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We propose and study a version of simulated annealing (SA) on continu-
ous state spaces based on (t, s)R-sequences. The parameter R ∈ N̄ regulates
the degree of randomness of the input sequence, with the case R = 0 corres-
ponding to IID uniform random numbers and the limiting case R = ∞ to
(t, s)-sequences. Our main result, obtained for rectangular domains, shows
that the resulting optimization method, which we refer to as QMC-SA, con-
verges almost surely to the global optimum of the objective function ϕ for
any R ∈ N. When ϕ is univariate, we are in addition able to show that the
completely deterministic version of QMC-SA is convergent. A key property
of these results is that they do not require objective-dependent conditions on
the cooling schedule. As a corollary of our theoretical analysis, we provide a
new almost sure convergence result for SA which shares this property under
minimal assumptions on ϕ. We further explain how our results in fact apply
to a broader class of optimization methods including for example threshold
accepting, for which to our knowledge no convergence results currently ex-
ist. We finally illustrate the superiority of QMC-SA over SA algorithms in a
numerical study.
Keywords: Global optimization; Quasi-Monte Carlo; Randomized quasi-

Monte Carlo; Simulated annealing; Threshold accepting

1. Introduction

Simulated annealing (SA) belongs to the class of stochastic optimization techniques, a
popular suite of tools to find the global optimum of multi-modal and/or non-differentiable
functions defined on continuous sets (Geman and Hwang, 1986). For instance, SA has
been successfully used to solve complicated continuous optimization problems arising in
∗corresponding author: mathieugerber@fas.harvard.edu
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signal processing (Chen and Luk, 1999), antenna array synthesis (Girard et al., 2001)
and thermodynamics (Zhang et al., 2011); see Locatelli (2002) and references therein for
more applications of SA on continuous state spaces. In addition, since many inferential
problems amount to optimizing an objective function, SA has proved to be useful both
with frequentist (see, e.g., Goffe et al., 1994; Rubenthaler et al., 2009; Chen et al., 2011)
and Bayesian (see, e.g., Andrieu and Doucet, 2000; Ireland, 2007) statistical methods.
In this paper, we propose and study SA algorithms based on quasi-Monte Carlo (QMC)

point sets – informally, sets of points that more evenly cover the unit hypercube than
uniform random numbers. QMC point sets are already widely used in numerical analysis
to evaluate the integral of a function over a hypercube, and an important literature on
QMC integration error rate has been developed during the last 30 years (Dick and Pil-
lichshammer, 2010). Since QMC point sets are designed to evenly cover hypercubes, they
intuitively should be an efficient alternative to pseudo-random numbers inside stochastic
optimization routines. However, their use for global optimization is surprisingly scarce
and is mainly limited to quasi-random search and some ad-hoc improvements thereof;
see Section 2.3.1 for a literature review.
More precisely, we develop a SA algorithm (hereafter referred to as QMC-SA) using as

input (t, s)R-sequences. The parameter R ∈ N̄ regulates the degree of randomness of the
sequence, with the case R = 0 corresponding to IID uniform random numbers in [0, 1)s

and the limiting case R = ∞ to (t, s)-sequences, which encompass the most classical
constructions of QMC sequences such as Sobol’, Faure and Niederreiter-Xing sequences
(see, e.g, Dick and Pillichshammer, 2010, Chapter 8). The case R =∞ (i.e. deterministic
QMC-SA) is of particular interest but our main result only holds for R ∈ N because, for
multivariate objective functions, some randomness is needed to rule out odd behaviours
that may be hard to exclude with deterministic point sets. Note that our convergence
result is valid for any R ∈ N. Consequently, only arbitrary small randomness is needed
and thus, as explained below (Section 3.1), can be omitted in practice. For univariate
test functions, our convergence result also applies for the limiting case R =∞.

For “standard” (i.e. Monte Carlo) SA algorithms, the choice of the cooling schedule
(Tn)n≥1 is a critical one since most convergence results for SA impose conditions on
this sequence that are model-dependent and usually intractable. This is for instance the
case for the almost sure convergence result of Bélisle (1992) on compact spaces or the
convergence in probability result of Andrieu et al. (2001) on unbounded domains.
Regarding this point, the theoretical guarantees of QMC-SA, established on rectan-

gular spaces, have the advantage to impose no problem-dependent conditions on the
cooling schedule, only requiring one to choose a sequence (Tn)n≥1 such that the series∑∞

n=1(Tn log n) is convergent. As a corollary of our analysis, we show that, under weaker
assumptions than in Bélisle (1992)’s result, selecting such a cooling schedule is enough
to ensure the almost sure convergence of SA. We also note that our analysis applies for a
broader class of optimization methods, which in particular encompass SA with arbitrary
acceptance probability function and threshold accepting (Dueck and Scheuer, 1990; Mo-
scato and Fontanari, 1990). To the best of our knowledge, no convergence result exists
for this latter method and thus this paper provides the first theoretical guarantees for
this class of optimization techniques.
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From an algorithmic point of view, QMC-SA simply amounts to replacing the pseudo-
random random numbers used as input to SA with points taken from a (t, s)R-sequence.
The cost of generating the first N ≥ 1 points of a (t, s)R-sequence is O(N logN) for any
R ∈ N̄ and therefore, for a fixed number of function evaluations, QMC-SA is slower than
classical SA algorithms. However, the extra cost is small because in most cases we can
generate points from (t, s)R-sequences using efficient logical operations; further, the cost
of simulating these sequences is typically minuscule in comparison to other algorithmic
steps, such as evaluating the objective function. In addition, and as illustrated below,
the deterministic version of QMC-SA typically requires many fewer function evaluations
than SA to reach the same approximation error.
The rest of the paper is organized as follows. In Section 2 we set the notation and

present the background material necessary to follow this work. The QMC-SA algorithm
is presented in Section 3 and its convergence study is given in Section 4. In Section 5
we discuss some extensions of QMC-SA; in particular, we will see how our convergence
results apply to threshold accepting. Section 6 proposes a numerical study to compare
SA and QMC-SA, notably on a non-differentiable and high dimensional optimization
problem that arises in spatial statistics. Section 7 concludes.

2. Preliminaries

In this section we first set the notation we will use throughout this work before giving
a brief introduction to SA and to QMC methods. In particular, the use of QMC point
sets for global optimization is motivated and discussed in Section 2.3.1.

2.1. Notation

Let X ⊆ Rd be a measurable set and ϕ : X → R. Then, we write ϕ∗ = supx∈X ϕ(x) the
quantity of interest in this work and P(X ) the set of all probability measures on X which
are absolutely continuous with respect to λd(dx), the Lebesgue measure on Rd. Vectors
in Rd are denoted using bold notation and, for two integers a and b, b ≥ a, we write a : b
the set of integers {a, . . . , b}. Similarly, x1:N is the set of N points {x1, . . . ,xN} in Rd
and, for a vector x ∈ Rd, x1:i := (x1, . . . , xi), i ∈ 1 : d. For two real numbers a and b,
we will sometimes use the notation a∨ b (resp. a∧ b) to denote the maximum (resp. the
minimum) between a and b.
Let K : X → P(X ) be a Markov kernel whose density with respect to the Lebesgue

measure is denoted by K(y|x). We write Ki(x, y1:i−1, dyi), i ∈ 1 : d, the distribution
of yi conditional on y1:i−1, relative to K(x,dy) (with the convention Ki(x, y1:i−1,dyi) =
K1(x,dy1) when i = 1) and the corresponding density function is denoted byKi(yi|y1:i−1,x)
(again with the convention Ki(yi|y1:i−1,x) = K1(y1|x) when i = 1).
For a distribution π ∈ P(X ), we denote by Fπ : X → [0, 1]d (resp. F−1

π : [0, 1]d → X )
its Rosenblatt (resp. inverse Rosenblatt) transformation (Rosenblatt, 1952). When d =
1, the (inverse) Rosenblatt transformation of π reduces to its (inverse) CDF and, when
d > 1, the i-th component of Fπ (resp. of F−1

π ) is the CDF (resp. the inverse CDF)
of component xi conditionally on (x1, . . . , xi−1). Similarly, for a kernel K : X → P(X ),
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we denote by FK(x, ·) (resp. F−1
K (x, ·)) the Rosenblatt (resp. the inverse Rosenblatt)

transformation of the probability measure K(x,dy) ∈ P(X ). We refer the reader e.g. to
Gerber and Chopin (2015, Section 3.1) for a more detailed presentation of these mappings.
Finally, we write Bδ(x̃) ⊆ X the ball of radius δ > 0 around x̃ ∈ X with respect to the

supremum norm, i.e. Bδ(x̃) = {x ∈ X : ‖x − x̃‖∞ ≤ δ} ∩ X where, for vectors z ∈ Rd,
‖z‖∞ = maxi∈1:d |zi|.

2.2. Introduction to simulated annealing

As already mentioned, simulated annealing (see, e.g, Nikolaev and Jacobson, 2010, for a
recent overview ) is an iterative stochastic optimization techniques designed to evaluate
the supremum of a function ϕ : X ⊆ Rd → R; see Algorithm 1 below for a pseudo-code
version of SA. At iteration n ≥ 1 of SA, and given a current location xn−1 ∈ X , a
candidate value yn is generated using the probability distribution K(xn−1,dy) ∈ P(X ),
where K : X → P(X ) is a Markov kernel. Then, a Metropolis step is performed to
decide whether we move or not to this proposed location. In particular, if yn increases
the function value, i.e. ϕ(yn) ≥ ϕ(xn−1), then we move with probability one to the
location yn, i.e. xn = yn almost surely. However, some downwards moves are also
accepted in order to escape quickly from local maxima. Given a current location xn−1

and a candidate value yn, the probability to accept a downward move depends on Tn,
the level of temperature at iteration n. The sequence (Tn)n≥1 is strictly positive and
converges to zero as n→∞, allowing for more exploration early in the algorithm.
There exist various convergence results for SA algorithms, the vast majority of them

being based on the assumption that the state space is compact; see however Andrieu
et al. (2001) for results on non-compact spaces. For compact spaces, convergence results
can be found, e.g., in Bélisle (1992); Locatelli (1996, 2000); Haario and Saksman (1991);
see also Lecchini-Visintini et al. (2010) for results on the finite time behaviour of SA on
compact spaces.

2.3. Introduction to quasi-Monte Carlo

As mentioned in the introduction, QMC point sets are sets of points in [0, 1)d that are
more evenly distributed than IID uniform random numbers. There exist in the QMC
literature many different measures of uniformity of a point set u1:N in [0, 1)d, the most
popular of them being the star discrepancy, defined as

D?(u1:N ) = sup
b∈(0,1]d

∣∣∣ N∑
n=1

1
(
un ∈ [0, b)

)
−

d∏
i=1

bi

∣∣∣,
where 1(·) denotes the indicator function. A QMC (or low discrepancy) point set may be
formally defined as a set of points u1:N in [0, 1)d such that D?(u1:N ) = O(N−1(logN)d).
Note that for a set of IID uniform random numbers, D?(u1:N ) = O(N−1/2 log logN)
almost surely (see, e.g., Niederreiter, 1992, p.167). There exist various constructions
of QMC point sets u1:N ; see for instance the books of Niederreiter (1992); Dick and
Pillichshammer (2010) for more details on this topic.
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2.3.1. Quasi-Monte Carlo optimization

If QMC point sets are widely used to evaluate the integral of a function, there has been
remarkably little use of QMC for global optimization, with efforts primarily limited to
QMC versions of random search. We start by discussing this work in order to motivate
why and how the good equidistribution properties of QMC point sets may be useful to
improve stochastic optimization methods.
Consider the problem of computing ϕ∗ for a function ϕ : [0, 1)d → R. Then, a simple

way to approximate ϕ∗ is to compute m(ϕ,u1:N ) := max1≤n≤N ϕ(un), where u1:N is a
set of N points in [0, 1)d. Niederreiter (1983) shows that, for Lipschitz functions ϕ,

ϕ∗ −m(ϕ,u1:N ) ≤ C(ϕ)d
(
u1:N

)
for a constant C(ϕ) <∞ which depends only on ϕ and where

d
(
u1:N

)
= max

x∈[0,1)d
min

1≤n≤N
‖un − x‖∞

is the dispersion of u1:N on [0, 1)d, which measures the maximum distance between a
point in the state space and the points used in the search. Intuitively, the good partition
of the points of a QMC point set inside the unit hypercube should translate into a small
dispersion. And indeed, there exist several constructions of QMC point sets which verify
d
(
u1:N

)
≤ C̄N−1/d for a constant C̄ < ∞, where the dependence in N ≥ 1 is optimal

(Niederreiter, 1992, Theorem 6.8, p.154).
Ad hoc improvements of quasi-random search, designed to improve upon the non-

adaptive N−1/d convergence rate, have been proposed by Niederreiter and Peart (1986),
Hickernell and Yuan (1997), Lei (2002), and Jiao et al. (2006), see also Fang (2002) and
references therein. Finally, note that QMC optimization has been applied successfully in
statistics for, e.g., maximum likelihood estimation and parameter estimation in nonlinear
regression models (see Fang et al., 1996; Fang, 2002, and references therein) as well
as for portfolio management (Pistovčák and Breuer, 2004) and power system tuning
(Alabduljabbar et al., 2008).
In optimization, we often run the algorithm until a given tolerance criterion is fulfilled,

and thus the number of function evaluations is not known in advance. Therefore, we
will focus in this paper on QMC point sets u1:N obtained by taking the first N points
of a sequence (un)n≥1. Most constructions of QMC sequences belong to the class of the
so-called (t, s)-sequences (Niederreiter, 1987) which are, as shown below, well adapted
for optimization and therefore constitute the key ingredient of QMC-SA.

2.3.2. Definition and main properties of (t, s)-sequences

For integers b ≥ 2 and s ≥ 1, let

Ebs =
{ s∏
j=1

[
ajb
−dj , (aj + 1)b−dj

)
⊆ [0, 1)s, aj , dj ∈ N, aj < bdj , j ∈ 1 : s

}
be the set of all b-ary boxes (or elementary intervals in base b) in [0, 1)s. Then, we
introduce the notion of (t, s)-sequences through two definitions:
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Definition 1. Let m ≥ 0, b ≥ 2, 0 ≤ t ≤ m and s ≥ 1 be integers. Then, the set
{un}bm−1

n=0 of bm points in [0, 1)s is called a (t,m, s)-net in base b in every b-ary box
E ∈ Ebs of volume bt−m contains exactly bt points of the point set {un}bm−1

n=0 .

Definition 2. Let b ≥ 2, t ≥ 0, s ≥ 1 be integers. Then, the sequence (un)n≥0 of points
in [0, 1)s is called a (t, s)-sequence in base b if, for any integers a ≥ 0 and m ≥ t, the set
{un}(a+1)bm−1

n=abm is a (t,m, s)-net in base b.

An interesting property of (t, s)-sequences for optimization is that, for any N ≥ 1,
the dispersion of the first N points of a (t, s)-sequence is bounded by Cb,t,sN−1/s for a
constant Cb,t,s <∞ (Niederreiter, 1992, Theorem 6.11, p.156), where the dependence in
N is optimal as recalled in the previous subsection. Over (t,m, s)-nets, the dispersion is
bounded by C ′b,t,sb

−m/s for a constant C ′b,t,s < Cb,t,s (Niederreiter, 1992, Theorem 6.10,
p.156 ). Note that the integer b determines how often sets of points with good coverage of
the hypercube arrive as we go through the sequence, while the parameter t ≥ 0 measures
the quality of these sets. In particular, for a given value of s and b, the smaller t is the
better the (t,m, s)-net spreads over the unit hypercube. However, for a given value of
b ≥ 2 and s, (t, s)-sequences exist only for some values of t and, notably, a (0, s)-sequence
exists only if b ≥ s (see, e.g., Dick and Pillichshammer, 2010, Corollary 4.36, p.141). We
refer the reader to Niederreiter (1992, Chapter 4) and Dick and Pillichshammer (2010,
Chapter 4) for a more complete exposition of (t, s)-sequences.

3. Quasi-Monte Carlo simulated annealing

The QMC-SA algorithm we study in this work is presented in Algorithm 1. Note that,
when the input sequences are IID uniform random numbers in [0, 1)d+1, Algorithm 1
reduces to standard SA where we have written the simulations of the candidate value
yn and the Metropolis steps as a function of d + 1 random numbers using the inverse
Rosenblatt transformation of the Markov kernel.
To obtain a QMC version of SA, Algorithm 1 simply amounts to replacing the pseudo-

random numbers used in classical simulated annealing algorithms by specific QMC se-
quences, whose choice is crucial for the performance of the optimization routine. The
SA algorithm proposed in this work is based on what we call (t, s)R-sequences, that we
introduce in the the next subsection.

3.1. (t, s)R-sequences: Definition and their use in QMC-SA

Definition 3. Let b ≥ 2, t ≥ 0, s ≥ 1 and R ∈ N̄ be integers. Then, we say that the
sequence (unR)n≥0 of points in [0, 1)s is a (t, s)R-sequence in base b if, for all n ≥ 0 (using
the convention that empty sums are null),

unR = (unR,1, . . . , u
n
R,s), unR,i =

R∑
k=1

ankib
−k + b−Rzni , i ∈ 1 : s

6



where the zni ’s are IID uniform random variables in [0, 1) and where the digits anki’s in
{0, . . . , b− 1} are such that (un∞)n≥0 is a (t, s)-sequence in base b.

The parameter R therefore regulates the degree of randomness of the sequence (unR)n≥0,
with the two extreme cases R = 0 and R =∞ corresponding, respectively, to a sequence
of IID uniform random variables and a completely deterministic sequence. For R ≥ t,
note that, for all a ∈ N and for all m ∈ t : R, the set {unR}

(a+1)bm−1
n=abm is a (t,m, s)-net in

base b. In addition, for any R < ∞ and n ≥ 0, unR is uniformly distributed in a b-ary
box En ∈ Ebs of volume b−sR, whose position in [0, 1)s depends on the deterministic part
of unR.
In practice, one will often use R = 0 or the limiting case R = ∞. But, to rule out

some odd behaviours that cannot be excluded due to the deterministic nature of (t, s)-
sequences, our general consistency result only applies for R ∈ N. As already mentioned,
note that an arbitrary small degree of randomness suffices to guarantee the validity of
QMC-SA since our consistency results holds for all R ∈ N.
However, in practice, the randomization can be omitted. Indeed, SA algorithms are

often run for a maximum of N < ∞ iterations and, if the result is not satisfactory,
instead of increasing N , it is usually run again using a different starting value and/or a
different input sequence. For most constructions of (t, s)-sequences (e.g. Sobol’, Faure
and Niederreiter-Xing sequences), anik = 0 for all k ≥ kn, where kn denotes the smallest
integer such that n < bkn . Thus, for a fixed N , if one chooses R ≥ kN , the randomization
is not necessary.
Note also that (t, s)R-sequences contain the practical versions of scrambled (t, s)-

sequences (Owen, 1995). A scrambled (t, s)-sequence (ũn)n≥0 is obtained from a (t, s)-
sequence (un)n≥0 by randomly permuting (‘scrambling’) the digits anki’s of its components
in a way that preserves the equidistribution properties of (un)n≥0. In particular, the ran-
dom sequence (ũn)n≥0 is a (t, s)-sequence in base b with probability one and, in addition,
ũn ∼ U([0, 1)s) for all n ≥ 0. The sequence (ũn)n≥0 has component ũni =

∑∞
k=1 ã

n
kib
−k

such that ãnki 6= 0 for all k, i, s but, in practice, the infinite sum is truncated and instead
we use the sequence (ǔn)n≥0, with component ǔni =

∑Kmax
k=1 ãnkib

−k + b−Kmaxzni where, as
above, the zni ’s are IID uniform random variables in [0, 1) (see Owen, 1995).

3.2. Practical implementation

Algorithm 1 simply amounts to replacing the pseudo-random numbers used in clas-
sical simulated annealing algorithms by points taken from a (0, 1)-sequence and from a
(t, s)R-sequences (unR)n≥0. In practice, the generation of (t, s)-sequences is an easy task
because most statistical software contain routines to generate them (e.g. the package
randtoolbox in R or the class qrandset in the statistical toolbox of Matlab). Gen-
erating (unR)n≥0 for R ∈ N+ is more complicated because one should act at the digit
level. However, as a rough proxy, one can generate (unR)n≥0 as follows: generate a (t, d)-
sequence (un)n≥0 and set vnR = un + b−R−1zn, where the zn’s are IID uniform random
variables in [0, 1)d.
Concerning the computational cost, generating the first N points of most constructions
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Algorithm 1 Generic QMC-SA algorithm to compute supx∈X ϕ(x)

Input: A starting point x0 ∈ X , a Markov kernel K acting from X to itself, T1 > 0,
(unR)n≥0, a (t, d)R-sequence in base b ≥ 2 and (vn)n≥0 a (0, 1)-sequence in base b.

1: for n = 1→ N do
2: Compute yn = F−1

K (xn−1,unR)
3: if vn ≤ exp{(ϕ(yn)− ϕ(xn−1))/Tn} then
4: xn = yn

5: else
6: xn = xn−1

7: end if
8: Select Tn+1 ∈ (0, Tn]
9: end for

of (t, s)-sequences requires O(N logN) operations (Hong and Hickernell, 2003). This is
slower than random sampling but the extra cost is particularly small when b = 2 since,
in that case, bits operations can be used to generate the points of the sequence.
Steps 2-7 of Algorithm 1 sample xn from a distribution K̃(xn−1,dx) ∈ P(X ) using

the point (unR, v
n) ∈ [0, 1)d+1. Thus, although not required for our consistency results, it

seems a good idea to choose the (0, 1)-sequence (vn)n≥0 and the limiting (t, d)-sequence
(un∞)n≥0 such that the sequence (vn)n≥0 in [0, 1)d+1, with component vn = (un∞, v

n),
is a (t, d + 1)-sequence. Note that this is a weak requirement because most standard
constructions of (t, d+ 1)-sequences ((un∞, v

n))n≥0, such as, e.g., the Sobol’ or the Faure
sequences (see Dick and Pillichshammer, 2010, Chapter 8, a definitions), are such that
(un∞)n≥0 and (vn)n≥0 have the right properties.
Finally, compared to Monte Carlo SA, QMC-SA has the drawback of requiring Markov

kernels K that can be sampled efficiently using the inverse Rosenblatt transformation
approach. However, this is not an important practical limitation because SA algorithms
are often based on (truncated) Gaussian or Cauchy kernels for which it is trivial to
compute the inverse Rosenblatt transformation. Again, we refer the reader e.g. to Gerber
and Chopin (2015, Section 3.1) for a detailed presentation of this sampling strategy.

4. Convergence results

The convergence study of Algorithm 1 is conducted under the assumption that X is
a non-empty closed hyperrectangle of Rd. Without loss of generality, we assume that
X = [0, 1]d in what follows.
Our results require some (weak) regularity assumptions on the Markov kernel in order

to preserve the good equidistribution properties of the QMC sequences. More precisely,
we consider the following two assumptions on K : [0, 1]d → P([0, 1]d) :

(A1) For a fixed x ∈ X , the i-th component of FK(x,y) is strictly increasing in yi ∈ [0, 1],
i ∈ 1 : d;
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(A2) The Markov kernel K(x, dy) admits a continuous density K(y|x) (with respect to
the Lebesgue measure on [0, 1]d) such that, for a constant K > 0, K(y|x) ≥ K for
all (x,y) ∈ X 2.

Assumption (A1) ensures that, for any x ∈ X , the inverse Rosenblatt transformation
of FK(x,dy) ∈ P(X ) is a well defined function while Assumption (A2) is used, e.g., in
Bélisle (1992).
In the next subsection we state some preliminary results on the dispersion of point sets

obtained by transforming a (t, s)-sequence through inverse Rosenblatt transformations.
These results provide key insight into how QMC may improve the performance of SA;
readers mostly interested in the main results can however skip this subsection and go
directly to Sections 4.2 and 4.3.

4.1. Preliminary results

The following lemma provides conditions on the Markov kernel K : X → P(X ) so that
the inverse Rosenblatt transformation F−1

K (x, ·) converts a low dispersion point set in
[0, 1)d into a low dispersion point set in X .

Lemma 1. Let X = [0, 1]d and (un)n≥0 be a (t, d)-sequence in base b ≥ 2. Let K : X →
P(X ) be a Markov kernel such that Assumptions (A1)-(A2) hold. Let (x̃,x′) ∈ X 2 and
yn = F−1

K (x̃,un), n ≥ 0. Then, there exists a δ̄K > 0 such that, for any δ ∈ (0, δ̄K ],

there is a kδ ∈ N, kδ ≥ t + d, such that, for any a ∈ N, the point set {yn}(a+1)bkδ−1

n=abkδ

contains at least bt points in Bδ(x′). In addition, δ̄K and kδ do not depend on the point
(x̃,x′) ∈ X 2. Moreover, the result remains true if yn = F−1

K (xn,un) with xn ∈ BvK(δ)(x̃)
for all n ≥ 0 and where vK : (0, δ̄K ] → R+ is independent of (x̃,x′) ∈ X 2, continuous
and strictly increasing, and such that vK(δ)→ 0 as δ → 0.

Proof. See Appendix A for a proof.

As a corollary, note the following. Let Pb,k = {un}bk−1
n=0 , k ≥ t, be a (t, k, d)-net in base

b ≥ 2 and define

dX (Pb,k, x̃,K) = sup
x∈X

min
n∈0:bk−1

‖F−1
K (x̃,un)− x‖∞, x̃ ∈ X (1)

as the dispersion of the point set {F−1
K (x̃,un)}bk−1

n=0 in X . Then, under the conditions of
the previous lemma, dX (Pb,k, x̃,K)→ 0 as k →∞, uniformly on x̃ ∈ X .
Lemma 1 provides an iterative random search interpretation of Algorithm 1. Indeed,

at location xn = x̃, this latter go through a low dispersion sequence in the state space X
until a candidate value is accepted, and then the process starts again at this new location.
The last part of the lemma shows that it is not a good idea to re-start the sequence each
time we move to a new location because the point set {F−1

K (xn,un)}bk−1
n=0 may have good

dispersion properties in X even when xn
′ 6= xn for some n, n′ ∈ 0 : (bk − 1).

It is also worth noting that Lemma 1 gives an upper bound for the jumping time of
the deterministic version of Algorithm 1; that is, for the number mn of candidate values
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required to move from location xn = x̃ to a new location xn+mn 6= x̃. Indeed, let x∗ ∈ X
be a global maximizer of ϕ, δn = ‖xn − x∗‖∞ and assume that there exists a δ ∈ (0, δn)
such that ϕ(x) > ϕ(xn) for all x ∈ Bδ(x∗). Then, by the properties of (t, s)-sequences
(see Section 2.3.2), the point set {um∞}

n+2kδ
m=n+1, with kδ as in Lemma 1, contains at least

one (t, kδ, s)-net and thus, by this latter, there exists at least one m ∈ 1 : 2kδ such
that ỹn+m = F−1

K (x̃,un+m
∞ ) belongs to Bδ(x∗). Since ϕ(ỹm) > ϕ(x̃), we indeed have

mn ≤ 2kδ < 2kδn .
It is clear that the speed at which dX (Pb,k, x̃,K) goes to zero as k increases depends

on the smoothness of the transformation F−1
K (x, ·), x ∈ X . Thus, it is sensible to choose

K such that dX (Pb,k, x̃,K) goes to zero at the optimal non-adaptive convergence rate
(see Section 2.3.1). The next lemma provides sufficient conditions for the kernel K to
fulfil this requirement.

Lemma 2. Consider the set-up of Lemma 1 and, in addition, assume that, viewed as a
function of (x,y) ∈ X 2, FK(x,y) is Lipschitz with Lipschitz constant CK < ∞ for the
supremum norm. Let

C̃K = 0.5K̃
(
1 ∧ (0.25K̃/CK)d

)
, K̃ = min

i∈1:d
{ inf

(x,y)∈X 2
Ki(yi|y1:i−1,x)}.

Then, the result of Lemma 1 holds for kδ =
⌈
t + d − d log(δC̃K/3)/ log b

⌉
and for δ̄K =

(3/C̃K) ∧ 0.5.

Proof. See Appendix B for a proof.

Let δk ∈ (0, δ̄K ] be the size of the smallest ball around x′ ∈ X that can be reached by the
point set {F−1

K (x̃,un)}bk−1
n=0 , with k ≥ kδ̄K , x̃ ∈ X and where, as above, Pb,k = {un}bk−1

n=0

is a (t, k, d)-net in base b ≥ 2. Then, under the assumptions of Lemma 2, δk = Cb−k/d

for a constant C > 0 independent of x′ and thus supx̃∈X dX (Pb,k, x̃,K) = O(b−k/d) as
required.

4.2. General consistency results for QMC-SA

To obtain a convergence result for Algorithm 1 we need some regularity assumptions
concerning the objective function ϕ. To this end, and borrowing an idea of He and Owen
(2015) (who study QMC integration of functions restricted to a non-rectangular set), we
impose a condition on the Minkovski content of the level sets

Xϕ(x) := {x′ ∈ X : ϕ(x′) = ϕ(x)}, x ∈ X .

Definition 4. The measurable set A ⊆ X has a (d−1)-dimensional Minkovski content if
M(A) := limε↓0 ε

−1λd
(
(A)ε

)
exists and is finite, where, for ε > 0, we use the shorthand

(A)ε = {x ∈ X : ∃x′ ∈ A, ‖x− x′‖∞ ≤ ε}.

The following lemma is the key result to establish the consistency of QMC-SA.

Lemma 3. Consider Algorithm 1 where X = [0, 1]d and assume the following conditions
are verified:

10



1. The Markov kernel K : X → P(X ) is such that Assumptions (A1)-(A2) hold;

2. ϕ is continuous on X and such that supx∈X :ϕ(x)<ϕ∗M(Xϕ(x)) <∞.

Let R ∈ N. Then, if the sequence (ϕ(xn))n≥1 is almost surely convergent, with probability
one ϕ(xn)→ ϕ∗ as n→∞.

Proof. See Appendix C for a proof.

Note that the assumption on the Minkovski content of the level sets notably implies
that ϕ has a finite number of modes.
Thus, if in Algorithm 1 only upward moves are accepted, then the resulting ascendant

algorithm is convergent. To establish the consistency of QMC-SA, we therefore need
to ensure that not too many “large” downward moves are accepted. This is done by
controlling the rate at which the sequence of temperature (Tn)n≥1 converges toward
zero, as shown in the next results. We recall that kn denotes the smallest integer such
that n < bkn .

Lemma 4. Consider Algorithm 1 with X ⊆ Rd and where (vn)n≥0 is such that v0 = 0.
Then, at iteration n ≥ 1, yn is rejected if ϕ(yn) < ϕ(xn−1)− Tnkn log b.

Proof. To prove the lemma, note that for any k ∈ N the point set {vn}bk−1
n=0 is a (0, k, 1)-

net in base b and therefore contains exactly one point in each elementary interval of
length b−k. Hence, because v0 = 0, the point set {vn}bk−1

n=1 contains no point in the
interval [0, b−k) and thus, for all n ≥ 1, yn is rejected if

exp
({
ϕ(yn)− ϕ(xn−1)

}
/Tn

)
< b−kn .

Lemma 5. Consider Algorithm 1 with X ⊆ Rd and assume that there exists a sequence
(ln)n≥1 of positive numbers which verifies

∑∞
n=1 l

−1
n <∞ and such that xn = xn−1 when

ϕ(yn) < ϕ(xn−1)− l−1
n . Then, if ϕ is bounded, the sequence (ϕ(xn))n≥0 is almost surely

convergent.

Proof. Let ϕ̄ = lim supn→∞ ϕ(xn) and ϕ = lim infn→∞ ϕ(xn). Then, because ϕ is
bounded, both ϕ̄ and ϕ are finite. We now show that, under the conditions of the
lemma, we have ϕ = ϕ̄ with probability one. In what follows, although not explicitly
mentioned to save space, all the computations should be understood as holding with
probability one.
Let (xsn)sn≥0 and (xun)un≥0 be two subsequences such that ϕ(xsn)→ ϕ̄ and ϕ(xun)→

ϕ. Let ε > 0 and Nε ≥ 1 be such that |ϕ(xsn)− ϕ̄| ≤ 0.5ε and |ϕ(xun)−ϕ| ≤ 0.5ε for all
n ≥ Nε. Then, for all n > sNε , we have

ϕ(xn) ≥ ϕ(xsNε )−
∞∑

i=sNε

l−1
i ≥ ϕ̄− 0.5ε−

∞∑
i=sNε

l−1
i

11



and, in particular, ϕ̄ − 0.5ε −
∑∞

n=sNε
l−1
n ≤ ϕ(xun) ≤ ϕ + 0.5ε, ∀un > max(sNε , uNε),

implying that ϕ̄−ϕ ≤ ε+
∑∞

i=sNε
l−1
i . In addition, the series

∑∞
n=1 l

−1
n is convergent and

thus
∑∞

i=sNε
l−1
i → 0 as sNε increases. Therefore, there exists a ε > 0 and a Nε > 0 for

which ϕ̄− ϕ ≤ ε+
∑∞

i=sNε+1 l
−1
i ≤ 0.5(ϕ̄− ϕ), showing that we indeed have ϕ = ϕ̄.

Using Lemmas 3-5 we deduce the following general consistency result for Algorithm 1:

Theorem 1. Consider Algorithm 1 where X = [0, 1]d. Assume that the assumptions of
Lemma 3 hold and that, in addition, (vn)n≥0 is such that v0 = 0. Then, if (Tn)n≥1 is
such that

∑∞
n=1 Tn log(n) < ∞, we have, for any R ∈ N and as n → ∞, ϕ(xn) → ϕ∗

almost surely.

Proof. Let ln = (Tnkn log b)−1 and note that, under the assumptions of the theorem,∑∞
n=1 l

−1
n < ∞. Therefore, by Lemma 4, the sequence (ln)n≥0 verifies the assumptions

of Lemma 5. Hence, because the continuous function ϕ is bounded on the compact space
X , the sequence (ϕ(xn))n≥0 is almost surely convergent by Lemma 5 and thus converges
almost surely toward the global maximum ϕ∗ by Lemma 3.

As already mentioned, this result does not apply for R =∞ because at this degree of
generality we cannot rule out the possibility of some odd behaviours when completely
deterministic sequences are used as input of QMC-SA. However, when d = 1, things
become easier and we can show that the result of Theorem 1 holds for the sequence
(un∞)n≥0

Theorem 2. Consider Algorithm 1 where X = [0, 1] and R = ∞. Assume that ϕ, K
and (Tn)n≥1 verify the conditions of Theorem 1. Then, ϕ(xn)→ ϕ∗ as n→∞.

Proof. See Appendix D for a proof.

Remark that, when d = 1, the condition on the Minkovski content of the level sets of
ϕ given in Lemma 3 amount to assuming that, for all x ∈ X such that ϕ(x) < ϕ∗, there
exists a δx > 0 such that ϕ(y) 6= ϕ(x) for all y ∈ Bδx(x), y 6= x.
A key feature of Theorems 1 and 2 is that the condition on the cooling schedules

(Tn)n≥1 depends neither on ϕ nor on the choice of the Markov kernel K, while those
necessary to ensure the convergence of standard Monte Carlo SA algorithms usually do.
This is for instance the case for the almost sure convergence result of Bélisle (1992,
Theorem 3); see the next subsection. An open question for future research is to establish
if this property of QMC-SA also holds on non-compact spaces, where convergence of SA
is ensured for a sequence (Tn)n≥1 where Tn = T0/ log(n + C) and where both T0 > 0
and C > 0 are model dependent (see Andrieu et al., 2001, Theorem 1). The simulation
results presented below seem to support this view (see Section 6.2).
Finally, note that the cooling schedule may be adaptive, i.e. Tn+1 may depend on

x0:n, and that the convergence rate for (Tn)n≥1 implied by Theorem 2 is coherent with
Bélisle (1992, Theorem 2) which shows that almost sure convergence cannot hold if∑∞

n=1 exp(−T−1
n ) =∞.

12



4.3. The special case R = 0 and a new convergence result for SA

It is worth noting that Theorem 1 applies for R = 0; that is, when IID uniform random
numbers are used to generate the candidate values at Step 2 of Algorithm 1. Remark
that, in this case, the use of the inverse Rosenblatt transformation to sample from the
Markov kernel is not needed. In addition, it is easy to see from the proof of this result
that the assumption on ϕ can be weakened considerably. In particular, the continuity of
ϕ in the neighbourhood of one of its global maximizer is enough to ensure that, almost
surely, ϕ(xn)→ ϕ∗ (see the next result).
Since Theorem 1 also applies when R = 0, the key to remove the dependence of the

cooling schedule to the problem at hand therefore comes from the sequence (vn)n≥0,
used in the Metropolis step, which discards candidate values yn which are such that
ϕ(yn)− ϕ(xn) is too small (see Lemma 4 above). This observation allows us to propose
a new consistency result for Monte Carlo SA algorithms on compact spaces; that is, when
Step 2 of Algorithm 1 is replaced by:

2’: Generate yn ∼ K(xn−1, dy)

and when (vn)n≥0 is replaced by a sequence of IID uniform random numbers in [0, 1).

Theorem 3. Consider Algorithm 1 with R = 0, X ⊂ Rd a bounded measurable set,
Step 2 replaced by Step 2’ and the sequence (vn)n≥0 replaced by (ṽn)n≥0, a sequence of
IID uniform random numbers in [0, 1). Assume that the Markov kernel K : X → P(X )
verifies Assumption (A2) and that there exists a x∗ ∈ X such that ϕ(x∗) = ϕ∗ and such
that ϕ is continuous on Bδ(x∗) for a δ > 0. Then, if (Tn)n≥1 satisfies

∑∞
n=1 Tn log(n) <

∞, we have, as n→∞, ϕ(xn)→ ϕ∗ almost surely.

Proof. Let α > 0 so that
∑∞

n=1 Pr(ṽn < n−(1+α)) =
∑∞

n=1 n
−(1+α) <∞. Thus, by Borel-

Cantelli Lemma, with probability one ṽn ≥ n−(1+α) for all n large enough. Therefore, for
n large enough and using similar arguments as in the proof of Lemma 4, yn is rejected
with probability one if ϕ(yn) < ϕ(xn−1)−Tn(1+α)(log n) and hence, by Lemma 5, with
probability one there exists a ϕ̄ ∈ R such that ϕ(xn)→ ϕ̄. To show that we almost surely
have ϕ̄ = ϕ∗, let x∗ be as in the statement of the theorem. Then, using the fact that
the Markov kernel verifies Assumption (A2), it is easy to see that, with probability one,
for any ε ∈ Q+ the set Bε(x∗) is visited infinitely many time by the sequence (yn)n≥1.
Then, the result follows from the continuity of ϕ around x∗.

The conditions on X and on ϕ are the same as in the almost sure convergence result of
Bélisle (1992, Theorem 3) but the condition on the Markov kernel is weaker. Finally, this
latter result requires that Tn ≤ 1/(n en) for a model-dependent and strictly increasing
sequence (en)n≥1, while Theorem 3 establishes the almost sure convergence of SA for a
universal sequence of temperature.

5. A general class of QMC-SA type algorithms

We saw in Section 4.2 that, if only upward moves are accepted in Algorithm 1, then the
resulting ascendant algorithm is convergent. Thus, if one wishes to incorporate downward

13



Algorithm 2 Generic QMC-SA type algorithm to compute supx∈X ϕ(x)

Input: A starting point x0 ∈ X , a Markov kernel K acting from X to itself, l1 > 0 and
(unR)n≥0, a (t, d)R-sequence in base b ≥ 2.

1: for n = 1→ N do
2: Compute yn = F−1

K (xn−1,unR)
3: if ϕ(yn) ≥ ϕ(xn−1) then
4: xn = yn

5: else if ϕ(yn) < ϕ(xn−1)− l−1
n then

6: xn = xn−1

7: else
8: Set xn = xn−1 or xn = yn according to some rule
9: end if

10: Select ln+1 ∈ [ln,∞)
11: end for

moves in the course of the algorithm, we need to control their size and their frequency.
In SA algorithms, downward moves are introduced through the Metropolis step; suitable
assumptions on the sequence of temperatures (Tn)n≥1 guarantee the convergence of the
algorithm.
Interestingly, our convergence results extend to Algorithm 2 where a more general

device is used to introduce downward moves.

Corollary 1. Consider Algorithm 2 where X = [0, 1]d and assume that K and ϕ verify
the assumptions of Theorem 1. Then, if the sequence (ln)n≥1 is such that

∑∞
n=1 l

−1
n <∞,

we have, for any R ∈ N and as n→∞, ϕ(xn)→ ϕ∗ almost surely. In addition, if d = 1,
ϕ(xn)→ ϕ∗ when R =∞.

Proof. The result for d > 1 is a direct consequence of Lemmas 3 and 5, while the result
for d = 1 can be deduced from Lemma 5 and from the proof of Theorem 2.

The fact that, under the assumptions on (vn)n≥0 and on (Tn)n≥1 of Theorems 1 and
2, Algorithm 1 indeed reduces to a particular case of Algorithm 2 which verifies the
assumptions of Corollary 1 is a direct consequence of Lemma 4.
The modification of the exponential acceptance probability function to accelerate

the convergence of the algorithm is a classical problem in the SA literature, see e.g.
Rubenthaler et al. (2009) and references therein. Regarding this point, an important
aspect of the connection between QMC-SA and Algorithm 2 is that, in the Metropolis
step of Algorithm 1, we can replace the exponential function by any strictly increasing
function f : R → [0, 1] which satisfies f(0) = 1 and limt→−∞ f(t) = 0, and the conver-
gence results of Section 4 remain valid under the simple condition that (Tn)n≥1 verifies∑∞

n=1

(
Tnf

−1(b−kn)
)
<∞.

Another interesting case of Algorithm 2 is the (QMC version of) Threshold Accepting
(TA) algorithms introduced by Dueck and Scheuer (1990); Moscato and Fontanari (1990),
where in Step 8 we always set xn = yn. Like SA, TA has been introduced for optimization
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problems on finite state spaces but has been successfully applied for continuous problems
in various fields, for instance see Winker and Maringer (2007) and references therein for
applications of TA in statistics and in economics.
If convergence properties of SA are now well established, to the best of our knowledge

the only convergence result for TA is the one of Althöfer and Koschnick (1991), obtained
for optimization problems on finite spaces. However, their proof is not constructive in
the sense that they only prove the existence of a sequence of thresholds (l−1

n )n≥1 that
provides convergence within a ball of size ε around the global solution. To this regards,
Corollary 1 therefore constitutes the first convergence result for this class of algorithms.

6. Numerical Study

The objective of this section is to compare the performance of classical SA (i.e. Algorithm
1 based on IID random numbers) with QMC-SA to find the global optimum of functions
defined on continuous spaces.
To compare SA and QMC-SA for a large number of different configurations, we first

consider a bivariate toy example for which we perform an extensive simulation study
(Section 6.1). Then, SA and QMC-SA are compared on a difficult optimization problem
arising in spatial statistics and which involves the minimization of a non-differentiable
function defined on an unbounded space of dimension d = 102 (Section 6.2).
In all the simulations below the comparison between SA and QMC-SA is based on 1 000

starting values sampled independently in the state space. The Monte Carlo algorithm is
run only once while QMC-SA is implemented using a Sobol’ sequence as input (implying
that b = 2 and R =∞).

6.1. Example 1: Pedagogical example

Following Robert and Casella (2004, Example 5.9, p.169) we consider the problem of
minimizing the function ϕ̃1 : X1 := [−1, 1]2 → R+ defined by

ϕ̃1(x1, x2) =
(
x1 sin(20x2) + x2 sin(20x1)

)2
cosh

(
sin(10x1)x1)

+
(
x1 cos(10x2)− x2 sin(10x1)

)2
cosh

(
sin(20x2)x2).

(2)

This function has a unique global minimum at (x1, x2) = (0, 0) and several local minima
on X1; see Robert and Casella (2004, p.161) for a grid representation of ϕ̃1. The com-
parison between SA and QMC-SA for this optimization problem is based on the number
of iterations that is needed to reach a ball of size 10−5 around the global minimum of ϕ̃1.
To avoid infinite running time, the maximum number of iterations we allow is N = 217.
The SA and QMC-SA algorithms are implemented for Markov kernels

K(j)(x,dy) = f
(j)
[−1,1](y1, x1, σ)f

(j)
[−1,1](y2, x2, σ)dy, j ∈ 1 = 1, 2,

where, for j = 1 (resp. j = 2), f (j)
I (·, µ, σ̃) denotes the density of the Cauchy (resp.

Gaussian) distribution with location parameter µ and scale parameter σ̃ > 0, truncated
on I ⊆ R. Simulations are done for σ ∈ {0.01, 0.1, 1, 10}.

15



We consider three different sequences of temperatures (T
(m)
n )n≥1, m ∈ 1 : 3, defined

by

T (1)
n = T

(1)
0 (n1+ε log n)−1, T (2)

n = T
(2)
0 /n, T (3)

n = T
(3)
0 (log n)−1 (3)

and where we choose ε = 0.001 and

T
(1)
0 ∈ {20, 200, 2 000}, T

(2)
0 ∈ {2, 20, 200}, T

(3)
0 ∈ {0.02, 0.2, 2}. (4)

Note that (T
(1)
n )n≥1 is such that results of Theorems 1-3 hold while (T

(2)
n )n≥1 (resp.

(T
(3)
n )n≥1 ) is the standard choice for SA based on Cauchy (resp. Gaussian) random

walks (see, e.g., Ingber, 1989). However, on compact state spaces, SA based on these
two kernels is such that the sequence (ϕ̃1(xn))n≥1 converges in probability to the global
minimum of ϕ̃1 for any sequence of temperatures (Tn)n≥1 such that Tn → 0 as n → ∞
(see Bélisle, 1992, Theorem 1).
Simulations are performed for different combinations of kernels K(j) and temperatures

(T
(m)
n )n≥1. For each of these combinations, simulations are done for all values of T (m)

0

given in (4) and for all σ ∈ {0.01, 0.01, 1, 10}. Altogether, we run simulations for 56
different parametrisations of SA and QMC-SA. The results presented in this subsection
are obtained from 1 000 starting values sampled independently and uniformly on X1.
Figure 1 shows the results for the two kernels and for the sequences of temperatures

given in (3) where, for m ∈ 1 : 3, T (m)
0 is the median value given in (4). The results for

the other values of T (m)
0 are presented in Appendix E (Figures 3 and 4).

Focussing first on the results for the Cauchy kernel (first row), we observe that QMC-
SA is never unambiguously worst than SA and is significantly better in most cases.
The performance of QMC-SA becomes globally better as we increase the step size σ
(we however note that QMC-SA tends to be the less efficient when σ = 1) with the
best results for QMC-SA obtained when σ = 10 where, in several settings, the maximum
hitting time of an error of size 10−5 is around 100 (against 103.5 for SA). A last interesting
observation we can make from this first set of simulation is that we obtain in several cases
exactly the same hitting time for different starting values of the QMC-SA.
The results for the Gaussian kernel show a slightly different story. Indeed, when

σ = 0.01, QMC-SA provides a poorer performance than SA. The reason for this is that,
as the tails of the Gaussian distribution are very small in this case, a large value of
‖un∞‖∞ is needed at iteration n of the algorithm to generate a candidate value yn far
away from the current location. However, the number of such points are limited when we
go through a (t, d)-sequence and therefore QMC-SA explores the state space X1 mostly
through very small moves when a kernel with very tiny tails is used. As a takeaway, when
the proposal kernel has small variance alongside light tails, little benefit is obtained by
QMC-SA.
Altogether, we observe that SA unambiguously outperforms QMC-SA in only 8 of the

56 scenarios under study (Figures 1d-1f with σ = 1, and, in Appendix E, Figure 3c with
σ = 1, Figure 4a with σ = 1 and Figures 4b-4d with σ = 0.01). However, none of these
situations correspond to a good (and hence desirable) parametrization of SA.
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Figure 1: Minimization of ϕ̃1 defined by (2) for 1 000 starting values sampled independ-
ently and uniformly on X1. Results are presented for for the Cauchy kernel
(top) and for the Gaussian kernel. For each kernel, simulation are done for
(T

(m)
n )n≥1 where m = 1 (left plots), m = 2 (middle) and m = 3, with T

(m)
0

the median of the values given in (4). The plots show the minimum number
of iterations needed for SA (white boxes) and QMC-SA to find a x ∈ X1 such
that ϕ̃1(x) < 10−5. For each starting value, the Monte Carlo algorithm is run
only once and the QMC-SA algorithm is based on the Sobol’ sequence.
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Figure 2: Minimization of ϕ̃λ for 1 000 starting values sampled independently in X2 (as
explained in the text) and for λ = 0.1 (top) and for λ = 0.01 (bottom). Results
are presented for a Cauchy random walk with step size as described in the text,
and for (T

(1)
n )n≥1 with T (1)

0 = 5 000 (left) and for (T
(4)
n )n≥1 with T (4)

0 = 0.01
(right). The plots show min{ϕ̃2(xn), n ∈ 1 : 217} obtained by SA (white boxes)
and QMC-SA for each starting value. The results are obtained for d1 = 100
locations. For each starting value the Monte Carlo algorithm is run only once
and the QMC-SA algorithm is based on the Sobol’ sequence.

6.2. Example 2: Application to spatial statistics

Let {Y (x) : x ∈ R2} be a spatial process and consider the problem of estimating the
variogram E(|Y (xi) − Y (xj)|2) for i, j ∈ 1 : d1. When the process is assumed to be
stationary, this estimation is typically straightforward. However, for most real-world
spatial problems arising in climatology, environmetrics, and elsewhere, inference is much
more challenging as the underlying process {Y (x) : x ∈ R2} is inherently nonstationary.

A simple way to modeling nonstationary spatial processes is to use a dimension ex-
pansion approach, as proposed by Bornn et al. (2012). For the sake of simplicity, we
assume that the process {Y ([x, z]) : [x, z] ∈ R3} is stationary; that is, adding only one
dimension is enough to get a stationary process. Thus, the variogram of this process
depends only on the distance between location i and j and can be modelled, e.g., using
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the parametric model

γφ1,φ2([x1, z1], [x2, z2]) = φ1(1− exp{−‖[x1, z1]− [x2, z2]‖/φ2})

where φ1 and φ2 are two positive parameters to be learned from the data.
Assuming that we have M ≥ 2 observations {ym,i}Mm=1 at location i ∈ 1 : d1, the

solution to this problem is obtained by minimizing ϕ̃λ : X2 := R+ × R+ × Rd1 → R+,
defined by

ϕ̃λ(φ1, φ2, z) =

d1∑
1≤i<j

{
v

(ij)
M − γφ1,φ2([xi, zi], [xj , zj ])

}2
+ λ‖z‖1 (5)

where λ > 0 control the regularity of z and where v(ij)
M = M−2

∑M
m,m′=1 |ym,i − ym′,j |2

is an estimate of the spatial dispersion between locations i and j. Note that ϕ̃λ is non-
differentiable because of the L1-penalty and is both high-dimensional (with 1 parameter
per observation) as well as nonlinear (due to way the latent locations factor into the
parametric variogram). To further complicate matters, the objective function’s minimum
is only unique up to rotation and scaling of the latent locations.
Following Bornn et al. (2012), the observations are generated by simulating a Gaussian

process, with d1 = 100 locations on a three dimensional half-ellipsoid centered at the
origin and M = 1 000. We minimize the objective function (5) using both SA and
QMC-SA with a Cauchy random walk defined by

K(x, dy) =
(
⊗2
i=1f

(1)
R+(yi, xi, σ

(i))dyi

)
⊗
(
⊗di=3f

(1)
R (yi, xi, σ

(i))dyi

)
where f (1)

I (·, µ, σ̃) is as in the previous subsection. Simulations are performed for

(σ(1), . . . , σ(d)) = σ ×
(
0.1, 0.1, 0.5 σ̂M (y·,1), . . . , 0.5σ̂M (y·,d1)

)
,

where σ̂M (y·,i) denotes the standard deviation of the observations {ym,i}Mm=1 at loca-
tion i ∈ 1 : d1. Simulations are conducted for σ ∈ {0.005, 0.01, 0.03, 0.05} and for the
sequence of temperatures (T

(1)
n )n≥1 given in (3) and for (T

(4)
n )n≥1 defined by T

(4)
n =

T
(4)
0 / log(n + C(4)). As already mentioned (see Section 4.2), the sequence (T

(4)
n )n≥1

is such that convergence results for SA on unbounded spaces exist but the constants
T

(4)
0 and C(4) are model dependent and intractable. In this simulation study, we take
T

(1)
0 = 5 000, T (4)

0 = 0.1 and C(4) = 100. These values are chosen based on some pilot
runs of SA and QMC-SA fo λ = 0.1. Note also that the values of T (1)

0 , T (4)
0 and C(4) are

such that T (1)
N ≈ T (4)

N , where N = 217 is the number of function evaluations we consider
in this numerical study.
Figures 2a-2b shows the values of min{ϕ̃λ(xn), n ∈ 0 : N} obtained by SA and QMC-

SA when for λ = 0.1 and for 1 000 different starting values x0 = (ϕ0,1:2, z0,1:d1) sampled
independently in X2 as follows:

ϕ0,1 ∼ U(0, 2), ϕ0,2 ∼ U(0, 2), z0,i ∼ N (0, 1), i ∈ 1 : d1.
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Looking first at Figure 2b, we observe that SA performs relatively well when the
sequence (T

(4)
n )n≥1 is used (together with σ ∈ {0.01, 0.03}). The good performance of

SA in this case is not surprising since T (4)
0 and C(4) are calibrated such that SA works

well when λ = 0.1. However, we remark that, for this sequence of temperatures, QMC-
SA outperforms SA for any value of σ. The results obtained for the sequence (T

(1)
n )n≥1

are presented in Figure 2a. If in this case SA performs poorly, and as for the sequence
(T

(4)
n )n≥1, QMC-SA provides a small error for the vast majority of the 1 000 different

staring values (in particular when σ ∈ {0.005, 0.01}).
In practice, one often minimizes ϕ̃λ for different values of the λ parameter, which

determines the regularity of the optimal solution for z ∈ Rd1 . It is therefore important
that the optimization method at hand remains efficient for different values of λ. To
evaluate the sensitivity of QMC-SA and SA to this parameter, Figures 2c-2d show the
results obtained λ = 0.01. For both sequences of temperatures, we observe that SA
is much less efficient than when λ = 0.1. In particular, the results for the sequence
(T

(4)
n )n≥1 (Figure 2d) suggest that SA is very sensitive to the cooling schedule in this

example. On the contrary, QMC-SA performs well in all cases and outperforms (from
far) SA for the two sequences of temperatures and for all values of σ we have chosen for
this numerical study.
The main message of this example is that the performance of QMC-SA on unboun-

ded spaces is very robust to different choice of step-size σ and of the cooling schedule.
Consequently, tuning QMC-SA is much simpler than for SA algorithms. The results of
this subsection seem to indicate that the convergence of QMC-SA on unbounded spaces
could be obtained under the same condition for (Tn)n≥1 than for compact spaces (see
Theorem 1). In particular, this suggests that there exists a universal sequence of cooling
schedules which ensure the convergence of QMC-SA on non-compact space. However,
further research in this direction is needed.

7. Conclusion

In this paper we show that the performance of simulated annealing algorithms can be
greatly improved through derandomization. Indeed, in the extensive numerical study
proposed in this work we never observe a situation where SA performs well while QMC-
SA performs poorly. In addition, in the vast majority of the scenarios under study,
QMC-SA turns out to be much better than plain Monte Carlo SA. This is particularly
true in the high dimensional example proposed in this work where in most cases plain
SA fails to provide a satisfactory solution to the optimization problem, while QMC-SA
does.
Our theoretical results also advance the current understanding of simulated anneal-

ing and related algorithms, demonstrating almost sure convergence with no objective-
dependent conditions on the cooling schedule. These results also hold for classical SA
under minimal assumptions on the objective function. Further, the convergence res-
ults extend beyond SA to a broader class of optimization algorithms including threshold
accepting.
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Future research should study QMC-SA on non compact spaces and extend QMC-SA
to other types of Markov kernels. Concerning this first point, it is of great interest
to check if the consistency of QMC-SA on unbounded spaces can, as it is the case for
compact spaces, be guaranteed for a universal (i.e. not model dependent) sequence of
temperatures. Our simulation results suggest that this is indeed the case and therefore
should encourage research in this direction.
In many practical optimization problems, and in particular in those arising in statistics,

the objective function is multimodal but differentiable. In that case, stochastic gradient
search algorithms (see, e.g., Gelfand and Mitter, 1991, 1993) are efficient alternatives to
SA which, informally, correspond to SA based on a Langevin type Markov transitions.
Intuitively, combining the information on the objective function provided by its gradient
with the good equidistribution properties of QMC point sets should result in a powerful
search algorithm. We leave this exciting question for future research.
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A. Proof of Lemma 1

Let n ∈ N, (x̃,x′) ∈ X 2, δX = 0.5 and δ ∈ (0, δX ]. Then, by Assumption (A1),
F−1
K (x̃,un1 ) ∈ Bδ(x′) if and only if un1 ∈ FK(x̃, Bδ(x

′)). We now show that, for δ small
enough, there exists a closed hypercube W (x̃,x′, δ) ⊂ [0, 1)d such that W (x̃,x′, δ) ⊆
FK(x, Bδ(x

′)) for all x ∈ BvK(δ)(x̃), with vK(·) as in the statement of the lemma.
To see this note that, because K(x,dy) admits a density K(y|x) which is continuous

on the compact set X 2, and using Assumption (A2), it is easy to see that, for i ∈ 1 : d,
Ki(yi|y1:i−1,x) ≥ K̃ for all (x,y) ∈ X 2 and for a constant K̃ > 0. Consequently, for any
δ ∈ [0, 0.5] and (x,y) ∈ X 2,

FKi
(
x′i + δ|x, y1:i−1

)
− FKi

(
x′i − δ|x, y1:i−1

)
≥ K̃δ, ∀i ∈ 1 : d (6)

where FKi(·|x, y1:i−1) denotes the CDF of the probability measure Ki(x, y1:i−1,dyi), with
the convention that FKi(·|x, y1:i−1) = FK1(·|x) when i = 1. Note that the right-hand
side of (6) is K̃δ and not 2K̃δ to encompass the case where either x′i − δ 6∈ [0, 1] or
x′i + δ 6∈ [0, 1]. (Note also that because δ ≤ 0.5 we cannot have both x′i − δ 6∈ [0, 1] and
x′i + δ 6∈ [0, 1].)
For i ∈ 1 : d and δ′ > 0, let

ωi(δ
′) = sup

(x,y)∈X 2, (x′,y′)∈X 2

‖x−x′‖∞∨‖y−y′‖∞≤δ′

|FKi (yi|x, y1:i−1)− FKi
(
y′i|x′, y′1:i−1

)
|

be the (optimal) modulus of continuity of FKi(·|·). Since FKi is uniformly continuous
on the compact set [0, 1]d+i, the mapping ωi(·) is continuous and ωi(δ′) → 0 as δ′ → 0.
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In addition, because FKi (·|x, y1:i−1) is strictly increasing on [0, 1] for all (x,y) ∈ X 2,
ωi(·) is strictly increasing on (0, 1]. Let K̃ be small enough so that, for i ∈ 1 : d,
0.25K̃δX ≤ wi(1) and let δ̃i(·) be the mapping z ∈ (0, δX ] 7−→ δ̃i(z) = ω−1

i (0.25K̃z).
Remark that the function δ̃i(·) is independent of (x̃,x′) ∈ X 2, continuous and strictly
increasing on (0, δX ] and such that δ̃i(δ′)→ 0 as δ′ → 0.
For x ∈ X , δ′ > 0 and δ′i > 0, i ∈ 1 : d, let

Bi
δ′(x̃) = {x ∈ [0, 1]i : ‖x− x̃1:i‖∞ ≤ δ′} ∩ [0, 1]i

and
Bδ′1:i

(x̃) = {x ∈ [0, 1]i : |xj − x̃j | ≤ δ′j , j ∈ 1 : i} ∩ [0, 1]i.

Then, for any δ′ > 0 and for all (x, y1:i−1) ∈ Bδ̃i(δ)(x̃)×Bi−1

δ̃i(δ)
(x′), we have

|FKi
(
x′i + δ′|x, y1:i−1

)
− FKi

(
x′i + δ′|x̃, x′1:i−1

)
| ≤ 0.25K̃δ (7)

|FKi
(
x′i − δ′|x, y1:i−1

)
− FKi

(
x′i − δ′|x̃, x′1:i−1

)
| ≤ 0.25K̃δ. (8)

For i ∈ 1 : d and δ′ ∈ (0, δX ], let δi(δ′) = δ̃i(δ
′) ∧ δ′ and note that the function δi(·)

is continuous and strictly increasing on (0, δX ]. Let δd = δd(δ) and define recursively
δi = δi(δi+1), i ∈ 1 : (d− 1), so that δ ≥ δd ≥ · · · ≥ δ1 > 0. For i ∈ 1 : d, let

vi(x̃,x
′, δ1:i) = sup

(x,y1:i−1)∈Bδ1 (x̃)×Bδ1:i−1
(x′)

FKi
(
x′i − δi|x, y1:i−1

)
and

v̄i(x̃,x
′, δ1:i) = inf

(x,y1:i−1)∈Bδ1 (x̃)×Bδ1:i−1
(x′)

FKi
(
x′i + δi|x, y1:i−1

)
.

Then, since FKi(·|·) is continuous and the set Bδ1(x̃)×Bδ1:i−1
(x′) is compact, there exists

points (xi, yi
1:i−1

) and (x̄i, ȳi1:i−1) in Bδ1(x̃)×Bδ1:i−1
(x′) such that

vi(x̃,x
′, δ1:i) = FKi(x

′
i − δi|xi, yi1:i−1

), v̄i(x̃,x
′, δ1:i) = FKi

(
x′i + δi|x̄i, ȳi1:i−1

)
.

In addition, by the construction of the δi’s, Bδ1(x̃)×Bδ1:i−1
(x′) ⊆ Bδ̃i(δi)(x̃)×Bi

δ̃i(δi)
(x′)

for all i ∈ 1 : d. Therefore, using (6)-(8), we have, for all i ∈ 1 : d,

v̄i(x̃,x
′, δ1:i)− vi(x̃,x′, δ1:i) = FKi(x

′
i + δi|x̄i, ȳi1:i−1)− FKi(x′i − δi|xi, yi1:i−1

)

≥ FKi
(
x′i + δi|x̃, x′1:i−1

)
− FKi

(
x′i − δi|x̃, x′1:i−1

)
− 0.5K̃δi

≥ 0.5K̃δi

> 0.

Consequently, for all i ∈ 1 : d and for all (x, y1:i−1) ∈ Bδ1(x̃)×Bδ1:i−1
(x′),[

vi(x̃,x
′, δ1:i), v̄i(x̃,x

′, δ1:i)
]
⊆
[
FKi(x

′
i − δi|x, y1:i−1), FKi(x

′
i + δi|x, y1:i−1)

]
.
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Let Sδ = 0.5K̃δ1. Then, this shows that there exists a closed hypercube W (x̃,x′, δ) of
side Sδ such that

W (x̃,x′, δ) ⊆ FK
(
x, Bδ1:d

(x′)
)
⊆ FK

(
x, Bδ(x

′)
)
, ∀x ∈ BvK(δ)(x̃)

where we set vK(δ) = δ1. Note that vK(δ) ∈ (0, δ] and thus vK(δ) → 0 as δ → 0, as
required. In addition, vK(·) = δ1 ◦ . . . δd(·) is continuous and strictly increasing on (0, δX ]
because the functions δi(·), i ∈ 1 : d, are continuous and strictly increasing on this set.
Note also that vK(·) does not depend on (x̃,x′) ∈ X 2.
To conclude the proof, let

kδ =
⌈
t+ d− d log(Sδ/3)/ log b

⌉
(9)

and note that, if δ is small enough, kδ ≥ t+ d because Sδ → 0 as δ → 0. Let δ̄K be the
largest value of δ′ ≤ δX such that kδ′ ≥ t + d. Let δ ∈ (0, δ̄K ] and tδ,d ∈ t : (t + d) be
such that (kδ − tδ,d)/d is an integer. Let {E(j, δ)}b

kδ−tδ,d
j=1 be the partition of [0, 1)d into

elementary intervals of volume btδ,d−kδ so that any closed hypercube of side Sδ contains
at least one elementary interval E(j, δ) for a j ∈ 1 : bkδ−tδ,d . Hence, there exists a
jx̃,x′ ∈ 1 : bkδ−tδ,d such that

E(jx̃,x′,, δ) ⊆W (x̃,x′, δ) ⊆ FK(x, Bδ(x
′)), ∀x ∈ Bv(δ)(x̃).

Let a ∈ N and note that, by the properties of (t, s)-sequences in base b, the point set
{un}(a+1)bkδ−1

n=abkδ
is a (t, kδ, d)-net in base b because kδ > t. In addition, since kδ ≥ tδ,d ≥

t, the point set {un}(a+1)bkδ−1

n=abkδ
is also a (tδ,d, kδ, d)-net in base b (Niederreiter, 1992,

Remark 4.3, p.48). Thus, since for j ∈ 1 : bkδ−tδ,d the elementary interval E(j, δ) has
volume btδ,d−kδ , the point set {un}(a+1)bkδ−1

n=abkδ
therefore contains exactly btδd ≥ bt points

in E(jx̃,x′,, δ) and the proof is complete.

B. Proof of Lemma 2

Using the Lipschitz property of FKi(·|·) for all i ∈ 1 : d, conditions (7) and (8) in
the proof of Lemma 1 hold with δ̃i(δ) = δ(0.25K̃/CK), i ∈ 1 : d. Hence, we can
take vK(δ) = δ(0.25K̃/CK)d ∧ δ and thus Sδ = δ0.5K̃

(
1 ∧ (0.25K̃/CK)d

)
. Then, the

expression for kδ follows using (9) while the expression for δ̄K ≤ 0.5 results from the
condition kδ ≥ t+ d for all δ ∈ (0, δ̄K ].

C. Proof of Lemma 3

We first state and prove three technical lemmas:

Lemma 6. Let X = [0, 1]d and K : X → P(X ) be a Markov kernel which verifies
Assumptions (A1)-(A2). Then, for any δ ∈ (0, δ̄K ], with δ̄K as in Lemma 1, and any
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(x̃,x′) ∈ X 2, there exists a closed hypercube W̄ (x̃,x′, δ) ⊂ [0, 1)d of side S̄δ = 2.5K̄δ,
with K̄ = maxi∈1:d{supx,y∈X Ki(yi|y1:i−1,x)}, such that

FK(x, BvK(δ)(x
′)) ⊆ W̄ (x̃,x′, δ), ∀x ∈ BvK(δ)(x̃) (10)

where vK(·) is as in Lemma 1.

Proof. The proof of Lemma 6 is similar to the proof of Lemma 1. Below, we use the
same notation as in this latter.
Let δ ∈ (0, δ̄K ], (x̃, x′) ∈ X 2 and note that, for any (x,y) ∈ X 2,

FKi(x
′
i + δ|x, y1:i−1)− FKi(x′i − δ|x, y1:i−1) ≤ 2K̄δ, i ∈ 1 : d. (11)

Let 0 < δ1 ≤ · · · ≤ δd ≤ δ be as in the proof of Lemma 1 and, for i ∈ 1 : d, define

ui(x̃,x
′, δ1:i) = inf

(x,y)∈BvK (δ)(x̃),×Bδ1:i−1
(x′)

FKi(x
′
i − δi|x, y1:i−1)

and
ūi(x̃,x

′, δ1:i) = sup
(x,y)∈BvK (δ)(x̃),×Bδ1:i−1

(x′)
FKi(x

′
i + δi|x, y1:i−1).

Let i ∈ 1 : d and (xi,yi), (x̄i, ȳi) ∈ BvK(δ)(x̃)×Bδ1:i−1
(x′) be such that

ui(x̃,x
′, δ1:i) = FKi(x

′
i − δi|xi, yi1:i−1

), ūi(x̃,x
′, δ) = FKi(x

′
i + δi|x̄i, ȳi1:i−1).

Therefore, using (7), (8) and (10), we have, ∀i ∈ 1 : d,

0 < ūi(x̃,x
′, δ1:i)− ui(x̃,x′, δ1:i) = FKi(x

′
i + δi|x̄i, ȳi1:i−1)− FKi(x′i − δi|xi, yi1:i−1

)

≤ FKi(x′i + δi|x̃, x′1:i−1)− FKi(x′i − δi|x̃, x′1:i−1) + 0.5K̃δi

≤ δi(2K̄ + 0.5K̃)

≤ 2.5δiK̄

where K̃ ≤ K̄ is as in the proof of Lemma 1. (Note that ūi(x̃,x′, δ1:i) − ui(x̃,x′, δ1:i)
is indeed strictly positive because FKi(·|x, y1:i−1, ) is strictly increasing on [0, 1] for any
(x,y) ∈ X 2 and because δi > 0.)

This shows that for all x ∈ BvK(δ)(x̃) and for all y ∈ Bδ1:i−1
(x′), we have[

FKi(x
′
i − δi|x,y), FKi(x

′
i + δi|x,y)

]
⊆
[
ui(x̃,x

′, δ), ūi(x̃,x
′, δ)
]
, ∀i ∈ 1 : d

and thus there exists a closed hypercube W̄ (x̃,x′, δ) of side S̄δ = 2.5δK̄ such that

FK(x, Bδ1:i−1
(x′)) ⊆ W̄ (x̃,x′, δ), ∀x ∈ BvK(δ)(x̃).

To conclude the proof of Lemma 6, note that, because vK(δ) ≤ δi for all i ∈ 1 : d,

FK(x, BvK(δ)(x
′)) ⊆ FK(x, Bδ1:i−1

(x′)).
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Lemma 7. Consider the set-up of Lemma 3 and, for (p, a, k) ∈ N3
+, let

Epa,k =
{
∃n ∈ {abk, . . . , (a+ 1)bk − 1} : xn 6= xab

k−1, ϕ(xab
k−1) < ϕ∗

}
∩
{
∀n ∈ {abk, . . . , (a+ 1)bk − 1} : xn ∈ (X

ϕ(xabk−1)
)2−p

}
.

Then, for all for all k ∈ N, there exists a p∗k ∈ N such that Pr
(⋂

a∈NE
p
a,k

)
= 0 for all

p ≥ p∗k.

Proof. Let ε > 0, a ∈ N and l ∈ R be such that l < ϕ∗, and for k ∈ N, let E(k) =

{E(j, k)}kdj=1 be the splitting of X into closed hypercubes of volume k−d.
Let p′ ∈ N+, δ = 2−p

′ and P lε,δ ⊆ E(δ) be the smallest coverage of (Xl)ε by hypercubes
in E(δ); that is, |P lε,δ| is the smallest value in 1 : δ−d such that (Xl)ε ⊆ ∪W∈P lε,δ . Let

J lε,δ ⊆ 1 : δ−d be such that j ∈ J lε,δ if and only if E(j, δ) ∈ P lε,δ. We now bound |J lε,δ|
following the same idea as in He and Owen (2015).
By assumption, there exists a constant M̄ <∞ independent of l such thatM(Xl) ≤ M̄ .

Hence, for any fixed w > 1 there exists a ε∗ ∈ (0, 1) (independent of l) such that
λd
(
(Xl)ε

)
≤ wM(Xl)ε ≤ wM̄ε for all ε ∈ (0, ε∗]. Let ε = 2−p, with p ∈ N such that

2−p ≤ 0.5ε∗, and take δε = 2−p−1. Then, we have the inclusions (Xl)ε ⊆ ∪W∈P lε,δε ⊆ (Xl)2ε

and therefore, since 2ε ≤ ε∗,

|J lε,δε | ≤
λd
(
(Xl)2ε

)
λd(E(j, δε))

≤ wM̄(2ε)d

δdε
≤ C̄δ−(d−1)

ε , C̄ := wM̄2d (12)

where the right-hand side is independent of l.
Next, for j ∈ J lε,δε , let x̄

j be the center ofE(j, δε) andW l(j, δε) = ∪j′∈J lε,δεW̄ (x̄j , x̄j
′
, δε),

with W̄ (·, ·, ·) as in Lemma 6. Then, using this latter, a necessary condition to move at
iteration n + 1 of Algorithm 1 from a point xn ∈ E(jn, δε), with jn ∈ J lε,δε , to a point
xn+1 6= xn such that xn+1 ∈ E(jn+1, δε) for a jn+1 ∈ J lε,δε is that u

n+1
R ∈W l(jn, δε).

Let kδε be the largest integer such that (i) bk ≤ S̄−dδε b
t, with S̄δε = 2.5K̄δε, K̄ <∞, as

in Lemma 6, and (ii) (k− t)/d is a positive integer (if necessary reduce ε to fulfil this last
condition). Let E′(δε) = {E′(k, δε)}b

kδε−t
k=1 be the partition of [0, 1)d into hypercubes of

volume bt−kδε . Then, for all j ∈ J lε,δε , W
l(j, δε) is covered by at most 2d|J lε,δε | hypercubes

of E′(δε).
Let ε be small enough so that kδε > t + dR. Then, using the properties of (t, s)R-

sequences (see Section 3.1), it is easily checked that, for all n ≥ 0,

Pr
(
unR ∈ E′(k, δε)

)
≤ bt−kδ

ε
+dR, ∀k ∈ 1 : bk

δε−t. (13)

Thus, using (12)-(13) and the definition of kδε , we obtain, for all j ∈ J lε,δε and n ≥ 0,

Pr
(
unR ∈W l(j, δε)

)
≤ 2d|J lε,δε |b

tbt−k
δε+dR ≤ C∗δε, C∗ = 2dC̄bt+1(2.5K̄)dbdR.
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Consequently, using the definition of ε and δε, and the fact that there exist at most 2d

values of j ∈ J lε,δε such that, for n ∈ N, we have xn ∈ E(j, δε), we deduce that, for a
p∗ ∈ N large enough (i.e. for ε = 2−p

∗ small enough)

Pr
(
Epa,k|ϕ(xab

k−1) = l
)
≤ bk2dC∗2−p−1, ∀(a, k) ∈ N2, ∀l < ϕ∗, ∀p ≥ p∗

implying that, for p ≥ p∗,

Pr
(
Epa,k

)
≤ bk2dC∗2−p−1, ∀(a, k) ∈ N2.

Finally, because the uniform random numbers zn’s in [0, 1)s that enter into the definition
of (t, s)R-sequences are IID, this shows that

Pr
(
∩a+m
j=a Epj,k

)
≤ (bk2dC∗2−p−1)m, ∀(a,m, k) ∈ N3, ∀p ≥ p∗.

To conclude the proof, for k ∈ N let ρk ∈ (0, 1) and p∗k ≥ p∗ be such that

bk2dC∗2−p−1 ≤ ρk, ∀p > p∗k.

Then, Pr
(
∩a∈N Epa,k) = 0 for all p ≥ p∗k, as required.

Lemma 8. Consider the set-up of Lemma 3. For k ∈ N, let Ẽ(dk) = {Ẽ(j, k)}bdkj=1 be
the partition of [0, 1)d into hypercubes of volume b−dk. Let kR ∈ (dR + t) : (dR + t+ d)
be the smallest integer k such (k − t)/d is an integer and such that (k − t)/d ≥ R and,
for m ∈ N, let Im = {mbkR , . . . , (m + 1)bk

R − 1}. Then, for any δ ∈ (0, δ̄K ] verifying
kδ > t+ d+ dR (with δ̄K and kδ as in Lemma 1), there exists a p(δ) > 0 such that

Pr
(
∃n ∈ Im : unR ∈ Ẽ(j, kδ − tδ,d)

)
≥ p(δ), ∀j ∈ 1 : bkδ−tδ,d , ∀m ∈ N

where tδ,d ∈ t : (t+ d) is such that (kδ − tδ,d)/d ∈ N.

Proof. Let m ∈ N and note that, by the properties of (t, s)R-sequence, the point set
{un∞}n∈Im is a (t, kR, d)-net in base b. Thus, for all j ∈ 1 : bk

R−t, this point set contains
bt points in Ẽ(j, kR − t) and, consequently, for all j ∈ 1 : bdR, it contains btbkR−t−dR =

bk
R−dR ≥ 1 points in Ẽ(j, dR). This implies that, for all j ∈ 1 : bdR, the point set
{unR}n∈Im contains bkR−dR ≥ 1 points in Ẽ(j, dR) where, for all n ∈ Imi , unR is uniformly
distributed in Ẽ(jn, dR) for a jn ∈ 1 : bdR.
In addition, it is easily checked that each hypercube of the set Ẽ(dR) contains

bkδ−tδ,d−dR ≥ bkδ−t−d−dR > 1

hypercubes of the set Ẽ(kδ − tδ,d), where kδ and tδ,d are as in the statement of the
lemma. Note that the last inequality holds because δ is chosen so that kδ > t+ d+ dR.
Consequently,

Pr
(
∃n ∈ Im : unR ∈ Ẽ(j, kδ − tδ,d)

)
≥ p(δ) := bdR+tδ,d−kδ > 0, ∀j ∈ 1 : bkδ−tδ,d

and the proof is complete.
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Proof of Lemma 3: To prove the lemma we need to introduce some additional notation.
Let Ω = [0, 1)N, B([0, 1)) be the Borel σ-algebra on [0, 1), F = B([0, 1))⊗N and P be the
probability measure on (Ω,F) defined by

P(A) =
∏
i∈N

λ1(Ai), (A1, . . . , Ai . . . ) ∈ B([0, 1))⊗N.

Next, for ω ∈ Ω, we denote by
(
Un
R(ω)

)
n≥0

the sequence of points in [0, 1)d defined, for
all n ≥ 0, by (using the convention that empty sums are null),

Un
R(ω) =

(
UnR,1(ω), . . . , UnR,d(ω)), UnR,i(ω) =

R∑
k=1

ankib
−k + b−Rωnd+i, i ∈ 1 : s.

Note that, under P,
(
Un
R

)
n≥0

is a (t, d)R-sequence in base b. Finally, for ω ∈ Ω, we denote
by
(
xnω
)
n≥0

the sequence of points in X generated by Algorithm 1 when the sequence(
Un
R(ω)

)
n≥0

is used as input.
Under the assumptions of the lemma there exists a set Ω1 ∈ F such that P(Ω1) = 1

and
∃ϕ̄ω ∈ R such that lim

n→∞
ϕ
(
xnω
)

= ϕ̄ω, ∀ω ∈ Ω1.

Let ω ∈ Ω1. Since ϕ is continuous, for any ε > 0 there exists a Nω,ε ∈ N such
that xnω ∈ (Xϕ̄ω)ε for all n ≥ Nω,ε, where we recall that (Xϕ̄ω)ε = {x ∈ X : ∃x′ ∈
Xϕ̄ω such that ‖x− x′‖∞ ≤ ε}. In addition, because ϕ is continuous and X is compact,
there exists an integer pω,ε ∈ N such that we have both limε→0 pω,ε =∞ and

(Xϕ̄ω)ε ⊆ (Xϕ(x′))2−pω,ε , ∀x′ ∈ (Xϕ̄ω)ε. (14)

Next, let x∗ ∈ X be such that ϕ(x∗) = ϕ∗, kR ∈ (dR+ t) : (dR+ t+ d) be as in Lemma
8 and, for (p, a, k) ∈ N3

+, let

Ẽpa,k =
{
ω ∈ Ω : ∃n ∈ {abk, . . . , (a+ 1)bk − 1} : xnω 6= xab

k−1
ω , ϕ(xab

k−1
ω ) < ϕ∗

}
∩
{
ω ∈ Ω : ∀n ∈ {abk, . . . , (a+ 1)bk − 1} : xnω ∈

(
X
ϕ(xab

k−1
ω )

)
2−p

}
.

Then, by Lemma 7, there exists a p∗ ∈ N such that P
(
∩a∈N Ẽpa,kR

)
= 0 for all p ≥ p∗,

and thus the set Ω̃2 = ∩p≥p∗
(
X \ ∩a∈NẼpa,kR

)
verifies P(Ω̃2) = 1. Let Ω2 = Ω1 ∩ Ω̃2 so

that P(Ω2) = 1.
For ω ∈ Ω2 let εω > 0 be small enough so that, for any ε ∈ (0, εω], we can take pω,ε ≥ p∗

in (14). Then, for any ω ∈ Ω2 such that ϕ̄ω < ϕ∗, there exists a subsequence (mi)i≥1 of
(m)m≥1 such that, for all i ≥ 1, either

xnω = xmib
kR−1

ω , ∀n ∈ Imi :=
{
mib

kR , . . . , (mi + 1)bk
R − 1

}
or

∃n ∈ Imi such that xnω 6∈
(
X
ϕ(x

mib
kR−1

ω )

)
2−pω,ε

. (15)
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Assume first that there exist infinitely many i ∈ N such that (15) holds. Then, by
(14), this leads to a contradiction with the fact that ω ∈ Ω2 ⊆ Ω1. Therefore, for any
ω ∈ Ω2 such that ϕ̄ω < ϕ∗ there exists a subsequence (mi)i≥1 of (m)m≥1 such that, for
a i∗ large enough,

xnω = xmib
kR−1

ω , ∀n ∈ Imi , ∀i ≥ i∗. (16)

Let Ω̃2 = {ω ∈ Ω2 : ϕ̄ω < ϕ∗} ⊆ Ω2 . Then, to conclude the proof, it remains to show
that P(Ω̃2) = 0. We prove this result by contradiction and thus, from henceforth, we
assume P(Ω̃2) > 0.
To this end, let x∗ ∈ X be such that ϕ(x∗) = ϕ∗, x ∈ X and δ ∈ (0, δ̄K ], with δ̄K as in

Lemma 1. Then, using this latter, a sufficient condition to have F−1
K (x,Un

R(ω)) ∈ Bδ(x∗),
n ≥ 1, is that Un

R(ω) ∈ W (x,x∗, δ), with W (·, ·, ·) as in Lemma 1. From the proof of
this latter we know that the hypercube W (x,x∗, δ) contains at least one hypercube of
the set Ẽ(kδ − tδ,d), where tδ,d ∈ t : (t+ d) is such that (kδ − tδ,d)/d ∈ N and, for k ∈ N,
Ẽ(dk) is as in Lemma 8. Hence, by this latter, for any δ ∈ (0, δ∗], with δ∗ such that
kδ∗ > t + d + dR (where, for δ > 0, kδ is defined in Lemma 1), there exists a p(δ) > 0
such that

P
(
ω ∈ Ω : ∃n ∈ Im, F−1

K

(
x,Un

R(ω)
)
∈ Bδ(x∗)

)
≥ p(δ), ∀(x,m) ∈ X × N

and thus, using (16), it is easily checked that, for any δ ∈ (0, δ∗],

P2

(
ω ∈ Ω̃2 : F−1

K

(
xn−1
ω ,Un

R(ω)
)
∈ Bδ(x∗) for infinitly many n ∈ N

)
= 1

where P2 denotes the restriction of P on Ω̃2 (recall that we assume P(Ω̃2) > 0).
For δ > 0, let

Ω′δ =
{
ω ∈ Ω̃2 : F−1

K (xn−1
ω ,Un

R(ω)) ∈ Bδ(x∗) for infinitly many n ∈ N
}

and let p̃∗ ∈ N be such that 2−p̃
∗ ≤ δ∗. Then, the set Ω′ = ∩p̃≥p̃∗Ω′2−p̃ verifies P2(Ω′) = 1.

To conclude the proof let ω ∈ Ω′. Then, because ϕ is continuous and ϕ̄ω < ϕ∗, there
exists a δ̃ϕ̄ω > 0 so that ϕ(x) > ϕ̄ for all x ∈ Bδ̃ϕ̄ω (x∗). Let δϕ̄ω := 2−p̃ω,ε ≥ δ̃ϕ̄ω∧δ̄K for an
integer p̃ω,ε ≥ p̃∗. Next, take ε small enough so that we have both Bδϕ̄ω (x∗)∩(Xϕ̄ω)ε = ∅
and ϕ(x) ≥ ϕ(x′) for all (x,x′) ∈ Bδϕ̄ω (x∗)× (Xϕ̄ω)ε.
Using above computations, the set Bδ̃ϕ̄ω (x∗) is visited infinitely many time and thus

ϕ(xnω) > ϕ̄ω for infinitely many n ∈ N, contradicting the fact that ϕ(xnω) → ϕ̄ω as
n → ∞. Hence, the set Ω′ is empty. On the other hand, as shown above, under the
assumption P(Ω̃2) > 0 we have P2(Ω′) = 1 and, consequently, Ω′ 6= ∅. Therefore, we
must have P(Ω̃2) = 0 and the proof is complete.

D. Proof of Theorem 2

Using Lemmas 4 and 5, we know that ϕ(xn)→ ϕ̄ ∈ R and thus it remains to show that
ϕ̄ = ϕ∗.
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Assume that ϕ̄ 6= ϕ∗ and, for ε = 2−p, p ∈ N+, let Nε ∈ N, pε and δϕ̄ > 0 be as in the
proof of Lemma 3 (with the dependence of Nε, pε and of δϕ̄ on ω ∈ Ω suppressed in the
notation for obvious reasons).
Let x∗ ∈ X be a global maximizer of ϕ and n = anb

kδϕ̄ − 1 with an ∈ N such
that n > Nε. For k ∈ N, let E(k) = {E(j, k)}kj=1 be the splitting of [0, 1] into closed
hypercubes of volume k−1. Then, by Lemma 6, a necessary condition to have a move at
iteration n′ + 1 ≥ 1 of Algorithm 1 from xn

′ ∈ (Xϕ̄)ε to xn
′+1 6= xn

′ , xn′+1 ∈ (Xϕ̄)ε is
that

un
′
∞ ∈ W̄ (ε) :=

⋃
j,j′∈J ϕ̄

ε,ε/2

W̄ (x̄j , x̄j
′
, ε/2)

where, for j ∈ 1 : (ε/2)−d, x̄j denotes the center of E(j, ε/2), J ϕ̄ε,ε/2 is as in the proof of
Lemma 7 and W̄ (·, ·, ·) is as in Lemma 6. Note that, using (12) with d = 1, |J ϕ̄ε,ε/2| ≤ C

∗

for a constant C∗ <∞ (independent of ε).
Let bkδε be the largest integer k ≥ t such that bt−k ≥ S̄dε/2, with S̄ε/2 as in Lemma

6, and let ε be small enough so that bkδε > 2dC∗bt. The point set {un′∞}
(an+1)bk

δε−1

n′=anbk
δε

is

a (t, kδε , d)-net in base b and thus the set W̄ (ε) contains at most 2dC∗bt points of this
points set. Hence, if for n > Nε only moves inside the set (Xϕ̄)ε occur, then, for a
ñ ∈ anbk

δε
:
(
(an + 1)bk

δε − ηε − 1)
)
, the point set {xn′}ñ+ηε

n′=ñ is such that xn′ = xñ for all

n ∈ ñ : (ñ+ ηε), where ηε ≥ b bk
δε

2dC∗2bt
c; note that ηε →∞ as ε→ 0.

Let kε0 be the largest integer which verifies ηε ≥ 2bk
ε
0 so that {un∞}

ñ+ηε
n=ñ contains at

least one (t, kε0, d)-net in base b. Note that kε0 →∞ as ε→ 0, and let ε be small enough
so that kε0 ≥ kδϕ̄ , with kδ as in Lemma 1. Then, by Lemma 1, there exists at least one
n∗ ∈ (ñ+ 1) : (ñ+ ηε) such that ỹn∗ := F−1

K (xñ, un
∗
∞ ) ∈ Bδϕ̄(x∗). Since, by the definition

of δϕ̄, for all (x, x′) ∈ Bδϕ̄(x∗)× (Xϕ̄)ε, and for ε small enough, we have ϕ(x) > ϕ(x′), it
follows that ϕ(ỹn

∗
) > ϕ(xñ). Hence, there exists at least one n ∈ ñ : (ñ+ ηε) such that

xn 6= xñ, which contradicts the fact that xn = x̃ for all n ∈ ñ : (ñ+ ηε). This shows that
ϕ̄ is indeed the global maximum of ϕ.
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E. Additional figures for the example of Section 6.1
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Figure 3: Minimization of ϕ̃1 defined by (2) for 1 000 starting values sampled inde-
pendently and uniformly on X1. Results are presented for the Cauchy kernel
(K

(2)
n )n≥1 with (T

(1)
n )n≥1 (top plots) and for (T

(2)
n )n≥1. For m = 1, 2, simula-

tions are done for the smallest (left plots) and the highest (right) value of T (m)
n

given in (4). The plots show the minimum number of iterations needed for SA
(white boxes) and QMC-SA to find a x ∈ X1 such that ϕ̃1(x) < 10−5. For each
starting value, the Monte Carlo algorithm is run only once and the QMC-SA
algorithm is based on the Sobol’ sequence.
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Figure 4: Minimization of ϕ̃1 defined by (2) for 1 000 starting values sampled independ-
ently and uniformly on X1. Results are presented for the Gaussian kernel
(K

(3)
n )n≥1 with (T

(1)
n )n≥1 (top plots) and for (T

(3)
n )n≥1. For m = {1, 3}, sim-

ulations are done for the smallest (left plots) and the highest (right) value of
T

(m)
n given in (4). The plots show the minimum number of iterations needed

for SA (white boxes) and QMC-SA to find a x ∈ X1 such that ϕ̃1(x) < 10−5.
For each starting value, the Monte Carlo algorithm is run only once and the
QMC-SA algorithm is based on the Sobol’ sequence.
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