of (29) and (30)
significantly as well, as it provides a warm start for what are already LP problems. Other
techniques may provide further computational speed-ups (see, e.g., [28,26]), but have not
been considered in this work.

Of crucial importance in Subroutine C is the “update C accordingly” in Step 2, which
is pertinent since the definition of C will in general be dependent on the definition of DC .
Noting that Cx = d, any linear gi, and the box D may be incorporated into C directly, the

26 Gene A. Bunin

other elements that may contribute to the definition of C – namely, convex underestimators
and cutting planes – are now discussed in some detail.

Convex Underestimators

Denote by li(x) ≤ gi(x),∀x ∈ DC a linear underestimator of the (nonlinear) concave
constraint gi(x) ≤ 0 over DC . It is well known that the efficiency of such underestimators
will depend on the degree of nonlinearity of gi as well as on the size of DC . Incorporating
li(x)≤ 0 into C therefore makes the iterative domain reduction as described in Subroutine C
possible, as tightening DC makes the constraint li(x) ≤ 0 more restricting, which in turn
allows for further tightening of DC , and so on. Two particular cases – arguably the two most
relevant ones in the extended RCP methodology – are addressed here.

The first corresponds to the case where gi is separable, as this allows one to construct a
convex (linear) underestimator of gi by constructing the convex (linear) underestimators
of its univariate components, gi j. As all of these components are concave, the convex
underestimator of each gi j is simply the line segment joining the points (xL

C , j,gi j(xL
C , j))

and (xU
C , j,gi j(xU

C , j)). Their sum then gives the underestimator of gi [7].
The second case of interest is that of the univariate piecewise-concave function as

generated by Algorithm 1. It is not difficult to show that the convex underestimator of
such a function is simply the (piecewise-linear) convex underestimator of the intersection
points of the adjacent pieces, together with the points corresponding to the lower and upper
boundaries xL

C and xU
C . A number of algorithms designed for the more general problem of

computing the convex hull of a planar set are readily applicable to compute the convex
underestimator here. The algorithm employed in this work was a modified version of
Graham’s method [10].

Local Minimization and Cutting Planes

Given some feasible point x0, it is often reasonable to put in the computational effort for
a local optimization so as to bring this point to a local minimum, x∗loc, of the RCP problem.
The resulting point, in some cases already the global minimum, then gives an upper bound
on the globally optimal cost value and allows for the cutting plane constraint cT x ≤ cT x∗loc
to be added to C . In the author’s experience, this is arguably the most important constraint
with respect to the domain reduction, as finding a very good upper bound on the cost tends
to lead to drastic reductions in DC .

Subroutine D (Local minimization)

User input: x0 (optional), xup (optional), U , DC , C , gi, C, and d, where U is an upper bound
on the random samples used to find x0 if it is not provided, while xup is the best known point
satisfying cT x∗ ≤ cT xup.
Output: C (updated), xup (updated).

1. (Search for a feasible point) If a feasible x0 is provided, proceed to Step 2. Otherwise,
randomly sample DC until (a) a feasible x0 is found or (b) U samples have failed to find
a feasible point. In the case of (a), proceed to Step 2. Otherwise, terminate.

2. (Local minimization of the RCP problem) Initialize a local solver at x0 and solve (2) to
local optimality to obtain x∗loc.

3. (Updating the cost cutting plane) If cT x∗loc < cT xup, set xup := x∗loc and replace the cost
cutting plane in C with cT x ≤ cT x∗loc. If no xup was provided, then simply add this
constraint to C .

Extended reverse-convex programming 27

4.3 Detailed Outline of the Proposed RCP Algorithm

Bringing together the ideas of the previous two subsections, the entire algorithm is now
presented.

Algorithm 2 (Enumerative RCP algorithm)
User input: c, gi, C, d, C , D , M, DC , U , F , εX , εg, and ε . The matrix F should be populated
according to the innate fathoming rules described in Section 4.2. The tolerances εg > 0 and
ε > 0 correspond to acceptable constraint violations and suboptimality, respectively. It is
assumed that both Cx = d and x ∈D are included in the definition of C .
Output: X∗ (the matrix of solution candidates).

1. (Initialization) Set N := 0 as the counter for the optimization problems solved. Set
X∗,V :=∅. Set XV :=∅ as the matrix of points corresponding to the different members
of V . Set S := [11×nm 01×(ng−nm)] as the binary matrix corresponding to the candidate
active sets and subsets – initially a vector with only the nm mandatory constraints
accounted for. Set slow := 0 as the vector of lower bounds corresponding to the constraint
sets in S, initially a scalar with the dummy value of 0 that serves as a place holder. Set
XC :=∅.

2. (Initial upper bound) Run Subroutine D with no x0,xup provided (unless a feasible point
is somehow known, in which case use this point as x0), and augment the counter as
N := N +1. If Subroutine D fails to find a feasible point, set xup as

xup ∈ argmaximize
x

cT x

subject to x ∈ C

and augment the counter as N := N +1.
3. (Initial domain reduction) Run Subroutine C and augment the counter as N := N +NC,

where NC is the number of times that Problems (29) or (30) are solved.
4. (Fathoming of bound and separable constraints) Run Subroutines A and B.
5. (Solving the convex relaxation) Solve the relaxed problem

xlow ∈ argminimize
x

cT x

subject to x ∈ C ,
(32)

and augment the counter as N := N + 1. If max
i=1,...,ng

gi(xlow) ≤ εg, then terminate and

declare X∗ := xT
low. Alternatively, if cT xup−cT xlow ≤ ε , terminate and declare X∗ := xT

up.
6. (Setting the node to branch on) If S = ∅, terminate. Otherwise, set s̃1 := S1.. Remove

the first row of S and the first element of slow. Denote by ñg the index of the last
non-zero element of s̃1, setting ñg := 0 if s̃1 = 0. If ‖s̃1‖1 < n− nC − 1, proceed to
Step 7. Otherwise, proceed to Step 8.

7. (Checking active subsets) Set ik := {i : ñg + 1 ≤ i ≤ ng}, ordered in increasing order,
and define those indices of ik for which individual constraints have been fathomed as
iF := {i : ∃ j : Fj. = [01×(i−1) 1 01×(ng−i)], i ≥ ñg + 1}. Set ik := ik \ iF . Remove the
last n− nC−‖s̃1‖1− 1 elements of ik to avoid exploring those branches that terminate
without being able to reach full cardinality, i.e., n−nC members. Set k equal to the first
element of ik, then:
(a) (Choose subset) Define the candidate subset, s̃, as s̃1 with the kth element set to 1.

Define the corresponding index set as iÃ = {i : s̃i = 1}.
(b) (Check if subset is spanned by fathoming basis) If ∃i : Fi. ⊆B s̃, then iÃ 6⊂ iA∗ and

may be fathomed. Proceed to Step 7g.

28 Gene A. Bunin

(c) (Check if subset belongs to validation basis) If ∃i : s̃⊆B Vi., then Problem (19) must
be feasible for iÃ and may be skipped. Its corresponding lowest cost value may be
set to the best available lower bound on the cost. Expand the tree by setting

S :=
[

S
s̃

]
, slow :=

[
slow

cT xlow

]
and proceed to Step 7g.

(d) (Check validity of subset by solving (19)) Solve (19) and augment the counter as
N := N+1. If infeasible, then iÃ 6⊂ iA∗ and may be fathomed. Since it is not spanned
by the fathoming basis already (or it would have been removed in Step 7b), add it to
the fathoming basis by setting

F :=
[

F
s̃

]
and proceed to Step 7g. If (19) is feasible, expand the tree by setting

S :=
[

S
s̃

]
, slow :=

[
slow
cT x̃∗

]
.

(e) (Update the validation basis) Set iV := {i : gi(x̃∗) ≥ 0} as the index set of active
constraints at x̃∗, and let vc denote its corresponding binary (row) vector, so that
vc,i = 1, ∀i ∈ iV . Remove any rows i from V for which Vi. ⊆B vc, together with the
corresponding rows from XV , as these are now redundant. Update V and XV as

V :=
[

V
vc

]
, XV :=

[
XV

(x̃∗)T

]
.

(f) (Local minimization and domain reduction) If gi(x̃∗)≤ 0, ∀i = 1, ...,ng or if N > 50,
run Subroutine D (N := N +1) with x̃∗ as the initial point in the former case and no
initial point in the latter (in this case, reset N := 0). If xup changes, follow with
Subroutines C (N := N +NC), A, and B, and then repeat the procedure of Step 5.
For any rows i of S where slow,i > cT xup, transfer the corresponding rows Si. to F and
delete these elements from slow, as none of these subsets can contribute to defining
x∗ since the lowest cost value they can achieve is superior to cT x∗. Find any indices
i : (XV,i.)

T 6∈ C and remove these rows from V and from XV , as these entries of the
validation basis are no longer valid for the updated C .

(g) (Proceed to next branch) If k is the last element of ik, return to Step 6. Otherwise,
set k as equal to the next element of ik and return to 7a.

8. (Active set enumeration) Set ik := {i : ñg + 1 ≤ i ≤ ng}, define iF as in Step 7, and set
ik := ik \ iF . Set k equal to the first element of ik, then:
(a) (Choose active set candidate) Define the candidate active set, s̃, as s̃1 with the kth

index set to 1. Define the corresponding index set as iA = {i : s̃i = 1}.
(b) (Check if set is spanned by fathoming basis) If ∃i : Fi. ⊆B s̃, then iA 6= iA∗ and may

be ignored. Proceed to Step 8d.
(c) (Compute global optimum candidate) Solve (4), denoting the solution by x∗cand . If

gi(x∗cand)≤ εg, ∀i = 1, ...,ng, then append x∗cand to the solution set

X∗ :=
[

X∗

(x∗cand)
T

]
.

(d) (Proceed to next active set candidate) If k is the last element of ik, return to Step 6.
Otherwise, set k as equal to the next element of ik and return to 8a.

Some remarks:

Extended reverse-convex programming 29

– There are three ways for Algorithm 2 to terminate. Criteria I and II will be defined as
termination due to a sufficiently tight C , which yields a relaxed solution that either, in
the case of I, satisfies the concave constraints with an acceptable tolerance εg or, in the
case of II, yields a lower bound on the cost that is sufficiently close to the value at a local
minimum that has already been found. Criterion III indicates that the full enumeration
has been carried out, in which case the full set of candidates X∗ is reported – the
member(s) with the lowest cost value corresponding to the global minimum (minima).
If X∗ is empty, then this implies that the RCP problem is infeasible.

– Note that Termination Criteria I and II do not require the RCP problem to be regular, as
both declare a solution by more traditional means. Regularity is required for Termination
Criterion III to be valid, however. Also note that Criterion III will yield all global minima
in the case that multiple minima exist, while I and II may terminate as soon as just one
of these is found and proven to be globally optimal within a certain tolerance.

– Some care should be taken with respect to the numerical tolerances of the optimization
problems and subroutines involved in the algorithm, as failing to do so may lead to a
nonrobust implementation with some feasible solutions being fathomed due to slight
numerical infeasibility. As just one example, consider the case of a local solver finding
the globally minimal cost (in Subroutine D) lowered by a numerical error of −10−4,
and thereby reporting cT xup = cT x∗ − 10−4. If this is then incorporated into C as a
cutting plane constraint on the cost and is used by a different solver to solve the domain
reduction and relaxed problems, it may be that the latter cannot find a feasible solution
as the reported upper bound is slightly below what is feasible. Details regarding where
all such tolerances should be accounted for would result in a lengthy discussion, which
the reader is spared, but it is worth noting that they are quite important nevertheless.

– The counter N adds a heuristic rule by which the RCP solver decides to “take a break”
from the enumeration to perform a local minimization and hopefully find a new local
optimum with which to refine C . This is the only non-deterministic feature of the
algorithm, since the initial starting point for the local minimization will be randomly
generated.

– Algorithm 2 builds the active-set tree (e.g., Fig. 3) dimension by dimension, which
results in Step 7 being exhausted before Step 8 is reached, with the latter corresponding
to the solution of the reverse problems (4) for any active sets that have not been
fathomed. Since the validation basis V is no longer needed in Step 8, it is no longer
updated or used there.

– The choice to order the elements of ik in increasing order is not mandatory, and other
choices could be proposed. Essentially, this affects how the constraints are ordered when
growing the branches, and is likely to affect performance. It is difficult to say if this
choice could be optimized, although strategies that are analogous to those used in the
more standard branch-and-bound schemes [16,26,1] could be proposed.

5 Illustrative Examples

Five NLP examples are chosen to illustrate the strengths and weaknesses of the proposed
algorithm. Of these, the first two are problems that are already in standard RCP form and
do not need approximation, the third is a concave minimization problem that is put into the
standard form via the epigraph transformation, and the last two are NLP problems that are
approximated and solved as RCPs. The size of the problems ranges from n = 2 to n = 200,

30 Gene A. Bunin

although for the most part the problems are small and intended only to illustrate the viability
of the proposed method.

The algorithm and all subroutines were coded in MATLAB R©, with the CVX-SeDuMi
modeling-solver combination [25,11,6] used for solving all of the convex subproblems.
All local (nonconvex) minimizations were done with the MATLAB routine fmincon. For
all optimizations, it was verified that the solution converged to a local minimum using the
built-in verification mechanisms of each solver. Since the dominant computational effort
of the framework lies in the number of optimization problems solved by Algorithm 2, the
computational effort for each example is reported in terms of the number of times that each
type of optimizer is called, with the following three types being relevant:

– “Convex”: Problems (19) and (4), which are general convex NLPs. With the exception
of Example 2, these are always quadratically constrained problems with a linear cost.

– “LP”: Given as two numbers, N1 +N2, with N1 denoting the LP problems (29) and (30)
solved during domain reduction and N2 denoting the LP relaxation (32) solved over C .

– “Local”: Problem (2) solved to local optimality.

The tolerances for the algorithm were set as ε := 10−3,εg := 10−6,εX := 10−4, with the
values M := 100 and U := 106 used for Subroutines A and D, respectively.

The RCP regularity of each problem is verified by confirming that x∗ must be a strict
local minimum. Without going into the details of each example, the general procedure that
is applicable to all of the problems considered here is summarized as follows:

1. By contradiction, it is supposed that x∗ is not a strict local minimum and that there exists

a feasible direction in the null space of
[

cT

C

]
.

2. Analyzing all such directions shows that the optimal active set indexed by iA∗ cannot
remain active in these directions due to the negative definiteness (strict concavity) of
some of its elements.

The interested reader is referred to an earlier draft of this paper for the proofs for each
problem individually [3, §5].

Example 2 (A low-dimensional problem with concave constraints)

The following problem is solved:

minimize
x1,x2

cT x

subject to −2.42(x1 +0.4)2 +1.1x1 + x2−0.235≤ 0
−1.1x2

1 +1.3x1− x2−0.17≤ 0
−e−5x1+4− x2 +1.2≤ 0
−(x1−0.5)2− (x2−0.5)2 +0.09≤ 0
−22(x1−0.3)2 +1.1x1 + x2−1.155≤ 0
−2.2(x1−0.5)2 +1.1x1 + x2−1.475≤ 0
−20(x1−0.1)2 +1.3x1− x2 +0.5≤ 0
−xi ≤ 0, xi−1≤ 0, i = 1,2,

(33)

which is already in standard RCP form and has, as one of its major characteristics, a
disconnected feasible region (Fig. 5).

Computational results for ten randomly generated c are reported in Table 1, and it is seen
that the computational burden for this problem is quite light. It is worth noting that the brute
enumeration approach would require solving

(11
2

)
= 55 convex problems to arrive at the

Extended reverse-convex programming 31

x
1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 5 The feasible region (lined) of (33) with the cost contours and global minimum given for the case of
c1 = 0.1, c2 = 1.0.

Table 1 Computational effort for Example 2.

c1 c2 Convex LP Local Termination

0.1 1.0 3 7 + 2 2 I
1.0 0.4 0 4 + 1 1 I
−0.2 0.7 0 6 + 1 1 I
−0.1 0.1 0 5 + 1 1 I
−0.6 2.2 0 8 + 1 1 I

0.7 1.6 4 8 + 2 2 I
0.6 −0.6 13 4 + 1 1 III
1.1 0.1 0 5 + 1 1 I
−0.1 −0.8 0 4 + 1 1 I

0.3 −1.3 6 4 + 1 1 III

solution, which, though probably acceptable, still requires significantly more computation
than Algorithm 2. Finally, one sees that in over half of the cases, domain reduction finds the
solution before the enumeration begins.

Example 3 (High-dimensional RCP problems with favorable complexity)

Consider the RCP problem

minimize
x

n

∑
i=1

xi

subject to 1−
n

∑
i=1

wix2
i ≤ 0

−xi ≤ 0, i = 1, ...,n,

(34)

32 Gene A. Bunin

0

2

1

1 0

n

i i

i

w x

=

− ≤∑

2

1

1 0

n

i i

i

w x

=

− ≥∑

Fig. 6 A two-dimensional cut of the decision-variable space from the example in (34), where the strict
positivity of the cost vector coefficients ensures that the solution always lie on the intersection of the strictly
concave constraint and n−1 of the bound constraints.

with w ∈ Rn
++ a random vector with ‖w‖∞ ≤ 1. A two-dimensional cut of this problem

is shown in Fig. 6, from which it is easily seen that the difficulty arises from the ellipse
centered at the origin, generated by the single strictly concave constraint. This is, however,
an example of an RCP with favorable complexity, as the number of active sets, without any
fathoming, is equal to

(n+1
n

)
= n+ 1 and scales linearly in n. As such, one could always

solve this problem by solving n convex optimization problems (the active set corresponding
to x = 0 may be fathomed as the solution for this set is clearly infeasible). In fact, one
could do even better and apply RCP theory directly, from which it is known that the global
optimum must lie at a point where n−1 of the variables are 0, thus leading to the analytical
solution

x∗i =

√

1
wi

, wi = ‖w‖∞

0, otherwise

for the non-pathological case where only one element of w is equal to ‖w‖∞.
To test how the proposed method solves the problem, Algorithm 2 is run for various

dimension sizes n. Because the algorithm requires upper bounds on the variables as well,
an additional set of dummy constraints, xi − 100 ≤ 0, i = 1, ...,n, is provided, although
these are fathomed during initialization. Table 2 reports the results, where it is seen that the
domain reduction techniques alone are able to solve the problem in all of the cases except
for n = 20 and n = 200. For the most part, the number of LP problems that are solved
seems to scale well with n, with the problems corresponding to n = 120 and n = 180 being
notable exceptions. For all of the examples considered, the total number of convex problems
solved, excluding the LP and Local problems, is always inferior to the quantity that would
be required by the brute enumeration (n).

Example 4 (Concave minimization)

The following problem is solved:

Extended reverse-convex programming 33

Table 2 Computational effort for Example 3.

n Convex LP Local Termination

20 20 118 + 2 2 III
40 1 299 + 2 2 I
60 1 441 + 2 2 I
80 0 433 + 1 1 I
100 1 589 + 2 2 I
120 43 1834 + 4 4 I
140 0 574 + 1 1 I
160 0 787 + 1 1 I
180 3 3206 + 4 4 I
200 159 2523 + 5 5 III

minimize
y

−50yT y+αcT
y y

subject to Ay≤ b
yi ∈ [0,1], i = 1, ...,10,

where A and b are defined as

A =

2 −6 −1 0 −3 −3 −2 −6 −2 −2
6 −5 8 −3 0 1 3 8 9 −3
−5 6 5 3 8 −8 9 2 0 −9

9 5 0 −9 1 −8 3 −9 −9 −3
−8 7 −4 −5 −9 1 −7 −1 3 −2

 , b =

−4
22
−6
−23
−12

 ,
and where cy = [48 42 48 45 44 41 47 42 45 46]T . The scalar α is varied for test purposes,
with α := 1 corresponding to Test Problem 2.6 from [8].

This problem is easily converted into standard RCP form by applying the epigraph
transformation to the nonlinear portion of the cost function:

minimize
x

[
αcy

1

]T

x

subject to −50xT
[

I10
0

]
x− x11 ≤ 0

[A 05×1]x−b≤ 0
−xi ≤ 0, xi−1≤ 0, i = 1, ...,10
−x11−500≤ 0, x11 ≤ 0.

The bounds on the auxiliary variable x11 correspond to a conservative approximation of the
minimum and maximum values of −50yT y over Y . It is clear that the new constraint is
mandatory and must belong to any active set that is considered.

Table 3 presents the computational results for different values of α . With the exception
of the problems corresponding to α := 0.1 and α := 1, it is seen that domain reduction is
once again very effective here, with a single initial local minimization sufficient to allow
for the scheme to reduce the domain and find x∗ by solving the relaxed problem. For the
two problems where this does not occur and where more computation is needed, it is not
entirely inappropriate to blame the issues on “bad luck” – the subroutines are simply unable
to find useful local minima with which to reduce the domain. This is particularly clear for
α := 1, where one sees that the majority of the effort goes into solving the convex problems

34 Gene A. Bunin

Table 3 Computational effort for Example 4.

α Convex LP Local Termination

−10 0 63 + 1 1 I
−1 0 73 + 1 1 I
−0.1 0 66 + 1 1 I

0 0 68 + 1 1 I
0.1 252 142 + 3 6 I

1 2413 50 + 12 28 III
10 0 49 + 1 1 I

and not reducing the domain (in a ratio of 2413 : 50), in spite of a fairly large number
of local minimizations performed (i.e., 28). As a result, the algorithm goes through the
full enumeration and terminates by Criterion III. While solving 2413 convex problems is
probably not desirable, the algorithm is nevertheless orders of magnitude more efficient
than the brute enumeration, which would require solving

(27
10

)
= 8436285 convex problems

if it is taken into account that the first constraint is mandatory.

Example 5 (Extended RCP with lower and upper bounds on the optimal cost)

The problem of Al-Khayyal and Falk [2] is approximated by an RCP problem:

minimize
y

−y1 + y1y2− y2

subject to −6y1 +8y2 ≤ 3
3y1− y2 ≤ 3
y1,y2 ∈ [0,5]

≈

minimize
x

−x1− x2 +0.5x3

subject to pi(x4)− x2
1− x2

2− x3 ≤ 0, i = 1, ...,np
−6x1 +8x2−3≤ 0
3x1− x2−3≤ 0
−xi ≤ 0, xi−5≤ 0, i = 1,2
−x3 + ε p ≤ 0, x3−50− ε p ≤ 0
−x4 ≤ 0, x4−10≤ 0
x1 + x2− x4 = 0,

where p(x4) ≈ x2
4 is a piecewise-linear approximation and where ε p,ε p denote additional

slacks added to the bound constraints on x3 to account for approximation error. Both
under/overapproximations are used as they lead to outer and inner RCP approximations
of the feasible set, and thus allow to both lower and upper bound the cost of the original
problem. In this manner, one may refine the quality of the approximation until the gap
between the two becomes sufficiently small.

Noting that the global minimum of this problem lies at (1.1667,0.5000) with a cost
value of −1.0833, the problem is solved for approximations with increasing np values. The
results, given in Table 4, show a mild increase in computational effort as np increases, as
domain reduction techniques are able to find the solution in many cases without requiring
full enumeration. Depending on the user’s requirements, the procedure of increasing np
could be brought to an end once the lower and upper bounds grow sufficiently close – for
np = 200, one sees that the gap is in the fourth digit, for example, which may be sufficiently
accurate. It is also worth noting that the upper bounds provided by the overapproximate
RCP solution can be further tightened by a final local minimization, as the solution point
here must be a feasible point for the original problem and therefore can only be improved
upon by any local descent method.

Extended reverse-convex programming 35

Table 4 Computational effort for Example 5. Here, (−)/(+) denote under/overapproximations, respectively.

np Convex LP Local Termination (x∗1, x∗2) cT x∗

3− 0 23 + 1 1 I (1.4819, 1.4457) −2.9326
3+ 0 13 + 1 1 I (1.5000, 1.5000) −0.2500
5− 0 13 + 1 1 I (1.1282, 0.3846) −1.5180
5+ 17 15 + 1 1 III (1.2350, 0.7050) −1.0694
10− 0 17 + 1 1 I (1.1500, 0.4500) −1.2431
10+ 0 17 + 1 1 I (1.2350, 0.7050) −1.0693
15− 0 27 + 1 1 I (1.1804, 0.5411) −1.1491
15+ 0 30 + 1 1 I (1.2350, 0.7050) −1.0694
20− 0 42 + 1 1 I (1.1948, 0.5843) −1.1170
20+ 0 33 + 1 1 I (1.1075, 0.3225) −1.0728
30− 0 56 + 1 1 I (1.2086, 0.6258) −1.0936
30+ 0 54 + 1 1 I (1.1500, 0.4500) −1.0825
50− 3 117 + 2 2 I (1.1674, 0.5021) −1.0888
50+ 3 110 + 2 2 I (1.1839, 0.5518) −1.0825
100− 7 173 + 2 2 I (1.1756, 0.5269) −1.0844
100+ 29 127 + 2 2 III (1.1585, 0.4755) −1.0831
200− 203 208 + 3 5 II (1.1652, 0.4956) −1.0835
200+ 6 189 + 2 2 II (1.1586, 0.4757) −1.0831

Example 6 (Nonlinear equality constraints and multiple global minima)

Problem (13) is solved by solving its RCP approximation (15), with the bound
constraints −3.5≤ x3 ≤ 3.5, −1≤ x4 ≤ 1, −3.5≤ x5 ≤ 3.5, and −4.5≤ x6 ≤ 4.5 added to
ensure the boundedness of X . Because of the presence of the nonlinear equality constraint,
the approximations used are necessarily underapproximations so as to avoid X =∅, which
implies that solving the RCP problem can only provide a lower bound on the optimal cost
function value for the original. For this particular problem, however, an upper bound may
nevertheless be obtained by taking the solution of the RCP and using it as a starting point
for a local minimization of the original problem. Like in the previous example, it is clear
that finer and finer approximations may be used until the gap between the lower and upper
bounds is sufficiently small – for simplicity, the number of approximation pieces for each
function is made the same, with na = nb = nc = np. Algorithm 1 is used to obtain the
approximations pb and pc, while a piecewise-linear approximation is used for pa. As some
numerical issues were encountered for this particular problem, the value of εg in Step 8c of
Algorithm 2 specifically had to be raised from 10−6 to 5 ·10−4 to avoid fathoming iA∗ during
the final step of the enumeration.

Apart from the “inconvenience” of a nonlinear equality constraint, this problem has an
additional difficulty in that the objective function exhibits a symmetry (Fig. 7) and has two
global minima at (−1.8601, 5.0000) and (1.8601, −5.0000) with a cost value of −3.2205.
The consequence of this is that domain reduction is unlikely to be as effective as it may be in
certain problems, due to the two global minima being dispersed on nearly opposite corners
of the original domain and the impossibility of shrinking the domain without fathoming
one of these minima. The computational results, given in Table 5, largely confirm these
expectations, with domain reduction playing a very minor role in all cases – this is evident
from the relatively small number of LP problems solved and the fact that the algorithm
never terminates by Criteria I or II. For each tested value of np, one notices that the global
optima of the RCP approximation are always placed in the corners of the feasible domain,
with further refinement not occurring even for np = 30. While the upper bound obtained

36 Gene A. Bunin

Fig. 7 The function (siny1)(−y1 + 0.3y2), which has two global minima (marked) over y1 ∈ [−2,2], y2 ∈
[−5,5] at (−1.8601, 5.0000) and (1.8601, −5.0000).

Table 5 Computational effort for Example 6.

np Convex LP Local Termination (x∗1, x∗2) cT x∗ Upper Bound

3 98 33 + 1 2 III ±(2.0000, −5.0000) −7.7443 −3.2205
4 203 15 + 2 3 III ±(2.0000, −5.0000) −5.6296 −3.2205
5 342 22 + 2 4 III ±(2.0000, −5.0000) −5.3914 −3.2205
6 508 27 + 4 6 III ±(2.0000, −5.0000) −5.3332 −3.2205
7 669 24 + 6 8 III ±(2.0000, −5.0000) −4.8414 −3.2205
8 913 25 + 5 10 III ±(2.0000, −5.0000) −4.5361 −3.2205
9 1177 26 + 8 12 III ±(2.0000, −5.0000) −4.4129 −3.2205
10 1518 28 + 10 16 III ±(2.0000, −5.0000) −4.3582 −3.2205
15 3361 31 + 16 32 III ±(2.0000, −5.0000) −3.9813 −3.2205
20 6055 35 + 23 55 III ±(2.0000, −5.0000) −3.7734 −3.2205
30 13451 26 + 33 113 III ±(2.0000, −5.0000) −3.5688 −3.2205

by a local optimization following initialization at ±(2.0000, −5.0000) is always that of the
global minimum, the refinement on the lower bound from increasing np comes fairly slowly,
suggesting that smarter, more efficient approximations are needed.

General Observations

That Algorithm 2 was able to find a global optimum was confirmed for all problems
except the α 6= 1 cases of Example 4, for which the global optima are neither easy to verify
nor are reported in the literature.

Extended reverse-convex programming 37

Particularly notable in the observed performance was the role of domain reduction,
which was able to find x∗ in very many cases without requiring the full enumeration of
active sets. This goes to further reinforce the strength and potential of these techniques,
which have been an important driving force in the success of branch-and-reduce solvers
[23,17]. At the same time, as illustrated in Example 6, these techniques may be of little
use when multiple good optima are dispersed in different corners of the feasible space. A
potential solution to this could come via “minimally partitioning” the feasible domain and
solving several RCPs in parallel – in the case of Example 6, one could certainly envision
drastic improvements in performance if the original RCP were split into two along the line
x1 = 0, both of which would likely be solved quickly with the help of domain reduction and
then simply compared.

With regard to scaling, Example 3 represents an ideal example where the brute
enumeration approach would scale linearly in n and where the proposed method appears
to do likewise, though the extra effort needed for domain reduction is at times sporadic. It is
not yet clear how well the method would scale in general, although the results of Example 4
suggest that the required computational effort may grow significantly for n= 10 (and higher)
if domain reduction is not effective.

Finally, Examples 5 and 6 demonstrate the viability of applying the extended RCP
framework to solve factorable NLP problems to global optimality within a desired tolerance.
A notable shortcoming is the apparent lack of a unified method to obtain the upper bound
on the optimal cost function value in this case, as two different methods were used for
the two problems presented here. For the general problem, it may be that one can neither
solve the overapproximate RCP due to feasibility issues (X =∅) nor sample and perform
local minimization for the original problem as the x∗ of the underapproximation may not
yield a feasible point for the original. As such, one can only refine the underapproximation
until the obtained x∗ becomes sufficiently close to feasible. A smarter way of managing
approximations is clearly needed as well.

6 Concluding Remarks

The present work has put forth a methodology for solving a large class of factorable
NLP problems by solving their RCP approximations. As the latter may be solved by an
enumeration procedure, the proposed method offers the possibility of solving any factorable
NLP satisfying Assumptions A1 and A2 to a controlled approximation error by enumeration.
For certain problems, this may be advantageous since enumerative methods generally scale
differently than methods iteratively partitioning the decision-variable space. Because brute
enumeration of the possible solutions is usually too computationally demanding, a number
of steps was taken to develop an efficient enumeration procedure that considers subsets of the
active sets potentially defining the optimum. This procedure was then shown to both solve
RCP problems exactly and factorable NLP problems approximately to increasing precision.

Although a basic theoretical treatment of both RCP approximation quality and the
solvability of the resulting RCP problems were carried out, there are still improvements
to be made with regard to both. For approximations, it may be of interest to consider a
different avenue than factoring the NLP problem and then approximating its univariate
components, as such approximations may require too many pieces for a sufficiently accurate
approximation while also augmenting the decision-variable space. One path of potential
interest is the use of multivariate D. C. functions, as it has been proven that an arbitrarily

38 Gene A. Bunin

good multivariate piecewise-concave approximation of such functions exists and may be
obtained by a very cheap computational procedure [4].

With regard to RCP solvability, the method proposed here remains heuristic unless
RCP regularity can be proven. While strict optimality of a global minimum can be fairly
straightforward to prove for some problems – such as those used in the examples – it is
not so for the general case. Furthermore, even if strict optimality were proven, one still
requires the additional LICQ assumption, which cannot be proven to hold for most problems.
Overcoming these challenges would provide much comfort with regard to the reliability of
the method.

On the algorithmic end, the application of the proposed method to the chosen examples
represents a promising start. However, there is clearly much that needs to be done to make
the method competitive, as problems where domain reduction is not successful, and/or where
the number of constraints or approximation pieces is large, tend to make the method scale
poorly due to its enumerative nature. As with any method employing approximations, the
idea of homotopy is a natural recourse, and one can envision starting with a very brute RCP
approximation with very few constraints and then iteratively refining it in the neighborhood
of the x∗ found during each iteration. In fact, such methods could also be generalized to the
case without approximations, as general concave constraints gi(x) ≤ 0, i = 1, ...,ng could
always be approximated by their joint versions ∑

ng
i=1 gi(x)≤ 0, the latter leading to an easier,

albeit approximate, RCP problem. The proper management of such refinements represents
yet another topic for future research.

Acknowledgements

The author would like to extend his most profound thanks to the anonymous reviewer, whose
numerous suggestions have greatly contributed to the improvement of the present document.

References

1. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33, 42-54 (2005)
2. Al-Khayyal, F. A., Falk, J. E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273-286

(1983)
3. Bunin, G. A.: Extended reverse convex programming: An active-set approach to global optimization.

arXiv [math.OC] 1308.2828v1, 1-48 (2013)
4. Bunin, G. A.: On the piecewise-concave approximations of functions. arXiv [math.OC] 1403.3882, 1-4

(2014)
5. Caprara, A., Locatelli, M.: Global optimization problems and domain reduction strategies. Math. Program.

125(1), 123-137 (2010)
6. CVX Research, Inc.: CVX: MATLAB software for disciplined convex programming, version 2.0 beta.

http://cvxr.com/cvx (2012). Accessed September 2012
7. Falk, J. E., Soland, R. M.: An algorithm for separable nonconvex programming problems. Manag. Sci.

15(9), 550-569 (1969)
8. Floudas, C. A., Pardalos, P. M., Adjiman, C. S., Esposito, W. R., Gümüs, Z. H., Harding, S. T., Klepeis, J.

L., Meyer, C. A., Schweiger, C. A.: Handbook of Test Problems in Local and Global Optimization. Kluwer
Academic Publishers, Dordrecht (1999)

9. Floudas, C. A., Akrotirianakis, I. G., Caratzoulas, S., Meyer, C. A., Kallrath, J.: Global optimization in
the 21st century: Advances and challenges. Comput. Chem. Eng. 29, 1185-1202 (2005)

10. Graham, R. L.: An efficient algorithm for determining the convex hull of a finite planar set. Inform.
Process. Lett. 1, 132-133 (1972)

11. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs, recent advances in
learning and control (a tribute to M. Vidyasagar). In: Blondel, V., Boyd, S., Kimura, H. (eds.) Lecture
Notes in Control and Information Sciences, pp. 95-110, Springer (2008)

http://cvxr.com/cvx

Extended reverse-convex programming 39

12. Hillestad, R. J., Jacobsen, S. E.: Reverse convex programming. Appl. Math. Optim. 6, 63-78 (1980)
13. Horst, R., Pardalos, P. M., Thoai, N.: Introduction to Global Optimization. Kluwer Academic Publishers,

Dordrecht (1995)
14. McCormick, G. P.: Computability of global solutions to factorable nonconvex programs: Part I - convex

underestimating problems. Math. Program. 10, 147-175 (1976)
15. McKeown, P.: Extreme point ranking algorithms: A computational survey. In: White, W. W. (ed.)

Computers and Mathematical Programming: Proceedings of the Bicentennial Conference on Mathematical
Programming, pp. 216-222. U.S. Government Printing Office, Washington (1976)

16. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta
Numer. 13(1), 271-369 (2004)

17. Neumaier, A., Shcherbina, O., Huyer, W., Vinkó, T.: A comparison of complete global optimization
solvers. Math. Program. 103(2), 335-356 (2005)

18. Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming.
Birkhäuser Verlag, Basel (2005)

19. Pardalos, P. M., Rosen, J.: Methods for global concave minimization: A bibliographic survey. SIAM Rev.
28(3), 367-379 (1986)

20. Rozvany, G. I. N.: A new calculus for optimum design. Int. J. Mech. Sci. 9, 885-886 (1967)
21. Rozvany, G. I. N.: Concave programming in structural optimization. Int. J. Mech. Sci. 12, 131-142 (1970)
22. Rozvany, G. I. N.: Concave programming and piece-wise linear programming. Int. J. Numer. Methods

Eng. 3, 131-144 (1971)
23. Ryoo, H. S., Sahinidis, N. V.: A branch-and-reduce approach to global optimization. J. Glob. Optim.

8(2), 107-138 (1996)
24. Sherali, H. D., Wang, H.: Global optimization of nonconvex factorable programming problems. Math.

Program. 89(3), 459-478 (2001)
25. Sturm, J. F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim.

Methods Softw. 11(1-4), 625-653 (1999)
26. Tawarmalani, M., Sahinidis, N. V.: Global optimization of mixed-integer nonlinear programs: A

theoretical and computational study. Math. Program. 99(3), 563-591 (2004)
27. Ueing, U.: A combinatorial method to compute a global solution of certain non-convex optimization

problems. In: Lootsma, F. A. (ed.), Numerical Methods for Non-Linear Optimization, pp. 223-230.
Academic Press (1972)

28. Zamora, J. M., Grossmann, I. E.: A branch and contract algorithm for problems with concave univariate,
bilinear and linear fractional terms. J. Glob. Optim. 14(3), 217-249 (1999)

29. Zangwill, W. I.: The piecewise concave function. Manag. Sci. 13(11), 900-912 (1967)

	1 Introduction
	2 The RCP Approximation
	3 RCP Regularity
	4 An Extended RCP Enumeration Framework
	5 Illustrative Examples
	6 Concluding Remarks

