Skip to main content
Log in

An approach to generate comprehensive piecewise linear interpolation of pareto outcomes to aid decision making

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Multiple criteria decision making is a well established field encompassing aspects of search for solutions and selection of solutions in presence of more than one conflicting objectives. In this paper, we discuss an approach aimed towards the latter. The decision maker is presented with a limited number of Pareto optimal outcomes and is required to identify regions of interest for further investigation. The inherent sparsity of the given Pareto optimal outcomes in high dimensional space makes it an arduous task for the decision maker. To address this problem, an existing line of thought in literature is to generate a set of approximated Pareto optimal outcomes using piecewise linear interpolation. We present an approach within this paradigm, but one that delivers a comprehensive linearly interpolated set as opposed to its subset delivered by existing methods. We illustrate the advantage in doing so in comparison to stricter non-dominance conditions imposed in existing PAreto INTerpolation method. The interpolated set of outcomes delivered by the proposed approach are non-dominated with respect to the given Pareto optimal outcomes, and additionally the interpolated outcomes along uniformly distributed reference directions are presented to the decision maker. The errors in the given interpolations are also estimated in order to further aid decision making by establishing confidence in achieving true Pareto outcomes in their vicinity. The proposed approach for interpolation is computationally less demanding (for higher number of objectives) and also further amenable to parallelization. We illustrate the performance of the approach using six well established tri-objective test problems and two real-life examples. The problems span different types of fronts, such as convex, concave, mixed, degenerate, highlighting the wide applicability of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. In [11], the first two rules are covered as a single rule R1, but we differentiate them as R1.1 and R1.2.

References

  1. Asafuddoula, M., Ray, T., Sarker, R.: A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460 (2015)

    Article  Google Scholar 

  2. Berezkin, V.E., Kamenev, G.K., Lotov, A.V.: Hybrid adaptive methods for approximating a nonconvex multidimensional pareto frontier. Comput. Math. Math. Phys. 46(11), 1918–1931 (2006)

    Article  MathSciNet  Google Scholar 

  3. Das, I., Dennis, J.E.: Normal-bounday intersection: a new method for generating pareto optimal points in multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the IEEE Congress on Evolutionary Computation. pp 825–830. IEEE, Honolulu, USA (2002)

  5. Eskelinen, P., Miettinen, K., Klamroth, K., Hakanen, J.: Pareto navigator for interactive nonlinear multiobjective optimization. OR Spectrum 32(1), 211–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eyvindson, K., Hartikainen, M., Kurttila, M.: Towards constructing a Pareto front approximation for use in interactive forest management planning. In: Proceedings of the International Conference on Implementation of DSS Tools into the Forestry Practice. Technical University in Zvolen (2013)

  7. Goel, T., Vaidyanathan, R., Haftka, R.T., Shyy, W., Queipo, N.V., Tucker, K.: Response surface approximation of Pareto optimal front in multi-objective optimization. Comput. Methods Appl. Mech. Eng. 196(4), 879–893 (2007)

    Article  MATH  Google Scholar 

  8. Hartikainen, M., Lovison, A.: PAINT-SiCon: constructing consistent parametric representations of Pareto sets in nonconvex multiobjective optimization. J. Global Optim. 62(2), 243–261 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hartikainen, M., Miettinen, K.: A computationally inexpensive approach in multiobjective heat exchanger network synthesis. Proceedings of the International Conference on Applied Operational Research. 10, 99–109 (2010)

    Google Scholar 

  10. Hartikainen, M., Miettinen, K., Wiecek, M.M.: Constructing a Pareto front approximation for decision making. Math. Methods Oper. Res. 73(2), 209–234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hartikainen, M., Miettinen, K., Wiecek, M.M.: PAINT: Pareto front interpolation for nonlinear multiobjective optimization. Comput. Optim. Appl. 52(3), 845–867 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hartikainen, M., Ojalehto, V.: Demonstrating the applicability of PAINT to computationally expensive real-life multiobjective optimization. arXiv preprint arXiv:1109.3411 (2011)

  13. Hillermeier, C.: Generalized homotopy approach to multiobjective optimization. J. Optim. Theory Appl. 110(3), 557–583 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hillermeier, C.: Nonlinear multiobjective optimization. Birkhäuser, Basel (2001)

    Book  MATH  Google Scholar 

  15. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  MATH  Google Scholar 

  16. Kuhn, T., Ruzika, S.: A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions. J. Global Optim. 1–20 (2016). doi:10.1007/s10898-016-0425-5

  17. Lotov, A.V., Miettinen, K.: Visualizing the Pareto frontier. In: Multiobjective optimization, Lecture Notes in Computer Science, vol 5252, pp 213–243. Springer (2008). doi:10.1007/978-3-540-88908-3_9

  18. Lovison, A.: Singular continuation: generating piecewise linear approximations to Pareto sets via global analysis. SIAM J. Optim. 21(2), 463–490 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lovison, A.: Global search perspectives for multiobjective optimization. J. Global Optim. 57(2), 385–398 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lovison, A., Hartikainen, M.: On generalizing Lipschitz global methods for multiobjective optimization. In: Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, vol 9019, pp 264–278 (2015)

  21. Martín, J., Bielza, C., Insua, D.R.: Approximating nondominated sets in continuous multiobjective optimization problems. Nav. Res. Logist. 52(5), 469–480 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Missoum, S., Ramu, P., Haftka, R.T.: A convex hull approach for the reliability-based design optimization of nonlinear transient dynamic problems. Comput. Methods Appl. Mech. Eng. 196(29), 2895–2906 (2007)

    Article  MATH  Google Scholar 

  23. Monz, M.: Pareto Navigation—Interactive Multiobjective Optimisation and Its Application in Radiotherapy Planning. Ph.D. thesis, Department of Mathematics, Technical University of Kaiserslautern (Germany) (2006)

  24. Monz, M., Küfer, K.H., Bortfeld, T.R., Thieke, C.: Pareto navigation—algorithmic foundation of interactive multi-criteria IMRT planning. Phys. Med. Biol. 53(4), 985–998 (2008)

    Article  Google Scholar 

  25. Payne, A.N.: Efficient approximate representation of bi-objective tradeoff sets. J. Frankl. Inst. 330(6), 1219–1233 (1993)

    Article  MATH  Google Scholar 

  26. Rasmus, B., Anders, F.: An algorithm for approximating convex Pareto surfaces based on dual techniques. INFORMS J. Comput. 25(2), 377–393 (2013)

    Article  MathSciNet  Google Scholar 

  27. Ruzika, S., Wiecek, M.M.: Approximation methods in multiobjective programming. J. Optim. Theory Appl. 126(3), 473–501 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wiecek, M.M., Ehrgott, M., Engau, A.: Continuous multiobjective programming. In: Multiple Criteria Decision Analysis. International Series in Operations Research and Management Science, vol 233, pp 739–815. (2016). doi:10.1007/978-1-4939-3094-4_18

  29. Yang, J.B., Singh, M.G.: An evidential reasoning approach for multiple-attribute decision making with uncertainty. IEEE Trans. Syst. Man Cybern. 24(1), 1–18 (1994)

    Article  Google Scholar 

  30. Žilinskas, A.: On the worst-case optimal multi-objective global optimization. Optim. Lett. 7(8), 1921–1928 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul. 21(1), 89–98 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The third author would like to acknowledge the support from Australian Research Council (ARC) Future Fellowship. Thanks also to Markus Hartikainen for discussions regarding PAINT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, K.S., Singh, H.K. & Ray, T. An approach to generate comprehensive piecewise linear interpolation of pareto outcomes to aid decision making. J Glob Optim 68, 71–93 (2017). https://doi.org/10.1007/s10898-016-0454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0454-0

Keywords

Navigation