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Abstract

In this paper we propose a scalarization proximal point method to solve multiobjective

unconstrained minimization problems with locally Lipschitz and quasiconvex vector functions.

We prove, under natural assumptions, that the sequence generated by the method is well de-

fined and converges globally to a Pareto-Clarke critical point. Our method may be seen as an

extension, for the non convex case, of the inexact proximal method for multiobjective convex

minimization problems studied by Bonnel et al. (SIAM Journal on Optimization 15, 4, 953-970,

2005).

Keywords: Multiobjective minimization, Clarke subdifferential, quasiconvex functions, pro-

ximal point methods, Fejér convergence, Pareto-Clarke critical point.

1 Introduction

In this work we consider the unconstrained multiobjective minimization problem:

min{F (x) : x ∈ R
n} (1)

where F : Rn −→ R
m is a locally Lipschitz and quasiconvex vector function on the Euclidean

space R
n. A motivation to study this problem are the consumer demand theory in economy,

where the quasiconvexity of the objective vector function is a natural condition associated to

diversification of the consumption, see Mas Colell et al. [21], and the quasiconvex optimization

models in location Theory, see [12]. Another motivation are the extensions of well known

methods in convex optimization to quasiconvex one, we mentioned the following works:
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• Bello Cruz et al. [3], considered the projected gradient method for solving the problem

of finding a Pareto optimum of a quasiconvex multiobjective function. They proved

the convergence of the sequence generated by the algorithm to a stationary point and

when the components of the multiobjective function are pseudoconvex, they obtained the

convergence to a weak Pareto solution.

• da Cruz Neto et al. [10], extended the classical subgradient method for real-valued

mi-nimization to multiobjective optimization. Assuming the basically componentwise

quasiconvexity of the objective components they obtained the full convergence of the

sequence to a Pareto solution.

• Papa Quiroz and Oliveira [24, 25, 27], have been extended the convergence of the proximal

point method for quasiconvex minimization problems on general riemannian manifolds

wich includes the euclidean space. Furthermore, in [26] the authors extended the conver-

gence of the proximal point method for the nonnegative orthant.

• Kiwiel [16], extended the convergence of the subgradient method to solve quasiconvex

minimization problems in Hilbert spaces.

• Brito et al. [6], proposed an interior proximal algorithm inspired by the logarithmic-

quadratic proximal method for linearly constrained quasiconvex minimization problems.

For that method, they proved the global convergence when the proximal parameters go

to zero. The latter assumption could be dropped when the function is assumed to be

pseudoconvex.

• Langenberg and Tichatschke [17] studied the proximal method when the objective func-

tion is quasiconvex and the problem is constrained to an arbitrary closed convex set and

the regularization is a Bregman distance. Assuming that the function is locally Lipschitz

and using the Clarke subdifferential, the authors proved the global convergence of the

method to a critical point.

In this paper we are interested in extending the convergence properties of the proximal

point method to solve the quasiconvex multiobjective problem (1). The proximal point method,

introduced by Martinet [20], to solve the problem min{f(x) : x ∈ R
n} where f is a escalar

function, generates a sequence {xk}k∈N ⊂ R
n, from an iterative process starting with a point

x0 ∈ R
n, arbitrary, and xk+1 ∈ argmin{f(x) + λk

2 ‖x − xk‖2 : x ∈ R
n}, where λk > 0, is a

regularization parameter. It is well known, see Guler [13], that if f is convex and {λk} satisfies
+∞∑
k=1

(1/λk) = +∞, then limk→∞ f(xk) = inf{f(x) : x ∈ R
n}. Furthermore, if the optimal set is

nonempty, we obtain that {xk} converges to an optimal solution of the problem.

When F is convex in (1), Bonnel at al. [5] have been proved the convergence of the

proximal point method for a weak Pareto solution of the problem (1) in a general context, see

also Villacorta and Oliveira [31] using proximal distances and Gregório and Oliveira [11] using

a logarithmic quadratic proximal scalarization method.

In this work we introduce a scalarization proximal point method to solve the quasiconvex

multiobjective minimization problem (1). The iteration is the following: given xk ∈ R
n, find
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xk+1 ∈ Ωk such that:

0 ∈ ∂o
(
〈F (.), zk〉+

αk

2
〈ek, zk〉 ‖ . − xk‖2

)
(xk+1) +NΩk

(xk+1)

where ∂o is the Clarke subdifferential, Ωk =
{
x ∈ R

n : F (x) � F (xk)
}
, αk > 0, {ek} ⊂ R

m
++,

‖ek‖ = 1, {zk} ⊂ R
m
+\ {0}, ‖zk‖ = 1 and NΩk

(xk+1) the normal cone to Ωk at xk+1.

We prove the well definition of the sequence generated by the method and we obtain the

global convergence to a Pareto-Clarke critical point and when F is convex we obtain the

convergence to a weak Pareto solution of the problem.

The paper is organized as follows: In Section 2 we recall some concepts and results basic on

multiobjective optimization, quasiconvex and convex functions, Fréchet, Limiting and Clarke

subdiferential, descent direction and Fejér convergence theory. In Section 3 we introduce our

method and analyze the convergence of the iterations. In Section 4, we present some quasi-

convex optimization models and in Section 5 we give our conclusion and some ideas for future

researchers.

2 Preliminaries

In this section, we present some basic concepts and results that are of fundamental importance

for the development of our work. These facts can be found, for example, in Hadjisavvas [14],

Mordukhovich [23] and, Rockafellar and Wets [29].

2.1 Definitions, notations and some basic results

Along this paper Rn denotes an euclidean space, that is, a real vectorial space with the canon-

ical inner product 〈x, y〉 =
n∑

i=1
xiyi and the norm given by ||x|| =

√
〈x, x〉.

Given a function f : R
n −→ R ∪ {+∞}, we denote by dom (f) = {x ∈ R

n : f(x) < +∞}, the

effective domain of f . If dom (f) 6= ∅, f is called proper. If lim
‖x‖→+∞

f(x) = +∞, f is called

coercive. We denote by arg min {f(x) : x ∈ R
n} the set of minimizer of the function f and

by f∗, the optimal value of problem: min {f(x) : x ∈ R
n} , if it exists. The function f is

lower semicontinuous at x̄ if for all sequence {xk}k∈N such that lim
k→+∞

xk = x̄ we obtain that

f(x̄) ≤ lim inf
k→+∞

f(xk).

Definition 2.1.1 Let f : Rn −→ R ∪ {+∞} be a proper function. We say that f is locally

Lipschitz at x ∈ dom (f) if there exists εx > 0 such that

|f(z)− f(y)| ≤ Lx‖z − y‖, ∀z, y ∈ B(x, εx) ∩ dom(f),

where B(x, εx) = {y ∈ R
n : ‖y−x‖ < εx} and Lx is some positive number. f is locally Lipschitz

on R
n if f is locally Lipschitz for each x ∈ dom (f)

The next result ensures that the set of minimizers of a function, under some assumptions,

is nonempty.
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Proposition 2.1.1 (Rockafellar and Wets [29], Theorem 1.9)

Suppose that f : Rn −→ R∪{+∞} is proper, lower semicontinuous and coercive, then the optimal

value f∗ is finite and the set arg min {f(x) : x ∈ R
n} is nonempty and compact.

Definition 2.1.2 Let D ⊂ R
n and x̄ ∈ D. The normal cone at the point x̄ related to the set

D is given by ND(x̄) = {v ∈ R
n : 〈v, x− x̄〉 ≤ 0,∀ x ∈ D}.

2.2 Multiobjective optimization

In this subsection we present some properties and notation on multiobjective optimization.

Those basic facts can be seen, for example, in Miettinen [22] and Luc [18].

Throughout this paper we consider the cone R
m
+ = {y ∈ R

m : yi ≥ 0,∀ i = 1, ...,m}, which

induce a partial order � in R
m given by, for y, y′ ∈ R

m, y � y′ if, and only if, y′ − y

∈ R
m
+ , this means that yi ≤ y′i for all i = 1, 2, ...,m . Given R

m
++ the above relation induce the

following one ≺, induced by the interior of this cone, given by, y ≺ y′, if, and only if, y′ − y

∈ R
m
++, this means that yi < y′i for all i = 1, 2, ...,m. Those partial orders establish a class of

problems known in the literature as Multiobjective Optimization.

Let us consider the unconstrained multiobjective optimization problem (MOP) :

min {G(x) : x ∈ R
n} (2)

where G : Rn −→ R
m, with G = (G1, G2, ..., Gm)T .

Definition 2.2.1 (Miettinen [22], Definition 2.2.1) A point x∗ ∈ R
n is a Pareto solution

of the problem (2), if there does not exist x ∈ R
n such that Gi(x) ≤ Gi(x

∗), for all i ∈ {1, ...,m}

and Gj(x) < Gj(x
∗), for at least one index j ∈ {1, ...,m} .

Definition 2.2.2 (Miettinen [22],Definition 2.5.1) A point x∗ ∈ R
n is a weak Pareto

solution of the problem (2), if there does not exist x ∈ R
n such that Gi(x) < Gi(x

∗), for all

i ∈ {1, ...,m}.

We denote by arg min{G(x) : x ∈ R
n} and by arg minw {G(x) : x ∈ R

n} the set of Pareto

solutions and weak Pareto solutions to the problem (2), respectively. It is easy to check that

arg min{G(x) : x ∈ R
n} ⊂ arg minw {G(x) : x ∈ R

n}.

2.3 Quasiconvex and Convex Functions

In this subsection we present the concept and characterization of quasiconvex functions and

quasiconvex multiobjective function. This theory can be found in Bazaraa et al. [2], Luc [18],

Mangasarian [19], and their references.

Definition 2.3.1 Let f : Rn −→ R∪{+∞} be a proper function. Then, f is called quasiconvex

if for all x, y ∈ R
n, and for all t ∈ [0, 1], it holds that f(tx+ (1− t)y) ≤ max {f(x), f(y)}.

Definition 2.3.2 Let f : Rn −→ R ∪ {+∞} be a proper function. Then, f is called convex if

for all x, y ∈ R
n, and for all t ∈ [0, 1], it holds that f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).
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Observe that if f is a quasiconvex function then dom(f) is a convex set. On the other hand,

while a convex function can be characterized by the convexity of its epigraph, a quasiconvex

function can be characterized by the convexity of the lower level sets:

Definition 2.3.3 (Luc [18], Corollary 6.6) Let F = (F1, ..., Fm)T : R
n −→ R

m be a

function, then F is Rm
+ - quasiconvex if and only if every component function of F , Fi : R

n −→

R, is quasiconvex.

Definition 2.3.4 Let F = (F1, ..., Fm)T : Rn −→ R
m be a function, then F is R

m
+ - convex

if and only if every component function of F , Fi : R
n −→ R, is convex.

Definition 2.3.5 Let F = (F1, ..., Fm)T : Rn −→ R
m be a function, then F is locally Lipschitz

on R
n if and only if every component function of F , Fi : R

n −→ R, is locally Lipschitz on R
n.

2.4 Fréchet and Limiting Subdifferentials

Definition 2.4.1 Let f : Rn → R ∪ {+∞} be a proper function.

(a) For each x ∈ dom(f), the set of regular subgradients (also called Fréchet subdifferential)

of f at x, denoted by ∂̂f(x), is the set of vectors v ∈ R
n such that

f(y) ≥ f(x) + 〈v, y − x〉+ o(‖y − x‖), where lim
y→x

o(‖y−x‖)
‖y−x‖ = 0.

Or equivalently, ∂̂f(x) :=

{
v ∈ R

n : lim inf
y 6=x, y→x

f(y)− f(x)− 〈v, y − x〉

‖y − x‖
≥ 0

}
. If x /∈ dom(f)

then ∂̂f(x) = ∅.

(b) The set of general subgradients (also called limiting subdifferential) f at x ∈ R
n, denoted

by ∂f(x), is defined as follows:

∂f(x) :=
{
v ∈ R

n : ∃ xn → x, f(xn)→ f(x), vn ∈ ∂̂f(xn) and vn → v
}
.

Proposition 2.4.1 For a function f : Rn → R ∪ {+∞} and a point x̄ ∈ dom(f), the subgra-

dient sets ∂f(x̄) and ∂̂f(x̄) are closed, with ∂̂f(x̄) convex and ∂̂f (x̄) ⊂ ∂f (x̄).

Proof. See Rockafellar and Wets [29], Theorem 8.6.

Proposition 2.4.2 (Fermat’s rule generalized) If a proper function f : Rn → R ∪ {+∞}

has a local minimum at x̄ ∈ dom(f), then 0 ∈ ∂̂f (x̄).

Proof. See Rockafellar and Wets [29], Theorem 10.1.

Proposition 2.4.3 Let f, g : Rn → R∪{+∞} proper functions such that f is locally Lipschitz

at x̄ ∈ dom(f) ∩ dom(g) and g is lower semicontinuous function at this point. Then,

∂(f + g)(x̄) ⊂ ∂f(x̄) + ∂g(x̄)

Proof. See Mordukhovich [23] Theorem 2.33.
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2.5 Clarke Subdifferential

Definition 2.5.1 Let f : Rn → R∪{+∞} be a proper locally Lipschitz function at x ∈ dom(f)

and d ∈ R
n. The Clarke directional derivative of f at x in the direction d, denoted by f o(x, d),

is defined as

f o(x, d) = lim sup
t↓0 y→x

f(y + td)− f(y)

t

and the Clarke subdifferential of f at x, denoted by ∂of(x), is defined as

∂of(x) = {w ∈ R
n : 〈w, d〉 ≤ f o(x, d),∀ d ∈ R

n}.

Remark 2.5.1 From the above definitions it follows directly that for all x ∈ R
n, one has

∂̂f(x) ⊂ ∂f(x) ⊂ ∂of(x) (see Bolte et al. [4], Inclusion (7)).

Lemma 2.5.1 Let f, g : Rn → R ∪ {+∞} be locally Lipschitz functions at x ∈ R
n. Then,

∀d ∈ R
n:

(i) (f + g)o (x, d) ≤ f o (x, d) + go (x, d) ;

(ii) (λf)o (x, d) = λ (f o(x, d)) , ∀λ ≥ 0;

(iii) f o (x, λd) = λf o(x, d), ∀λ ≥ 0.

Proof. It is immediate from Clarke directional derivative.

Lemma 2.5.2 Let f : Rn → R be locally Lipschitz function at x and any scalar λ , then

∂o (λf) (x) ⊂ λ∂of(x)

Proof. See Clarke [8], Proposition 2.3.1.

Lemma 2.5.3 Let fi : R
n → R∪{+∞}, i = 1, 2, ...,m, be locally Lipschitz functions at x, then

∂o

(
m∑

i=1

fi

)
(x) ⊂

m∑

i=1

∂ofi(x)

Proof. See Clarke [8], Proposition 2.3.3.

Proposition 2.5.1 Let f : Rn → R∪{+∞} be a proper locally Lipschitz function on R
n. Then,

f o is upper semicontinuous, i.e, if {(xk, dk)} is a sequence in R
n×Rn such that lim

k→+∞
(xk, dk) =

(x, d) then lim sup
k→+∞

f o(xk, dk) ≤ f o(x, d).

Proof. See Clarke [8], Proposition 2.1.1, (b).
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Proposition 2.5.2 Let f : Rn −→ R be a quasiconvex locally Lipschitz function on R
n. If

g ∈ ∂of(x), such that 〈g, x̃− x〉 > 0 then, f(x) ≤ f(x̃).

Proof. See Aussel [1], Theorem 2.1.

Proposition 2.5.3 Let f : Rn −→ R be a convex function. Then ∂of(x) coincides with the

subdifferential at x in the sense of convex analysis, and f o(x, d) coincides with the directional

derivative f ′(x, d) for each d.

Proof. See Clarke [8], Proposition 2.2.7

2.6 Descent direction

We are now able to introduce the definition of Pareto-Clarke critical point for locally Lipschitz

functions on R
n, which will play a key role in our paper.

Definition 2.6.1 (Custódio et al. [9], Definition 4.6) Let F = (F1, ..., Fm)T : Rn −→ R
m

be locally Lipschitz on R
n. We say that x∗ ∈ R

n is a Pareto-Clarke critical point of F if, for

all directions d ∈ R
n, there exists i0 = i0(d) ∈ {1, ...,m} such that F o

io
(x∗, d) ≥ 0.

Definition 2.6.1 says essentially that there is no direction in R
n that is descent for all the

objective functions (see, for instance, (Custódio et al. [9]). If a point is a Pareto minimizer

(local or global), then it is necessarily a Pareto-Clarke critical point .

Remark 2.6.1 Follows from the previous definition that, if a point x is not Pareto-Clarke

critical, there exists a direction d ∈ R
n satisfying

F o
i (x, d) < 0,∀ i ∈ {1, ...,m}

This implies that, for each i ∈ {1, ...,m}, d is a descent direction, for each function Fi, i.e,

there exists ε > 0, such that

Fi(x+ td) < Fi(x),∀ t ∈ (0, ε],∀ i ∈ {1, ...,m}.

It is a well known fact that such d is a descent direction for the multiobjective function F at

x, i.e, ∃ ε > 0 such that

F (x+ td) ≺ F (x), ∀ t ∈ (0, ε].

Proposition 2.6.1 Let x̄ be a Pareto-Clarke critical point of a locally Lipschitz G : Rn −→

R
m. If G is R

m
+ -convex, then x̄ is weak Pareto solution of the problem (2).

Proof. As x̄ is a Pareto-Clarke critical point of G then for all directions d there exists

i0 = i0(d) ∈ {1, ...,m} such that Go
io
(x̄, d) ≥ 0. Now, due that G is Rm

+− convex then the last

is equivalent, see Proposition 2.5.3, to

G′
io(x̄, d) ≥ 0, (3)

7



where G′
i0
(x̄, d) is the directional derivative of the convex function Gi0 at x̄ in the direction d.

On the other hand, suppose by contradiction that x̄ is not a weak Pareto solution of the problem

(2), then exists x∗ ∈ R
n such that

G(x∗) ≺ G(x̄), i.e, Gi(x
∗) < Gi(x̄),∀i ∈ 1, ...,m.

Thus, for all i, there exists α = α(i) > 0 such that Gi(x
∗) = Gi(x̄) − α. Define xλ =

λx∗ + (1− λ)x̄, λ ∈ (0, 1). From the R
m
+ -convexity of G we have

Gi(xλ) = Gi(λx
∗ + (1− λ)x̄) ≤ λGi(x

∗) + (1− λ)Gi(x̄) = −αλ+Gi(x̄)

Its follows that

Gi(x̄+ λ(x∗ − x̄))−Gi(x̄)

λ
≤ −α < 0, ∀λ ∈ (0, 1).

Taking d̄ = x∗ − x̄ ∈ R
n and limit when λ converges to zero in the above inequality we obtain

a contradiction with (3). Therefore x̄ is a weak Pareto solution of the problem (2).

2.7 Fejér convergence

Definition 2.7.1 A seguence {yk} ⊂ R
n is said to be Fejér convergent to a set U ⊆ R

n if,

‖yk+1 − u‖ ≤ ‖yk − u‖ ,∀ k ∈ N, ∀ u ∈ U .

The following result on Fejér convergence is well known.

Lemma 2.7.1 If {yk} ⊂ R
n is Fejér convergent to some set U 6= ∅, then:

(i) The sequence {yk} is bounded.

(ii) If an accumulation point y of {yk} belongs to U , then lim
k→+∞

yk = y.

Proof. See Schott [30], Theorem 2.7.

3 Scalarization proximal point method (SPPM)

We are interested in solving the unconstrained multiobjective optimization problem (MOP):

min{F (x) : x ∈ R
n} (4)

where F : Rn → R
m is a vector function satisfying the following assumptions:

(H1) F is locally Lipschitz on R
n.

(H2) F is Rm
+ -quasiconvex.

8



3.1 The algorithm

In this subsection, we propose a Scalarization Proximal Point Method with quadratic regula-

rization, denoted by SPPM, to solve the problem (4).

SPPM Algorithm

Initialization: Choose an arbitrary initial point

x0 ∈ R
n (5)

Main Steps: Given xk, find xk+1 ∈ Ωk such that

0 ∈ ∂o
(
〈F (.), zk〉+

αk

2
〈ek, zk〉 ‖ . − xk‖2

)
(xk+1) +NΩk

(xk+1) (6)

where Ωk =
{
x ∈ R

n : F (x) � F (xk)
}
, αk > 0, {ek} ⊂ R

m
++, ‖ek‖ = 1, {zk} ⊂ R

m
+\ {0}

and ‖zk‖ = 1 .

Stop Criterion: If xk+1 = xk or xk+1 is a Pareto-Clarke critical point, then stop. Otherwise,

to do k ← k + 1 and return to Main Steps.

Remark 3.1.1 If F is R
n
+−convex the main step (6) is equivalent to:

xk+1 = argmin

{
〈F (x), zk〉+

αk

2
〈ek, zk〉

∥∥∥x− xk
∥∥∥
2
: x ∈ Ωk

}
(7)

This iteration has been studied by Bonnel et al. [5], so we can say that, in certain sense,

our iteration is an extension for the nonconvex case of that work . On the other hand, when

F is R
n
+−quasiconvex, the regularized function Fk = 〈F (x), zk〉 +

αk

2 〈ek, zk〉
∥∥x− xk

∥∥2 is not

necessarily quasiconvex and so (7) is a global optimization problem, it is the reason for which

we consider the more weak iteration (6).

3.2 Existence of the iterates

Theorem 3.2.1 Let F : Rn −→ R
m be a function satisfying (H1), (H2) and 0 ≺ F . Then

the sequence
{
xk
}
, generated by the SPPM algorithm, given by (5) and (6), is well defined.

Proof. We proceed by induction. It holds for k = 0, due to (5). Assume that xk exists

and define ϕk(x) = 〈F (x), zk〉 +
αk

2 〈ek, zk〉
∥∥x− xk

∥∥2 + δΩk
(x), where δΩk

(.) is the indicator

function of Ωk. Then we have that min{ϕk(x) : x ∈ R
n} is equivalent to min{〈F (x), zk〉 +

αk

2 〈ek, zk〉
∥∥x− xk

∥∥2 : x ∈ Ωk}. Due that 0 ≺ F and zk ∈ R
m
+\ {0} the function 〈F (.), zk〉 is

bounded from below. Then, by the lower boundedness and continuity of the function 〈F (.), zk〉,

as also, by the continuity and coercivity of ||. − xk||2, and using Proposition 2.1.1, we obtain

that there exists xk+1 ∈ Ωk which is a global minimum of ϕk(.). From Proposition 2.4.2, xk+1

satisfies 0 ∈ ∂̂
(
〈F (.), zk〉+

αk

2
〈ek, zk〉 ‖ . − xk‖2 + δΩk

(.)
)
(xk+1) and by Proposition 2.4.1

and Proposition 2.4.3 , we have that

0 ∈ ∂
(
〈F (.), zk〉+

αk

2
〈ek, zk〉 ‖ . − xk‖2

)
(xk+1) +NΩk

(xk+1). (8)
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From Remark 2.5.1, the iteration (6) is obtained of (8).

Remark 3.2.1 (Huang and Yang [15]) Without loss of generality, always we can assume

that the function F : Rn −→ R
m satisfies 0 ≺ F. Of fact, consider the following multiobjective

optimization problem

(P
′
) min

{
eF (x) : x ∈ R

n
}

Observe that both, (4) and (P
′
), have the same set of Pareto solutions, weak Pareto solutions

and Pareto-Clarke critical points. Furthermore, if F is R
m
+ - quasiconvex and locally Lipschitz

on R
n, then eF (x) is also R

m
+ - quasiconvex and locally Lipschitz on R

n. Therefore, along this

paper and from now on we implicitly assume that 0 ≺ F.

Remark 3.2.2 We are interest in the asymptotic convergence of the (SPPM) algorithm, so

we also assume along this paper that in each iteration xk is not a Pareto-Clarke critical point

and xk+1 6= xk. This implies, from Remark 2.6.1 that the interior of Ωk+1, denoted by Ω0
k+1,

is nonempty.

When the condition xk+1 = xk is not satisfied, that is, if there exists k0 such that xk0+1 =

xk0 then it is easy to prove that this point is a Pareto-Clarke critical point of F.

3.3 Weak Convergence

In this subsection we prove, under the assumption that the consecutive iterations converges to

zero, that any cluster point is a Pareto-Clarke critical point of the problem (4).

Proposition 3.3.1 Let F : Rn −→ R
m be a function satisfying (H1) and (H2). If 0 < αk < α̃,

with α̃ > 0, and the sequence {xk} generated by the SPPM algorithm, (5) and (6), satisfies

lim
k→+∞

||xk+1 − xk|| = 0, (9)

and has a cluster point, then it is a Pareto-Clarke critical point of the problem (4).

Proof. By assumption, there exists a convergent subsequence
{
xkj
}

of
{
xk
}

whose limit

is some x̂ ∈ R
n. Since F is locally Lipschitz on R

n, then the function 〈F (.), z〉 is also lo-

cally Lipschitz on R
n and so, continuos for all z ∈ R

m, in particular, for all z ∈ R
m
+\ {0} ,

and lim
j→+∞

〈
F (xkj ), z

〉
= 〈F (x̂), z〉. On the other hand, as xk+1 ∈ Ωk, we have F (xk+1) �

F (xk) and since z ∈ R
m
+\ {0}, we conclude that the sequence

{〈
F (xk), z

〉}
is convergent

to 〈F (x̂), z〉 because it is nonincreasing and admits a subsequence converging to 〈F (x̂), z〉.

So lim
k→+∞

〈
F (xk), z

〉
= 〈F (x̂), z〉 = infk∈N

{〈
F (xk), z

〉}
≤
〈
F (xk), z

〉
. Thus,

〈
F (xk)− F (x̂), z

〉
≥

0,∀ k ∈ N,∀ z ∈ R
m
+\ {0}. We conclude that F (xk)− F (x̂) ∈ R

m
+ , i.e, F (x̂) � F (xk),∀ k ∈ N.

This implies that x̂ ∈ Ωk.

Assume, to arrive at a contradiction, that x̂ is not Pareto-Clarke critical point in R
n, then

there exists a direction d ∈ R
n such that

F o
i (x̂, d) < 0,∀ i ∈ {1, ...,m} (10)

Therefore d is a descent direction for the multiobjective function F in x̂, so, ∃ ε > 0 such that

F (x̂+ λd) ≺ F (x̂), ∀ λ ∈ (0, ε]. Thus, x̂+ λd ∈ Ωk.
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On the other hand, as
{
xk
}

is generated by SPPM algorithm, from Theorem 3.2.1, (6),

Lemma 2.5.3 and from Lemma 2.5.2, this implies that there exists βk(x
k − xk+1) − vk ∈

∂o (〈F (.), zk〉) (x
k+1), with vk ∈ NΩk

(xk+1) and βk = αk 〈ek, zk〉 > 0, such that

βk〈x
k − xk+1, p〉 − 〈vk, p〉 ≤ 〈F (.), zk〉

o(xk+1, p),∀p ∈ R
n (11)

Consider p = (x̂+ λd)− xk+1 and as vk ∈ NΩk
(xk+1), from (11) we have

βk〈x
k − xk+1, x̂+ λd− xk+1〉 ≤ 〈F (.), zk〉

o(xk+1, x̂+ λd− xk+1) (12)

As {zk} is bounded, then there exists a subsequence denoted also, without loss of generality,

by
{
zkj
}
such that lim

j→+∞
zkj = z̄, with z̄ ∈ R

m
+\ {0}. From (12), we have:

βkj 〈x
kj − xkj+1, x̂+ λd− xkj+1〉 ≤ 〈F (.), zkj 〉

o(xkj+1, x̂+ λd− xkj+1)

Lemma 2.5.1, (i) and (ii), we have:

βkj 〈x
kj − xkj+1, x̂+ λd− xkj+1〉 ≤

m∑

i=1

zikjF
0
i (x

kj+1, x̂+ λd− xkj+1),

where zikj are the components of the vector zkj . Then using Lemma 2.5.1, (iii), we obtain:

βkj 〈x
kj − xkj+1, x̂+ λd− xkj+1〉 ≤

m∑

i=1

F 0
i

(
xkj+1, zikj (x̂+ λd− xkj+1)

)
,

Taking lim sup in the above inequality, using the condition (9), Proposition 2.5.1 and as λ > 0,

we conclude that

0 ≤ F o
1 (x̂, d)z̄1 + ...+ F o

m(x̂, d)z̄m (13)

Without loss of generality, consider the set J = {i ∈ I : z̄i > 0}, where I = {1, ...,m}. Thus,

from (13), there exists i0 ∈ J such that F o
i0
(x̂, d)z̄i0 ≥ 0 contradicting (10).

3.4 Global Convergence

For this subsection we make the following assumption on the function F and the initial point

x0 :

(H3) The set
(
F (x0)− R

m
+

)
∩ F (Rn) is Rm

+ - complete, meaning that for all sequences {ak} ⊂

R
n, with a0 = x0, such that F (ak+1) � F (ak), there exists a ∈ R

n such that F (a) �

F (ak), ∀ k ∈ N.

Remark 3.4.1 The assumption (H3) is cited in various works on proximal point method for

convex functions, see Bonnel et al. [5], Ceng and Yao [7] and Villacorta and Oliveira [31].

As the sequence
{
xk
}
generated by SPPM algorithm, satisfies the assumption (H3) and from

assumptions (H1) and (H2) then

E =
{
x ∈ R

n : F (x) � F
(
xk
)
, ∀ k ∈ N

}

11



is a nonempty closed convex set.

Proposition 3.4.1 (Fejér convergence)

Under assumptions (H1), (H2) and (H3), the sequence
{
xk
}
generated by the SPPM algorithm,

(5) and (6), is Fejér convergent to E.

Proof. From Theorem 3.2.1, (6), Lemma 2.5.3 and from Lemma 2.5.2 we obtain that there

exist gki ∈ ∂oFi(x
k+1), i = 1, ...,m such that

0 ∈
m∑

i=1

zikg
k
i + αk 〈ek, zk〉 (x

k+1 − xk) +NΩk
(xk+1)

where zik are the components of zk. Thus there exist vectors gki ∈ ∂oFi(x
k+1), i = 1, ...,m, and

vk ∈ NΩk
(xk+1) such that

m∑

i=1

zikg
k
i = βk(x

k − xk+1)− vk (14)

where βk = αk 〈ek, zk〉, ∀ k ∈ N. Note that βk > 0, because αk > 0, ek belongs to R
m
++, and zk

belongs to R
m
+\ {0}. From (14) we have

xk − xk+1 =
1

βk

(
m∑

i=1

zikg
k
i + vk

)
(15)

Now take x∗ ∈ E, then by definition of E, x∗ ∈ Ωk+1 for all k, and from Remark 3.2.2, there

exists {xl} ∈ Ω0
k+1 such that xl → x∗. Observe that, ∀ x ∈ R

n:

∥∥∥xk − x
∥∥∥
2
=
∥∥∥xk − xk+1

∥∥∥
2
+
∥∥∥xk+1 − x

∥∥∥
2
+ 2

〈
xk − xk+1, xk+1 − x

〉
. (16)

Now,combining (16), with x = xl, and (15), we have:

∥

∥

∥x
k
− x

l
∥

∥

∥

2

=
∥

∥

∥x
k
− x

k+1
∥

∥

∥

2

+
∥

∥

∥x
k+1

− x
l
∥

∥

∥

2

+
2

βk

(

m
∑

i=1

z
i
k

〈

g
k
i , x

k+1
− x

l
〉

+
〈

vk , x
k+1

− x
l
〉

)

(17)

As F (xl) ≺ F (xk+1), then Fi(x
l) < Fi(x

k+1),∀i = 1, ...,m. Furthermore, gki ∈ ∂oFi(x
k+1) and

as Fi is quasiconvex, using Proposition 2.5.2 we have

〈
gki , xk+1 − xl

〉
≥ 0,∀i = 1, ...,m. (18)

Now, as vk ∈ NΩk
(xk+1), the inequality (17) and (18), imply, taking l→∞

0 ≤
∥∥∥xk+1 − xk

∥∥∥
2
≤
∥∥∥xk − x∗

∥∥∥
2
−
∥∥∥xk+1 − x∗

∥∥∥
2
,∀k ∈ N (19)

Thus, ∥∥∥xk+1 − x∗
∥∥∥ ≤

∥∥∥xk − x∗
∥∥∥ (20)

Proposition 3.4.2 Under assumptions (H1), (H2) and (H3), the sequence
{
xk
}
generates by

the SPPM algorithm, (5) and (6), satisfies

12



lim
k→+∞

∥∥xk+1 − xk
∥∥ = 0.

Proof. It follows from (20), that ∀x∗ ∈ E,
{∥∥xk − x∗

∥∥} is a nonnegative and nonincreasing

sequence, and hence is convergent. Thus, the right-hand side of (19) converges to 0 as k → +∞,

and the result is obtained.

Proposition 3.4.3 Under assumptions (H1), (H2) and (H3), the sequence
{
xk
}
generated by

the SPPM algorithm converges some point of E.

Proof. From Proposition 3.4.1 and Lemma 2.7.1, (i),
{
xk
}
is bounded, then exists a subse-

quence
{
xkj
}
such that lim

j→+∞
xkj = x̂. Since F is locally Lipschitz on R

n, then the function

〈F (.), z〉 is also locally Lipschitz on R
n and so, continuous for all z ∈ R

m, in particular, for

all z ∈ R
m
+\ {0} , and lim

j→+∞

〈
F (xkj ), z

〉
= 〈F (x̂), z〉. On the other hand, as xk+1 ∈ Ωk, we

have F (xk+1) � F (xk) and since z ∈ R
m
+\ {0}, we conclude

〈
F (xk+1), z

〉
≤
〈
F (xk), z

〉
. Fur-

thermore, from Remark 3.2.1, we can assume that the function 〈F (.), z〉 is bounded below,

for each z ∈ R
m
+\ {0}. Then the sequence

{〈
F (xk), z

〉}
is nonincreasing and bounded below,

hence convergent. So lim
k→+∞

〈
F (xk), z

〉
= 〈F (x̂), z〉 = infk∈N

{〈
F (xk), z

〉}
≤
〈
F (xk), z

〉
. Thus,

〈
F (xk)− F (x̂), z

〉
≥ 0,∀ k ∈ N,∀ z ∈ R

m
+\ {0}. We conclude that F (xk) − F (x̂) ∈ R

m
+ , i.e,

F (x̂) � F (xk),∀ k ∈ N. Thus x̂ ∈ E, then using Lemma 2.7.1, (ii), we obtain the result.

Finally, we prove that the sequence of the iterations converges to a Pareto-Clarke critical point

when the sequence of regularization parameters {αk} is bounded.

Theorem 3.4.1 Consider F : Rn −→ R
m a function satisfying the assumptions (H1), (H2)

and (H3). If 0 < αk < α̃, then the sequence {xk} generated by the SPPM algorithm, (5) and

(6), converges to a Pareto-Clarke critical point of the problem (4).

Proof. From Proposition 3.4.3, {xk} converges, then this sequence has a unique cluster point

x̄ and from Proposition 3.4.2 and Proposition 3.3.1 we obtain the result.

Corollary 3.4.1 If F : Rn −→ R
m is R

m
+ -convex and x̄ the point of convergence given by the

SPPM algorithm, given by (5) and (6), then x̄ is weak Pareto solution of the problem (4).

Proof. It is inmediate from Proposition 2.6.1.

Corollary 3.4.2 If F : R
n −→ R

m is continuously differentiable on R
n and satisfies the

assumptions (H2), (H3), then the point of convergence given by the SPPM algorithm x̄ , given

by (5) and (6), is a Pareto critical point of the problem (4), that is, there exists i0 ∈ {1, 2, ...,m}

such that

〈∇Fi0(x̄), d〉 ≥ 0,∀d ∈ R
n.

Proof. It is immediate since continuously differentiable on R
n implies the assumption (H1),

and = F 0
i (x, d) = F ′

i (x, d) = 〈∇Fi(x), d〉 , where F ′
i is the directional derivative of Fi.
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4 Optimization models with quasiconvex multivalued functions

In this section we present some general quasiconvex multiobjective problems where the proposed

algorithm may be applied.

4.1 A quasiconvex model in demand theory

Let n be a finite number of consumer goods. A consumer is an agent who must choose how

much to consume of each good. An ordered set of numbers representing the amounts consumed

of each good set is called vector of consumption, and denoted by x = (x1, x2, ..., xn) where xi

with i = 1, 2, ..., n, is the quantity consumed of good i. Denote by X, the feasible set of these

vectors which will be called the set of consumption, usually in economic applications we have

X ⊂ R
n
+.

In the classical approach of demand theory, the analysis of consumer behavior starts spec-

ifying a preference relation over the set X, denoted by �. The notation: ”x � y” means that

”x is at least as good as y” or ”y is not preferred to x”. This preference relation � is assumed

rational, i.e, is complete because the consumer is able to order all possible combinations of

goods, and transitive, because consumer preferences are consistent, which means if the con-

sumer prefers x̄ to ȳ and ȳ to z̄, then he prefers x̄ to z̄ (see Definition 3.B.1 of Mas-Colell et

al. [21]).

A function µ : X −→ R is said to be an utility function representing a preference relation

� on X, if the following condition is satisfied:

x � y, if and only if, µ(x) ≥ µ(y) (21)

for all x, y ∈ X.

The utility function is a way to represent preferences between two vectors of consumption.

If they have the same value of the utility function, then the consumer is indifferent. Moreover,

if we have several preferences relations �i, i = 1, 2, ...,m, (multiple criteria), which satisfy the

condition (21), then we have a utility function µi for each one of these preferences �i.

Observe that the utility function not always exist. In fact, define in X = R
2 a lexicographic

relation, given by: for x, y ∈ R
2, x � y if and only if ”x1 > y1” or ”x1 = y1 e x2 ≥ y2”.

Fortunately, a very general class of preference relations can be represented by utility functions,

see for example 3.C.1 Proposition of Mas-Colell et al. [21].

If a preference relation � is represented by a utility function µ, then the problem of maxi-

mizer the consumer preference on X is equivalent to solve the optimization problem

(P) max{µ(x) : x ∈ X}.

Now consider a multiple criteria, that is, consider m preference relations denoted by �i

, i = 1, 2, ...,m. Suppose that for each preference �i, there exists an utility function, µi, respec-

tively, then the problem of maximizer the consumer preference on X is equivalent to solve the

multiobjective optimization problem

(P’) max{(µ1(x), µ2(x), ..., µm(x)) ∈ R
m : x ∈ X}.
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Since there is not a single point which maximize all the functions simultaneously the concept

of optimality is established in terms of Pareto optimality or efficiency.

On the other hand, a natural psychological assumption in economy is that the consumer

tends to diversify his consumption among all goods, that is, the preference � satisfies the

following convexity property: X is convex and if x � z and y � z then λx + (1 − λ)y � z,

∀λ ∈ [0, 1].

It can be proved that if there is a utility function representing the preference relation �,

then the convexity property of � is equivalent to the quasiconcavity of the utility function µ.

Therefore (P′) becomes a maximization problem with quasiconcave multiobjective function,

since each component function is quasiconcave.

Taking F = (−µ1,−µ2, ...,−µm), we obtain a minimization problem with quasiconvex mul-

tiobjective function, since each component function is quasiconvex one.

There are various class of utilities functions which are frequently used to generate demand

functions. One of the most common is the Cobb-Douglas utility function, which is defined on

R
2 by µ(x1, x2) = kxα1x

β
2 , with α, β > 0 and k > 0. Another utility function CES (Constant

Elasticity of Substitution), defined on R
2 by µ(x1, x2) = (λ1x

ρ
1 + λ2x

ρ
2)

1/ρ, where λ1, λ2 ≥ 0,

λ1 + λ2 = 1, and ρ is a constant.

4.2 A quasiconvex model in location theory

Location problems are related to determining the location for one or more facilities, consid-

ering a given set of demand points, with which interactions should be established. These terms

are not part of a standard terminology, are sometimes replaced by: clients, existing facilities,

businesses or users.

The following problem of locating a facility is motivated from the Chapter IV of Gromicho,

[12]. For each i = 1, ...,m, let the cluster set di = {di1, d
i
2, ..., d

i
p(i)} ⊂ R

n , n ≥ 2 (there exist m

cluster). We need to find a location x ∈ R
n for an installation so that this location minimizes

some real function involving the distance between the new location and each cluster set of

demand points.

For each i = 1, ...,m , if Ci
j , j = 1, ..., p(i), are compact convex sets with 0 ∈ int (Ci

j)

and int (Ci
j) denotes the interior of Ci

j then, for each i = 1, ...,m, we define the distance

between x and dij by γCi
j
(x − dij) with γCi

j
the gauge or Minkowsky functional of the set Ci

j,

i.e. γCi
j
(x) = inf{t > 0 : x ∈ tCi

j} . Note that if Ci
j is the unit ball in R

n, then γCi
j
(x) is the

Euclidean distance from x to 0.

To introduce the model, consider, for each i = 1, ...,m, the function γi : R
n −→ R

p
+, given

by γi(x) = (γCi
1
(x − di1), ..., γCi

p(i)
(x − dip(i))). And suppose, for each i, that the functions

f i
j : R

p(i)
+ −→ R+, with j = 1, ..., p(i) is nondecreasing in R

p(i)
+ , that is, if x, y ∈ R

p(i)
+ , satisfying

for each j = 1, ..., p(i), xj ≤ yj, then f i
j(x) ≤ f i

j(y).

The localization model is given by

min{(φ1(x), φ2(x), ..., φm(x)) : x ∈ R
n},

where, for each i = 1, ...,m, φi(x) = max1≤j≤p(i)f
i
j(γi(x)). If for each i = 1, ...,m, the functions

f i
j : R

p(i)
+ −→ R

+ are quasiconvex in R
p(i)
+ , then it can proved that for every i = 1, ...,m, each

function φi(.) is quasiconvex in R
n.
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5 Conclusion and future works

In this paper we introduced a scalarization proximal point method to solve unconstrained

(possibly nonconvex and non-differentiable) multiobjective minimization problems with locally

Lipschitz functions. Then, for quasiconvex objective functions we show a strong convergence

(global convergence) to a Pareto-Clarke critical point satisfying the completeness assumption

(H3). Note this assumption has been considered in the convergence analysis of the proximal

point method for the convex case, see [3].

We also present, in Section 4, two optimization models where the quasiconvexity of the

multiobjective functions appear naturally. We present quasiconvex models in demand theory

and location theory.

The (SPPM) algorithm, introduced in this paper, is the first attempt to construct efficient

proximal point methods to solve quasiconvex multiobjective minimization problems and in its

actual version may be considered as a based algorithm to develop other methods that consider

computational errors, lower computational costs, lower complexity order and improves the

convergence rate. Observe that in this paper we do not present an inexact version because,

according to our knowledge, the theory of ǫ− subdifferencial Clarke has not yet been developed.

To reduce considerably the computational cost in each iteration of the (SPPM) algorithm

it is need to consider the unconstrained iteration

0 ∈ ∂o
(
〈F (.), zk〉+

αk

2
〈ek, zk〉 ‖ . − xk‖2

)
(xk+1) (22)

which is more practical that (6). One natural condition to obtain (22) is that xk+1 ∈ (Ωk)
0

(interior of Ωk). So we believe that a variant of the (SPPM) algorithm may be an interior

variable metric proximal point method.

Observe also that in practice the iteration (6) or (22) should be solve using a local algo-

rithm, which only provides an approximate solution. Therefore, we consider that in a future

work it is important to analyze the convergence of the proposed algorithm considering now

inexact iterations, see [28]. Also the introduction of bundle methods are welcome.
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