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Abstract

The decomposition of a matrix, as a product of factors withtipalar
properties, is a much used tool in numerical analysis. Herdevelop meth-
ods for decomposing a matriX into a productX'Y’, where the factorsy
andY are required to minimize their distance from an arbitrary p& and
Yy. This type of decomposition, a projection to a matrix pradianstraint,
in combination with projections that impose structuralgedies onX and
Y, forms the basis of a general method of decomposing a matoxXactors
with specified properties. Results are presented for thécapipn of these
methods to a number of hard problems in exact factorization.

1 Introduction

There is a large class of problems where the variables t&kitn of matricesX
andY that satisfy a product constraint

XY =C, 1)

as well as additional structural constraints that applyXtand Y individually.
When the latter are ignored, atidandY are completely unrestricted real or com-
plex matrices, then it is easy, givéh to produce some decomposition of the form
(@) whereX andY have a particular shape that is consistent with the shape and
rank of C. However, such decompositions are far from unique and witlaol-
ditional properties are of little use in solving the complgtroblem, where the
matrices must also satisfy structural constraints.

There is an additional, parameterized property we can imposthe decom-
position [1) that will make it useful for solving the comm@giroblem. This is the
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requirement that the decomposition minimizes the dissmédhe two matrices
from an arbitrary paif Xy, Yy). The decomposition is then said to be a projection
of (Xo, Yp) to the matrix product constrairifl(1). When combined withlegaus
projections that restore the structural constraints, thgiriproduct constraint pro-
jection makes available a variety of methods for solvingdhiginal problem. Al-
though there are no solution guarantees when the problesrsaad — for which
the constraint sets are non-convex — projection methodshasidstic are poten-
tially useful because they can limit the search to matribes are simultaneously
close to both kinds of constraint.

2 Simple projectionsfor special factors

For three classes of factors the product constraint can pkemented directly on

the original matricesX andY. The simple projections for these cases are discussed
in this section. In the next section we will see how generatipct constraints can

be reduced to constraints on combinations of special fe.ctor

Our notation is appropriate for complex matrices but easilgcializes to the
real case by replacing the complex-conjugate transpgseith the transpose, uni-
tary with orthogonal matrices etc. We IBt(m,n) denote unitary (orthogonal)
matrices that are row unitan/(/T = 1I,,) or column unitary U = 1I,,) for
m < n orm > n, respectively.

2.1 Symmetric factors

WhenY = XT there is just one set of variableX, ¢ C"** and
JAX[J5 = Tr (AXTAX) )

is the squared distance applied to the differeAcé = X — X, that the constraint
projection minimizes. The constraint set is defined by

Cz{XG(Cka:XXT:C}, 3)
and the projection as

Po(Xp) = argmin || X — XOH%. 4
XeC
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Because the constraint gkis nonconvex, there will always be pointg for which
there are multiple equally distant poin on C. In strict terms the projection is
therefore a set-valued map. However, we will see that ontyXg in a set of
measure zero is the distance minimizing point not unique.

An efficient method for computind {4) has been known for a ltinge and
arises, for example, when pairs of molecules (or models)kanepared with al-
lowance for arbitrary rotations to bring them into alignmen

To compute the projectioR: of (4) we obtain, as a one-time computation, the
Cholesky decomposition of the constraint matfix= AAf, whereA € C"™*" is
lower triangular and- = rank (C') < min (m, k). The constraint matrix' is the
Gram matrix of inner products of the rows &f, seen as vectors, and the rows of
A are a particular realization of, vectors in a space of dimensierthat has the
geometry implied byC'. The most general collection @f vectors in a space of
dimensionk > r that has the same geometry (Gram matrix) is given by

X = AU, %)

whereU € U(r,k). Computing the projection is thus an exercise in using the
freedom inJ to minimize the distance betweénas defined by (5) and an arbitrary
matrix Xg.

By our definition of the squared distance the optitiak given by

U = argmin Tr (AU — Xo)(AU’ — X;)' (6)
Ul (r,k)

= argmax Re Tr (XoTAU). (7)
U'eU(rk)

Expressing the singular value decomposition
XofA=vDwW (8)

in terms of square unitary matricés € U(k, k), W € U(r,r), the optimalU is
given by

U = argmaxReTr (DWU'V) 9
U'eU (r,k)
= W' | argmax ReTr (DU") | V. (10)
U U (rk)
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The diagonal matrixD will have r = rank (A) positive values along the diagonal
for a genericX, with rank (Xy) > r. When this is the case,

ReTr (DU") = ) _ Dy Re (U}), (11)
=1

has a unique maximum amobty € U(r, k) forU/l = 1,1 <14 < r. Uniqueness is
spoiled whemrank (Xj) < r, but this represents a set of measure zero. Comparing
(@0) with (8), we see that the projection can be compactlyesqed as

Po(Xo) = AU(ATX), (12)

where theunitarization operator/ replaces all the singular values of a matrix by
1.

In the scalar caser{ = k = 1), where the constraint ig|?> = ¢, the projection
(d2) reduces to
P.(x) = cexp (iarg z). (13)

This projection is used by almost all algorithms for solvihg x-ray phase problem
[E1].

Another simple case arises in searches for complexm Hadamard matrices
[TZ] H defined by
HH' = mlI,, (14)

|Hij| = 1,Y14, 5. (15)
The projection to the product constraibt(14) now simplifi@s
Po(Ho) = mU(Ho), (16)

while the projection to the element-wise structure comsti5) is an instance of
the scalar projectior (13) with = 1. For real Hadamard matrices the operaior
acts on a real singular value decomposition (replacingragisar values by 1) and
the structure projection is element-wise rounding:th

2.2 Orthogonal factors

WhenC' = 0, the constraintXY = 0 is geometrically the statement that the
rows of X and then columns ofY’, seen as vectors, lie in orthogonal subspaces of
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C*. To project the paif Xy, Yp) to this constraint set we must optimize both on the
dimensions and the geometry of the orthogonal decompnsitio

Let r, with 0 < r < k, be the dimension of the subspace into which the
columns ofX, are projected, then

X =X UU"  UeU(k,r). (17)
The rows ofY” must then be in the subspace orthogonal to the one specified by
Y = (I, - UUNY,,. (18)
Minimizing
IX = Xoll3 + Y - Yol3 (19)

with respect to- and U defines the constraint projectidd, (Xo,Yy) = (X,Y).
After some matrix manipulation, we arrive at the following:

U= argmin Tr ((YoY(fr ~ Xt xo)wut ) (20)
UeU(k,r), 0<r<k

To solve the optimization problem we compute the eigen-ohgpasition
YoYol — Xo'Xo = VIEV, (21)

whereV € U(k, k) andE is diagonal with real elemenS;; < --- < Fj. Since
VU = U’ is again an arbitrary element bf(k, ), we can rewrite[(20) as

U=Vt argmin  Tr(E U/U'T) . (22)
U’eU(k,r), 0<r<k

Since the elements &’ U’" are always non-negative on the diagonal and bounded
by 1, the minimum is achieved when we select the firsto bel and the rest zero,
wherer_ is the number of negative eigenvalueshin The corresponding’ will
haver_ columns andl’s on the diagonal, zero elsewhere. Relating this back to
U = VU’ and [I7){(IB), we see that the projection can be written cmtipas

X = Xo& (YoYo! — Xo'Xp) (23)
V = &YYo — XolX)Yp, (24)

where theeigenspace projection operatos. replace all the negative/positive
eigenvalues by, setting the rest to zero.

We are not aware of any applications that call for orthoganatrix factors.
However, we will see that the most general matrix producstraimt (section 3]2),
when reduced to a form amenable by projections, calls fdrogdnality in a de-
composition of the factors as sums.



2.3 Outer full rank factors

This is the core simple case upon which all (non-symmefriez 0) product con-
straint projections rely. To our knowledge the algorithmtfas projection is new.

To be able to apply the simple projection derived in this isegtthe outer
dimensions of the factors must match the rank of the comtnaatrix: m = n =
rank (C) = r. In this section we therefore assuifiec C"*" is full rank and the
factors have shape¥ € C"**, Y e CF*", wherek > r. We wish to compute the
projection

Pc(Xo,Yp) = argmin ||X — Xol[3 + [|Y — Yol13 (25)
(X,Y)eC
to the product constraint set
C= {(X,Y) e C%F 5 CF*". XY = c} . (26)

Our scheme for computing the projection is illustrated igufé 1 for the sim-
plest case of all: real matrices with= k = 1. While it is possible, in this
scalar case, to obtain algebraic equations for the neao@st gn the hyperbola,
our method is iterative and generalizes to matrices. It ¢@ap two operations: a
guasiprojection) and a true projectio to the tangent-space approximation of
the true constraint set.

The quasiprojectiorQ(zo, yo; z,y) maps arbitrary pair¢z,y) € R? to the
constraint setry = ¢ by trying two alternatives and selecting the one that mini-
mizes the distance tax, yo). Starting with(z,y) = (xg, yo), the two alternatives
are (¢/yo,yo) and (zg, c/xg). Whichever is closest tdx¢,yo) defines the first
quasiprojection(x1,y;). As is clear from Figure 1(x1,y;) is not the distance
minimizing point onzy = c to (xp,yo). TO improve on(xi,y;) we compute
P(xo,y0;71,y1) = (22,y2), & true distance minimizing point but on the tangent
space approximation, d&t;,y;), of the product constraint. This is followed by
Q(x0,y0; x2,y2) = (x3,ys3) to bring the point back to the true constraint.

By iterating the two map¥’ times, now for the general problem for complex
matrices, we approximate the product constraint projac®

Po(Xo,Yo) = (X7, Y7), (27)
where
(X1,Y1) = Q(Xo,Yo; Xo,Yp) (28)
(Xt-i-lyY;H-l) = Q(X(]ayv()aP(XOvYVOaXtaY%)))v 1 é t<T.
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Figure 1: Projection to the scalar product constraipt = c¢ by iterating the
guasiprojection) and the tangent space projectién The quasiprojection takes
the point to be projected;zo, o), and constructs pointsy, y1) and(xy/,y1/) on
the constraint set, selecting;,y;) because it is closer torg,yo). This is fol-
lowed by P, which projects(zg, yo) to the tangent space &t;,y;), producing
point (x4, y2). Another application of) produces the pointzs, y3), an improve-
ment over(xy,y1) by its proximity to(xg, yo)-

For the intended applications &%, the point( X, Yy) maintains a respectful dis-
tance from the product constraint over most of the compriatecause of com-
peting structural constraints. While it is important, & to satisfy the product
constraint precisely, the minimization of the (non-zer@stahce brings diminish-
ing returns. As we show later, in some problems €¥es 2 is adequate.

2.3.1 Quasiprojection

Given an arbitrary paitX;,Y7), our task here is to construct a p@aiXs, Y2) =
Q(Xo, Yy; X1,Y7) such thatX,Ys = C and the distance betweéiX,,Y>) and
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(Xo, Yp) is minimized when there are options. Our solution will hawe other im-
portant property that whefiXy, Yy) ~ (X1,Y1) and X Y7 = C, then(X,,Ys) =
(X1,Y7).

The two alternatives in the construction correspond to @i or Y;. Fixing
X1, we need to solve the equation

XY, =C, (29)

for Y5 or equivalently,
X1AY =C — X1Yy, (30)

for AY =Y, — Y. SinceX; € C"** generically has full column rank, applying
the Moore-Penrose pseudoinversg to (30) gives

AY = X{(C - X1Yp), (31)

the solution to[(3D) that minimizegAY ||3. Therefore, theX;-fixing option

(X2,Y2) = (X1, Y0+ AY), (32)
gives squared distance
1X1 = Xol3 + |AY 3. (33)
This is to be compared with fixing
(X2,Y2) = (Xo+AX, Y1) (34)
AX = (C-XW)Y,, (35)

for which the squared distance is
IAX3 + (Y1 — Yolf5. (36)

Whichever of[[3B) and (36) is smallest determi&s, Y5). The formulas forA X
and AY imply small changes, as required, wheky, Yy) ~ (X1, Y1) and both
pairs approximately satisfy the product constraint.

2.3.2 Tangent space projection

For this projection we start with a paiX, Y7) that satisfies\;Y; = C but is not
necessarily distance minimizing (X, Yy). The tangent space to the constraint at
(X1, Y1) is defined by pair$ X, Y) that satisfy the linear equations

(X -X1)"1 + X1 (Y - Y1) =0. (37)
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This is anr x r matrix of independent constraints, that we can impose on the
problem of finding the distance minimizing poifiXs, Y2) using an- x r Lagrange
multiplier matrix F':

(X2, Yo)p = arg min TrG(X,Y; F) (38)
(X,Y)E(C’"Xk xCkXxr

G(X,Y; F) = (X — Xo)'(X = Xo) + (Y = ¥0)T (Y - ¥)
+ F (YIT(X — X))+ (v - Y1)TX1T> - (39)

SinceTr G is a positive definite quadratic form, it has a unique mingmiz

(Xa,Y2)p = (Xo — FYi1, Yy — X, TF). (40)

What remains is to find af’ such that X, Y") = (X, Y3)p satisfies the par-
ticular linear constrain{(37). Substituting {40) info {3ve obtain the following
equation forf:

XX HhF+ FMY) = (X — X))V + X1 (Yo — 7). (41)

This is a Sylvester equation with positive definite coeffitimatricesd = X X,
andB = Y;'Y3, since by satisfyingX1Y; = C, X; andY; both have rank. For
these conditions4 and B cannot have canceling eigenvalues) there is a unique
solution for F' and therefore a unique distance minimizing projectlod (40the
tangent space constraint. There is a straightforwardisalaf the Sylvester equa-
tion for F' that starts with the singular value decompositionsi@nd 5.

2.3.3 Product constraint projection for scalars

We record here, as a special case of the previous sectiamsnathod for pro-
jecting to the product constraint for scalars. The formwes given for a pair
(x,y) € C? with constraintzy = ¢ € C, but continue to hold when these are real
variables/constants. The complex conjugate &f writtenz andzz = |z|2.

To compute the quasiprojecti@d(zo, yo; z1,y1) = (x2,y2), we compare
|21 — o|? + [e/x1 — yol? (42)
with
lc/y1 — 960|2 + |y — y0|2. (43)
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If (A2) is less than[(43)z2, y2) = (x1, ¢/x1); otherwise(z2, y2) = (¢/y1, y1)-

To compute the tangent space project®txy, yo; z1,y1) = (x2,y2) we note
that the scalar case of the Sylvester equafioh (41) has ltbevfiog solution for the
scalar Lagrange multiplief:

(xo — x1)y1 + (Yo — y1)71

= 44
/ |[21]? + [y1 |2 (44)

The projection to the tangent space is the scalar countesp@a):
(z2,92) = (w0 — fU1,90 — fT1). (45)

3 Compound projectionsfor general factors

The algorithms we use for decomposi@ginto a productXY where the factors
also satisfy structural constraints require that all thest@ints are implemented
by just two projections. For the special types of factorsdnti®n[2 this is done
by imposing the product constraint, say for outer full ranktérs, by the first
projection,

P (X,Y)=Po(X,Y) (46)

and all the structure constraints by the second projection:

Here P, denotes the projection to a specific structure, and may bereiift for the
two factors. In many applications the structure constsaare element-wise. For
example, in non-negative matrix factorization we Bgt= P, , the projection that
sets all negative elements to zero and keeps the othersngesha

In this section our goal is to again construct a pair of priges, such as (46)
and [47), but for factors not among the special types in@e@i We give three
such constructions. The first two build on the projectiondoter full rank factors
and differ with respect to the ranks of the factors matchingxaeeding the rank of
C. Our third construction has no restrictions on the factatsidfurthest in spirit
from imposing a product constraint in that the producXoéndY is expressed as
a sum of rank-1 matrices.
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3.1 Rank-limited factors

We now haveX € C™** andY € CF*”, and the knowledge thatnk (X) =
rank (Y) = rank (C') = r < min (m, k,n). If m = n = r then the simple projec-
tion of sectiorl 2.B can be used and the construction deschibee is unnecessary.
If just one of the outer dimensions matcheshe hybrid construction described at
the end of this section should be used.

As a one-time computation we obtain the singular value dgomition ofC,
C=UDV, (48)

whereU € U(m,r), V € U(r,n), andD is the diagonal matrix of the sorted
singular values. To help tailor the projection method toc#fipapplications, we
introduce a two parameter rescaling in this decomposition gU,V — AV,
D — D/(gh). Henceforth we use the symbdls V and D with this rescaling in
effect, so that

U'v =g, VVI=nI. (49)

Since X has rankr, the constraintXY = C implies thatX is in the column-
span of the: columns ofU. Similarly, Y is in the row-span oV’. We may therefore
write

X=UW Y=2V, (50)

whereW € C"*F, Z e CF* satisfy the constraint
WZ = D. (51)

Given variable pair$\V, Z) we can use the outer full rank projection of secfion 2.3
to project to constraini (51).

To design projections that solve the original problem far tictorsX andY
we work with the matrix pairdV, X andZ,Y. Three kinds of constraints apply
to these: the product constraimi [51), the linear condsaji0), and structural
constraints onX andY. A pair of compound projections that implements all of
these constraints is the following,

P(W.X:2Y) = (W, P.(X):;Z,PY)) (52)
(W';Z’) = Poc(W;2) (53)
PyW,X;:Z,Y) = (Pu(W,X);Py(Z,Y)), (54)
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where P¢ is the outer full rank projection witl' = D, and Py and Py project

to the linear constraint$ (b0). To verify that this is a vatmmpound projection
construction for the ariginal problem we check two thing#st we note that in
both P, and P, each of the variables appears at most once as the argument of a
simple projection. The second check is to note thg#if X; Z,Y") is fixed by
both P, and P, then §) X andY have the correct structureij)(have the correct
product because the paifg, X andZ,Y satisfy [50) for a particular paiiV, 7)
that satisfied(31). We see that the singular value structfuilee constraint matrix

C is exploited not just by the presence of the singular valugim® in the product
projection P (inside Py), but also the corresponding column and row information
in the projections?; and Py (inside ).

The projections to the linear compatibility constraint8)(3hough straightfor-
ward, bring up a question on the distance used in defining thiegiions. Be-
cause these operate in the Cartesian-product space complsfour matrices,
our choice of distance may want to respect intrinsic difieess among them. In
particular, when projecting to the constraikit = UW one might want to define
the squared distance by

IAX 3 + 2IAW ], (55)

with a freely adjustable metric parameterAlternatively, in terms of new matrices
U’ = gU andW’ = W/g the form of the linear constraint is unchanged but the
parameter in the distance is eliminated. As this last option is moreveoient,
henceforth we use distances with an artificial symmetry aptba different com-
ponents ¢ = 1in (85)) and instead absorb the metric freedom in the dedimstiof

U andV'. ltis for this reason that we introduced the two-paramedscaling of the
standard singular value decompositidn] (48) whérand V' have normalizations

@9).

To compute the projectiofy; (W, Xo) = (W1, X7), whereX; = UWq, we
only perform a minimization over/ since X can be directly expressed in terms
of W when the constraint is satisfied:

W, = arg min Tr ((UW — X)) (UW — Xo) + (W — Wo)t (W — W0)>. (56)
WeCrxk

Minimizing this positive definite quadratic form and usitigt/ = ¢21,., we obtain
Wi=Wo+U'X0)/(*+1), X1 =UW, (57)

Similarly,
Zy=(Zo+ YoV /(B2 +1),  Yi=ZV (58)
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In the event that one of the outer dimensions,sagquals the rank we would
use a simplified compound construction:

P(W,X;Y) = (W, P(X);Y") (59)
W5Y') = Po(W:Y) (60)
P(W,X;Y) = (Pu(W,X);P.(Y)). (61)

The constraint matrix in projectioR¢ is now DV, that is, only ‘half’ of the singu-
lar value decomposition of the original constraint matAs.in the general case, it
is straightforward to verify the validity of this compoundrtstruction for solving
the original problem.

3.2 Rank-excessive factors

This is the most elaborate case, but it does arise in apiplicat For example, the
linear Euclidean distance matrix

0 1 49 16 25]
1 0 14 9 16
4 1 01 4 9
=19 4 10 1 4 (62)
16 9 41 0 1
25 16 9 4 1 0 |

has rankr = 3 and a non-negative factorization inf6 € R%*® andy € R>*6
[GG]. The non-negative rank @f is therefore bounded by However, the factors
have excessive rank > r and therefore cannot be found with the compound
construction of the previous section.

To treat this case we decompose the factors first as sums:
X=Xc+X, Y=Yc+Y,. (63)

Here X~ and Yy are to be interpreted as the parts of the factors that paatesi
in the product whileX ;| andY’, roughly correspond to what is left over. In more
precise terms, we defin€- andY exactly as we would in the full rank case:

Xe=UW  Yo=2ZV. (64)

By construction, X¢ and Y have rankr = rank (C') and productX¢Ye =
UDV = CwhenWZ = D. The partsX, andY, make up for the excess
rank.
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The original product constraink'Y = C', implies the following constraint on
the parts:
XY+ X Yo+ X, Y =0. (65)
We can project to this constraint, in a compound settingnipducing replicated

variables[[GE]X ¢, X |, Yo andY . As their name suggests, replicated variables
satisfy the simple equality constraints:

Xe=Xe X,=X, Yo=Yo Y, =Y. (66)

In fact, these constraints are so simple that they can be ioachlwith the projec-
tion to the structure constraints. We therefore write tinecstire projection in the
expanded form

P*(XC,)ZC,XJ_,XJ_) :(X,CHX/C'?Xj_ﬂXi) (67)

whereX/, + X' satisfies the structural constraint on the original matfixCom-
puting this projection for element-wise structure coristgais easy as it only in-
volves four numbers at a time.

Non-negativity of X would be treated in the following way. Suppaose, Z¢,
x| andZ, are the four real scalar elements on which we want to comphate t
projection P,. The first step is to project to the equality constrairs = Z;, =
To = (wc—ki'c)/Qande'/J_ = fﬁ_ =z, =(x; +2,)/2. Nowifzc+z, >0
we are done and the result of the projectioniiis, ¢,z .,z ). If that is not the
case, we shift both parts by the same amount to give a sum of ther resulting
projection is(dx, dx, —dx, —o0x), wheredx = (Z¢ — 1 )/2.

Since the variable$/ and Z do not appear in the structure constraints, we
combine them as i_(52) when forming the first compound ptimjec

PI(WXC75507XJ_7)?J_;27Y07}707YJ_7?J_) =
(W/7P*(XC7)Z07XJ_7)?J_);Z/yp*(Y07?07Yl7}7l))
(W'52") = Pc(W;Z). (88)

Having replicas ofX -, X |, Yo andY, makes it possible to project to the remain-
ing constraints,[(84) an@ (65). These can be written in terfeplicas such that
no variable appears in more than one constraint:

Xe=UW  Yo=2V (69)

)?CYJ_ + XJ_?C + )ZJ_?J_ =0. (70)
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Projecting to constrainf (69) is accomplished with the spnogectionsP;; and Py
that are used in the rank-limited case. Constraint (70) imstance of orthogonal
factors (sectiof 2]2), as is clear when we column-conctgeXig, X | andX | to
form X3 € C™*3F and row-concatenaf€, , Yo, andY, to formY; € C3#*n (for
constraintX3Ys; = 0). The second compound projection is therefore

P2(W/>XC>)Z07XJ_7)?J_; 27 YC>}7CHYJ_7?J_) =
(PU(I/Va XC)?A)Z/C?Xj_v)?i); PV(Za YC)v ?é>Yi>}7i))
()Z/C'inv)?j_a ?C/'v YJ/_v ?J/_) = PJ_()ZCwXVJ_?jEJ_; }707 YJ.? ?J_) (71)

It is easy to check that if botl, and P, fix all ten matrix variables, thelX =

Xc + X, andY = Yo + Y, have the correct product and satisfy the structure
constraints. There is an exchange of information betweervib factors in both

P, and P, while this is true only forP; in the rank-limited case (which operates
on only four matrix variables).

3.3 Rank-1 decomposition

The matrix product constrairitl(1) can be written in the form
k
Y 7zl =c, (72)
=1

where theZ! ¢ C™*™ are required to be rank-1 matrices:

2=ty 1<i<k (73)

Herez! € C™, ' € C™ are row vectors. The difficulty of recovering andy’
from Z! (the explicit factorsX andY’) may depend on the nature of the structure
constraints. The non-negativity constraint representsaagy case. For suppose we
have a solution of real, non-negative and rank-4 that sum taC. To decompose
7' asZ/; = xly! into nonnegative vectors' andy' we can proceed as follows.

Find ani for which the rowZ; is not entirely zero, set, = o' > 0 and thereby
infer y. = Z!. /a' for all j. Now take aj for which 3’ > 0 and determine:! =
Z\; /[y for all i. In this way one obtains matrix factors andY” with k arbitrary

scale parameterg and a permutation arbitrariness in how thesummands are
assigned to thé rows/columns of the factors.
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In this projection scheme the variables &k . .., Z* and again there are two
projections that act in this space. The first projection aanttheZ’s individually,

Py(ZY,...,Z%) = (P (ZY),..., Pu(Z")), (74)

with P,; projecting each to the nearest rank-1 matrix. The secorjégifon com-
bines structural constraints with the constraint thatAfgehave sunt'

Py(ZY, ..., 78 = P.(ZY, ..., Z"5). (75)

Because most structure constraints are element-wisepthputation ofP, is usu-
ally only slightly more complicated than projecting to thieusture constraints
without the property that the sum 8. The case of non-negativity is worked out
below.

The algorithm for computing?.; is well known and is concisely described as
setting to zero all but the largest singular value of the imadverything else being
left unchanged. As non-negativity is a widely used striecttonstraint, we devote
the rest of this section to the algorithm for computing thejgution P, to this
constraint. The constraints associated with a particulrimelement ofC' have
the form

» A= >0, Vi, (76)
=1

wherez! = Zilj andc = C;; > 0 are the variables and constant that go with the
(,4) matrix element. We can refer 18, as thesimplex projectiorbecause the set
of feasiblek-tuples for [76) forms a reguladr — 1 simplex. To implement non-
negativity, the simplex projection is applied indepentlenh the k-tuples at each
(i, 5).

An efficient computation ofP, is based on two simple lemmas that we state
without proof. This projection is built from two simpler gections that act on
k-tuplesz: P.(z) projects to the constraint (I76) with non-negativity reldxall
variables are shifted by the same value so as to produce treetsum), and (z)
replaces: by all zeros. In our notation all three operatofs (P,, P,) continue to

act on direct sums of arbitrary subsets the original vaemblith no change in the
value ofec.

Lemma3.l. Forl1 <k < kandallz € R¥,

Py(2) = Pu(Pu(2)). (77)



Lemma3.2. For1 <k’ < kand allz € R¥, let P.(z) = zeq @ z.— be the direct
sum decomposition into positive and nonpositive values) th

P*(zc—i-@Zc—) :P*(zc—i-)@PO(zc—)' (78)

In combination, the two lemmas give an efficient recursigoathm for P,. To ef-
ficiently manage the direct sums (partitioning into positand nonpositive values)
the initial z should first be permuted into a sorted order.

WhenC is an integer matrix and we believe there is a rank-1 decoitigos
where all theZ’s are also integer matrices, we can use the stronger steuctun-
straint where all the's in (Z6) are required to be non-negative integers. To ptoje
to this constraint we use the compositiéh o P,, where P, is the simplex pro-
jection for sumc as above, an®, is the projection[[CS] to thel;_, root lattice
(suitably shifted so thé-tuples sum ta rather than zero). Establishing that this is
a projection requires a check that the simplex of the firsjgotmn is covered by
lattice Voronoi cells belonging only to lattice points tliatin the simplex.

While the rank-1 method comes without restrictions on thetois, and the
constraint projections are relatively easy to computegthee two reasons to favor
the alternative method that uses the projection First, the rank-1 method treats
the constraint matrixC' as a structureless set ofn numbers. By contrast, the
methods in sectionis 3.1 ahd 13.2 exploit the singular valuetsire of C which
surely is advantageous whéhis dominated by a few singular values. Second, the
rank-1 method requires significantly more variablesik compared tqm + n +
2r)k (rank-limited) or(4m + 4n + 2r)k (rank-excessive).

4 Constraint satisfaction by iterated projections

In all the projection methods described above, simple orpmund, the variables
are Cartesian products of various complex or real matri€es.the purposes of
this section we can treat these as vectorss CM orz € RM, whereM is the total
number of variables in the Cartesian product. Also, sohgtio® to all problems
are identified by the property that they are fixed by two propes:

Py(z*) =2* Py(z*) =z, (79)

The convention of the preceding sections was fhatvas the projection that in-
cluded the product projectioRo or, in the case of the rank-1 method, the projec-
tion to rank-1 summands. In the simple setting the strughunogections are then
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assigned ta?, while in the compound setting these also are also assignéy t
and P, is tasked with linear compatibility and orthogonality arganatrices.

There has been much study of iterative algorithms built ftam projections
for problems where both of the corresponding constrairg ae¢ convex. Since
we will be interested in applications where at least one efdbnstraint sets is
nonconvex, we are limited to schemes that have proven ssfotes/en in that
setting. One of these is thaternating direction method of multiplie ADMM
iteration [B]:

n = Pi(n+2) (80)
rh = Py(r1—1)
g = z+alrh — ).

Three sets of the original variables are updated in eachtiber. =, z; andxs. If

in one iteration it happens thay = x%, thenz is unchanged and neither are
andzy in the next round. Since; = =/, = z* is fixed by both projections, we see
that ADMM finds a solution whenever it arrives at a fixed point.

By means of ther variables and the positive parametgrthe ADMM algo-
rithm is able to escape the traps that plague the more najegitiim, where the
two projections are simply alternated. The traps in thetadtgorithm, which is
also thea — 0 limit of ADMM (with initialization = = 0), correspond to pairs
of distinct, proximal pointz7, z3) on the two constraint sets. In the presence
of such a trapy is incremented byv(z3 — z7) in each iteration and, fox > 0
and enough iterations, can liberate the algorithm from itae by re-centering the
two projections. The third line of the ADMM update shows thaacts like an
accumulator for the discrepancy between constraints.

In this study we will be using a different scheme caltethxed-reflect-reflect
or RRR [BCL,[ABT1,/ABT2/E2]. This too is best displayed as glate rule for
three sets of variables:

1 = P1 ((E) (81)
Tro = P2(2w1 — (E)
¥ = z+B(z2 —x).

RRR derives its name from the fact that it can be compactiytewrias a relaxed
combination ofr and constraint-reflections,

2= (1-p8/2)x + (B/2)Ry o Ry(x), (82)
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where

With suitable definitions of variables, ADMM withh = 1 can be shown to be
equivalent to RRR with8 = 1. The fixed-point/solution relationship for RRR is
exactly asitis for ADMM, as are some other features. A reédgi minor difference
is the fact that for ADMM one must initialize andz2, compared to just for
RRR. This is truly insignificant for the intended applicatsp where the variables
enter into a rather chaotic steady state dynamics very lpiithereby losing all
memory of the initial conditions. For ADMM it is common pra to initially set
the ‘accumulated discrepancy’ variableso zero.

Once the iteration scheme is selected, there are two waysitnine the algo-
rithm. While local fixed-point convergence holds for a widage of the param-
etersa andg (0 < 8 < 2 for RRR), particular settings may prove advantageous
for minimizing the much longer times the algorithm spendsdaing, chaotically,
for the fixed-point’s basin. A common strategy in global op#ation is to com-
bine rounds of different methods, or a schedule of randomantss Such strategies
will have little effect on ADMM/RRR precisely because of tagongly mixing
character of the dynamics. Finally, one should considempping 1 < 2 in the
ADMM/RRR update rules, as that gives an inequivalent atgori

Our reporting of the RRR algorithm on a sampling of matrix @eposition
problems will mostly feature the time series of the root-mequare constraint
discrepancy defined as

A = \/LM le — xg”g, (84)
where normalizing by the number of variablesmakes it easier to compare prob-
lem instances differing just by size. On hard probletnBuctuates randomly until
the variables arrive by chance at the basin of a fixed poingradponA decays
exponentially to the computer’s working precision. Thefilogipoint nature of the
algorithm usually does not pose a problem, either becawsertbrs in real-world
constraint matrices is larger than working precision, araose solutions can be
verified with integer arithmetic when there are discretg.(nteger) structure con-
straints.

The ADMM and RRR algorithm have one potential failure modeewlzon-
straint sets are non-convex: rather than converge on fixéguspthey can get
trapped on limit cycles [ABT2]. To better understand theuratof this phe-
nomenon and why it seldom arises in practice, we examine whabbably the
first product-constraint problem that comes to mind: intefgetorization. The
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Figure 2: Details of the RRR algorithm flow field in a space ob tdfmensions,
where one constraint set is the integer lattice and the athibe curvery = ¢; left
panel ¢ = 15, right panel ¢ = 16. In the flow field forc = 15 there are curves of
fixed points passing through the solutiqi3s5), (5, 3) and limit cycles associated
with the near solutiori4, 4). Fixed points and limit cycles are interchanged in the
¢ = 16 flow field.

most direct constraint formulation uses the pldkefor the factors(z,y), the
curvezy = c as one of the constraint sets afid as the other. We have already
seen (Figure 1) how to project to the product constraint|eniounding projects to
the integer lattice. To study the dynamics in the plane wenaxa the flow fields
associated with the — 0, 8 — 0 limits of the update rules. The flow field for the
RRR algorithm is the vector field

Pl (2P2(ac,y)—(x,y))—PQ(:U,y), (85)

and is rendered in Figure 2 for the case tRatprojects to the hyperbola ané,
rounds to the integer lattice. Comparing the flow fieldsdoe 15 andc = 16
(left and right panels of the Figure), we see that the mostiglschanges have the
effect of transferring curves of fixed points from tft 5) and (5, 3) solutions in
one case, to thet, 4) solution in the other. We also see that the fixed point flow
near a true solution transforms to a flow field with limit cyeclghen, by changing,
true solutions become near solutions. When we contemplateytto factor large
integers in this constraint formulation, we see that sohgiare not very robust to
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‘noise’ in the low order bits of the constaatand limit cycles are an unfortunate
by-product of this sensitivity.

Aragon Artacho and coworkells [ABT2] give other instanceRRR limit cycle
pathologies, also in the plane. A reasonable hypothedisvihald explain why the
phenomenon is not prevalent in applications is the fact ulsaglly many dimen-
sions are required to formulate a problem in terms of coim#r;gand consequently
relatively few bits of information are imposed per dimemsitn such formulations
the integrity of solutions is robust to noise and there is @edito have many limit
cycles that can easily be transformed to fixed points, dapgrah the vagaries of
the noise. Though lacking theoretical support for this ligpsis, we should be
wary of applying ADMM or RRR in situationse(g. integer factorization by con-
straints in the plane) that require high precision in anyrdimate of the constraint
embedding.

5 A sampling of applications

The purpose of this section is to survey the broad range dicagipns made possi-
ble by matrix product constraint projections. By separatime product constraint
from structural constraints, projection methods providiegree of flexibility ab-
sent in many other methods. Although it will be clear thatgrbon methods are
very efficient for some of the applications, this surveydahort of a comprehen-
sive comparison with alternative methods.

5.1 Gram matrix decomposition

In the maximum determinant probleome seeks matrice¥ € {—1,1}"™*™ that
achieve the highest possible determinant. One stratedintbng suchX is to first
limit the possible Gram matrices = X X7 that a maximum determinadi could
have. For example, one of the four candidate Gram matricesnad form = 15
[Q] had the formC = 12115 + B, whereB is obtained by removing the last row
and column of the matrix

3J —J —-J —J
-J 3J —-J —J
—-J —=J 3J —-J |’
-J —-J —=J 3J

(86)
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Figure 3: Constraint discrepancy time series (log-scal@git panel) in a random
15 x 15 instance of reconstructing-al matrix X from its Gram matrixX X7

where J represents d x 4 block of 1's. We can try to obtaiX from C, if it
exists, by using the symmetric product constraint projec{il2) for one of the two
projections in the RRR scheme, and element-wise roundidgltfor the other.

As a warm-up, especially given the uncertainty in the eristeof the decom-
position, we can construct solubte = 15 instances by forming Gram matrices
from randomX whose elements are uniformly sampled frgm1,1}. We will
use P; for the discrete structure of the factors afgl for the smooth space of
orthogonal matrices that parameterize the product canstrahis assignment of
discrete/smooth constraints in RRR afid= 0.2 worked well on thebit retrieval
problem[EZ2], a special case of Gram matrix decomposition where th&ioes
have a circulant structure.

Not surprisingly, especially given the relationship toreitrieval, we find there
is a strong relationship between the Gram matrix determiiaad the number of
RRR iterations we should expect before a solution is foundr i@ndom, solu-
ble instances have of course much smaller determinant tlenandidate Gram
matrices for the maximum determinant problem. The RRR caimétdiscrepancy
time series for a typical one is shown in Figure 3. There istau@t change in
behavior from ‘chaotic search’, in the first few hundredatens, to ‘systematic
refinement’, in the final iterations. Because the constrsét$ in the refinement
phase are well approximated by convex sets, the linear openee we see in the
log-discrepancy plot is exactly what we expect of an alhaniiesigned for convex
problems. More remarkable is the fact that the algorithntinaes to be reliable, in
a statistical sense, even for highly non-convex consteatt such as we have here.
While we do not know when the algorithm will stumble into théractive basin
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of a solution and start refining, the statistics of these ®vkave the simplicity of
radioactive decay.

Extensive experiments with bit retrieval [E2] show the RRIR times (iteration
counts) on fixed instances with random initiahave an exponential distribution.
Our (successful) experiments decomposing the proposedmax determinant
Gram matrix, though more limited, are consistent with thigperty. All 20 at-
tempts produced solutions; the mean iteration countinag 0°.

5.2 Factoring cyclic polynomials

The problem of factoring polynomials with integer coeffiti® into polynomials

of the same kind, for which there are efficient algorithins Il|,Lis made much

harder when posed in the ring ofclic polynomials The latter is the quotient ring
Zm = Z(q)/(¢™—1), where exponents are equivalent modulpfor some integer
m. For example, the polynomial

1+2¢% + 3¢* (87)
is irreducible inZ(q) but factors as
(I+a+aH1—a+q’+q") (88)

in the ringZ5. The security of cryptographic keys in protocols such as NT&S]
rests in part on the hardness of factoringzip.

The problem of factoring a polynomialq) = z(q)y(q) in Z,, is equivalent to
factoring anm x m circulant matrixC' into circulant matrices andY". The top
rows of the matrices are the polynomial coefficients,

m—1
C(Q) = Z Ck qk Cij = C(j—i mod m)> (89)
k=0

and similarly forz(q) andy(q). By far the most direct way to express the matrix
product constraint for circulant matrices is in terms of Hoairier transforms of the
polynomial coefficients. Defining these as
1 m—1 '
G =—=3 hlime  0<I<m-1, (90)

Vim &
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and similarly forz andy, the constrainiXY” = C takes the form
p=¢, 0<1<m-1 (91)

We recognize this as: independent instances of the complex-scalar product con-
straint for which the projection was worked out in secfioB.2. That projection,
when extended ten independent scalar pairs, minimized the squared distance

3

|AZ? + |Aj]?, (92)
;

Il
=)

which equals the squared distance we are using for our aintuhatrices,

—_

3

|Azi|” + | Ay, (93)
0

e
Il

by a Fourier transform identity. Note that since the polyi@moefficients are
real, the Fourier transforms come in complex-conjugatesgai andé_;), thereby
reducing the number of projections by a factor of two.

To factor polynomials irZ,,, by projections, we first embed our polynomials in
the ring R,,, = R(q)/(¢™ — 1). The projection to elements df,, is accomplished
by rounding all coefficients to the nearest integer. The rofinejection restores
the product constraint by a sequence of three steps: (1)drdwansforming the
coefficients ofz(q) andy(q), (2) performingm projections on pairs of Fourier
coefficients to the complex-scalar product constraint,(@hjl (3) inverse Fourier
transforming the projected Fourier coefficients to prodaigair of polynomials in

R, that satisfyz’(¢)y'(¢) = c(q).

As an interesting test of cyclic polynomial factoring by jeiions, we restrict
the coefficients ofr(¢) andy(q) to be+1. For these instances we have a sim-
ple upper bound o2™ on the complexity, since by exhausting on the coefficients
of z(q), the coefficients ofy(¢) are found by solving linear equations and then
checking for membership if—1,1}. Also, we believe the most interesting case is
factoringc(q) with small coefficients. The product we will use in our expeents
is them = 23 polynomial:

c(g) = 1-3¢-3-3"+¢*"+¢"+"+qd" +¢ (94)
_3¢° — 3010 — 31 4 12 _ 3418 _ 3414 4 415
3¢ 317 4 g8 1 g19 3420 4 21 4 22,
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Because the coefficients of the factors arg all the coefficients of(q) must be
odd and in the same residue class mod 4. The coefficients efrivaal c(q) that
are as small as possible will therefore be two-valued, & ¢hse-1 or 3.

Productsc(q) with small coefficients are interesting because they gdéstt
in probing the non-compact nature of the product constr&onsider the Fourier-
power vectors of the factorsf; = |2/, g; = |§:>. Sinced_, fi = >, 91 = m,
these lie in a simplex with vertices on the axes of the pasitithant. When all
the coefficients ot(q) are as small as possible, the same holds true of its Fourier
coefficients and in particular, the total Fourier poyéy |¢;|? is minimized. Since
the latter is the inner product’, f;g;, by minimizing the Fourier power in(q)
we force the power vectorg andg,; to have a large separation on the simplex. In
terms that matter to the projection algorithm, a large saxgeparation translates
to many pairg#;, g;) in the solution with very different magnitudese. points in
the ‘asymptotes’ of the constraint ‘hyperbola’.

To factor [94) we used the RRR algorithm with update r{ilg (8ah)ere P,
is the product constraint projection aiyl projects the polynomial coefficients to
+1. A factorization was obtained on all attempts with= 0.2, the same3 that
does well on bit retrieval [E2]. Bit retrieval correspondghe case of symmetrical
factors,y(q) = x(1/q), where projection to the product constraint is the elemen-
tary map [(IB) that takes a complex number to the nearest paoimt circle. In
the non-symmetrical problem the projection is computedtésating?” cycles of
guasiprojections and tangent-space projections (se2ii®®). By increasing’
we improve the quality of the projection. While increasifigertainly helps fixed-
point convergence in the final stage of the solution prodbssbenefits of a high
quality projection in the long, chaotic fixed-point searstess obvious.

With T" = 0, where tangent-space refinement of the projection is tuofied
the mean iteration count over 20 trials was 49,000. Addirgayle of refinement
(T = 1) reduces this to 21,000. Beyond this (20,000 mean iteration] = 2)
the improvement does not make up for the extra work in comgutie projection.
We will see that thd’-dependence of results is more pronounced in other applica-
tions. Our results for the mean number of iterations lookoeraging relative to
the complexity upper bound given By? linear equation problems.
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5.3 Non-negative matrix factorization

Applications of non-negative matrix factorization rangenmi small, handcrafted
problems in computational geometry and communication dexity, to large-
scale industrial problems in data mining and machine legrniin the latter ap-
plications an exact factorization usually does not existl the task is to find the
best approximate factorization. Projection methods, Witle modification over
how they are used for exact factorization, can also be us#dsitontext. Rather
than finding a true fixed point, when there is no exact fac&ion the ADMM and
RRR algorithms are good at finding pairs of proximal pointgf@ntwo constraint
sets[[BCL]. One of these points corresponds to matricesanijhnon-negative en-
tries, and its proximity to the other set implies that thedouret constraint is nearly
satisfied.

In large scale applications the distinction between ramitéd and rank-exces-
sive factors does not come up. In fact, usually the oppositeue: the rank of the
approximate factors is required to be smaller, by choicénefrhiddle dimension,
than the rank of the (noisy) constraint matrix. Another gigant consideration
for large scale applications is the fact that the matricesumually too large to
be manipulated as actual matrices. A very different modeoofputation, called
online learning, is required for these problem.

For the reasons just described, the non-negative matrigrfaation problems
we consider are of the exact and small variety, as in the testedy by Van-
daeleet al. [VGGT]. The existence of hard problems in this domain became
clear when Vavasis [V] showed that determining the non-tiegaank of a non-
negative matrix is NP-complete. For a non-negative matrix R"*" to have
non-negative rank ., it must be possible to express it as the product of a non-
negativeX € R”*"+ and non-negativé®” € R"+*". We will consider two prob-
lems. In the firsty, is known to equal the standard or real-rank(dfand the
rank-limited compound projection method of section| 3.1 barused. The sec-
ond application features the linear Euclidean distanceioeatalready introduced
in section[3.R, where the rank-excessive method is requifidte latter will be
compared with the rank-1 method (sectionl 3.3) which place®strictions on the
factors.
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5.3.1 Designed instances with zero elements

For testing algorithms one can generate exact non-negatex factorization in-
stances by (1) selecting the matrix shapes= n > k, (2) generating the matrix
entries of a solutioi X, Y') by uniformly sampling the intervd0, 1], and (3) com-
puting the constraint matri€’ = XY . However, such instances are easy and do
not rigorously test algorithms. We will generate signifitamarder instances by
forcing a particular fraction of the entries X andY to be exactly zero.

To determine the fraction of zeros X andY that gives hard instances, we
consider the size of the space of solutions. For any instmeespace of solu-
tions always contains orbits under the gradf & x k matrices generated by alll
permutation matrices as well as arbitrary positive diajomatrices. This group
comprises only non-negative matrices, and for ang G, the transformed ma-
trices X¢g andg~'Y give another non-negative factorization. Easy instances a
characterized by not just having a singleorbit of solutions, but a continuous
space of distinct orbits.

To probe the space of solution orbits we considerithe k matrices infinites-
imally close to the identity that generate them. Startinghvihe factorization
C = XY, consider the factorizatio' = XY’ 4 O(¢?) whereX’ = X (I}, + €A),
Y’ = (I — eA)Y, andA is an arbitraryk x & matrix. WhenX andY have no ze-
ros, then for small enoughneither will X’ andY”’. The space of solutions in that
case hag? generators. Now suppose that a fractfoof the entries inX andY” are
zero. The condition thaX’ remain non-negative translates to a set of linear homo-
geneous inequalitie§X A);; > 0, one for each(i, j) whereX;; = 0. Combined
with the analogous inequalities that apply X6, there are in total/ = 2fkm
inequalities on theV = k2 entries ofA. In the limit of large matrices, where it is
not unreasonable to model the directions that define thespi@ities as uniform
on the(NN — 1)-sphere, there is a sharp transifidrom a cone of feasibldl, to just
A = 0,whenM /N = 2. Taking a cue from hardness transitions in other problems
[HHW], we use this onset of unigueness, where the space wiigo$ collapses to
a singleG-orbit, as the signal for the hardest kind of instance. Thisg)f = k/m
as the zero fraction for hard problems.

We now present some results for a single random instance ofpie described
above withm = n = 50, k = 25, andf = 1/2 for the zero fraction. After gen-
erating X andY’, the productC’ = XY was checked to have rank 25. We used

1This is equivalent to the behavior of the probability thétrandom points on theV — 1)-sphere
all lie within the same hemisphere, an old problem appaydingit analyzed by Ludwig Schlafli.
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the compound projection scheme of secfion 3.1, within the RRR algorithm
combining non-negativity projection ok andY with the product constraint pro-
jection on the25 x 25 matricesiW and Z. The other projectionf,, restores the
linear constraints (80) that involve the matridésand V' from the singular value
decomposition of”. As these introduce the metric scale paramejeaadh, one
of our first objectives is to study how the algorithm is aféetby them. We keep
g = h because our two factors have the same shape.

With 5 = 0.2 and the number of tangent-space refinement cycles set con-
servatively at the high valu& = 10 (see below), the behavior of the RRR con-
straint discrepancy upon changing the metric paramgisrshown in Figure 4.
Not surprisingly, performance degrades both wiheis too small and too large.
At the optimal valueg ~ 1.2 the compatibility betweerX and W (respectively
Y and %) is not dominated by one or the other, that is, non-neggtaid the
product constraint have comparable roles in the searcthéosalution. All trials
with ¢ = 1.2 produced solutions. A steady, fluctuating behaviordofollowed
by a sudden drop is characteristic of combinatorial searglteen the solution is
unique or nearly unique. The factors found by the algorittafte¢( normalizing
columns/rows) proved to be (column/row) permutations effdctors used to cre-
ate the problem instance.

Non-negative matrix factorization makes somewhat higkenahds on tangent-
space refinement of the constraint projection than what wased for the scalar
products in the cyclic polynomial factorization problemixirg ¢ = 1.2 on the
same instance studied above, Figure 5 shows the rathertaibrapge in behavior
of the discrepancy time series between algorithms Wit 4 andT = 5 cycles.
With only 4 cycles of refinement the algorithm failed to findausion in 50,000
iterations, even while showing no sign of getting trappece iterpret this as a
sign that the distance-minimizing quality of the produahsimaint projection is so
poor atT’ = 4 that the attractive basins of the RRR fixed points are so Sl
they have become needles in a haystack. But alreadyfvith 5 the algorithm
consistently finds factorizations, with mean iterationmo?,100. ByT = 10 the
mean iteration count is 1,000 and remains at essentialbyvidiiie for higher'.
This shows that a critical number of tangent-space refinéyarthe product con-
straint projection are essential for the algorithm to wdnlgt that increasing this
number beyond that threshold brings diminishing returns.

Vandaele and coworkers [VGGT] proposed a very differentiffiaof matrices
for testing algorithms, inspired by a problem in communaatomplexity. These
are designed to have the same sparsity patteumigsie disjointness matricesd
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Figure 4: Constraint discrepancy time series for a designsthnce of non-
negative matrix factorization for three values of the neefrarametery. Non-
negativity is given greater weight than the product comstraheng is small (top
panel), and the reverse holds wheis large (bottom panel). The best settinggof
is when neither constraint dominates (middle panel, fivatswis).

have factors with the following block-substitution rules:
Xa Xqg Xg

Y, Yy 0 0

Xay1 = 0 Xa 0 Yipr=| Yy 0 Yy O |. (95)
Xa 00 Y, 0 0 Y,
0 0 Xy d d
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Figure 5: Change in the behavior of the constraint discrepdime series, in a
designed instance of non-negative matrix factorizati@iwieenI' = 4 cycles of
tangent-space refinement afid= 5. Solutions are found consistently within about
2,000 iterations foff” = 5 (bottom panel) but essentially never whEn= 4.

With X; = Y7 = I, we see that the instance with constraint = X,;Y; has
factors with shapes: = n = 4971, k = 391, By inspection we can verify that
the factors have equal real and non-negative ranks, anthésd match the middle
dimensionk.

The matrice€”; do not pose much of a challenge to the rank-limited compound
projection method. With setting$ = 0.2, g = h = 0.8 andT = 10, the RRR
discrepancy forC's, shown in Figure 6, is nearly monotonic-decreasing already
in the earliest iterations. The direct passage to convéelfgeimavior is probably a
direct consequence of the strong hierarchy of the singalaies of these matrices.
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Figure 6: Convergent behavior of the RRR discrepancy in @y ease of non-
negative factorization based on unique disjointness oediVGGT].

5.3.2 Linear Euclidean distance matrices

The linear Euclidean distance matiti, of orderm has elements
(Cn)ij = (i — 5)%, 1<i<m,1<j<m. (96)

These matrices have (far > 3) rank3 and logarithmically growing non-negative
rank ro [H]. An upper boundk on r, is given by the middle dimension in a
non-negative factorization af’,,. As we have no reason to believe the ranks of
the factors equad, the rank-excessive construction must be used. In thisedeth
one part of each factoX - andY, hasrank (C,,) = 3. The other partX, and
Y, increases the rank of the factors and is subject to an asti@digy constraint.
The two parts of each factor are required to be non-negathenvgummed and in
general are not non-negative individually.

The RRR algorithm can run afoul of limit cycle behavior instlapplication.
With 5 = 1 (the mid-point of the nominal range) and metric parameters
h = 0.5 — settings that often and quickly lead to solutions — the atm oc-
casionally finds itself in quasi-limit cycles. Although #eeare unstable and do
not represent permanent traps, the search performed bigrétfam during these
epochs is not very productive. An example from an attempted5 factorization
of C is shown in Figure 7.
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Figure 7: Quasi-limit cycle behavior in a non-negative daiztation of the order 6
linear Euclidean distance matrix.

A tendency for limit cycles is consistent with the generalit@an of section
[4, that the constraints to combinatorially hard problenmushnot require a large
number of bits of information per Cartesian dimension of te@straint-space.
Here the principle would apply to thlerank-1 summandgfj = X,Yy; (fixed!)
whose sum must give a partition of the integer€’jp, ranging from0 to (m — 1)2,
into integers.

Through experimentation we found that limit cycle behavian be avoided
by using a reasonable initial point for the RRR algorithm fibethe SVD-based
factorization as\c = U+/D(r, k), Yo = v/ D(k,r) V, where the diagonal matrix
of singular valuedD has been extended with zeroes to have the correct shape. To
produce non-negative factors, defiNg = max (0, —X¢), Y, = max (0, —Y¢).
The point (in the rank-excessive construction)

(\/ D(Ta k)7XC7XCaXJ_7XJ_ oV D(k,T'),YC,YC,YJ_,YJ_) (97)

satisfies all constraints except the orthogonality prgp@&%E). Running RRR with
this as initial point and the parameters above, a non-negyati= 5 factorization of

Cg is found in 786 iterations. For these factorizations we teate the algorithm
when the summand matricé®, after rounding to integer matrices, are rank-1 and
sum toC'. Thek = 6 factorization ofCs required 1,508 iterations arid= 7 for
C12 required 88,467. Fof' s the search was found to be more productive with
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Figure 8: RRR discrepancy in a successful non-negativeriaation of the order
16 linear Euclidean distance matrix.

metric parameterg = h = 0.3. The discrepancy time series of a succeskfdl 8
factorization in 53,007 iterations is shown in Figure 8. ll&these experiments
the value ofk = r, is the smallest possible. The ranks of the factors in this
sequence of instances grows(as4), (4,5), (5,5), (5,6).

The rank-1 method may also be used for these instances ofegative factor-
ization. As this method works in a space with more dimenstbas the product-
constraint method (for large:), there is reason to hope the limit cycle problem
will be mitigated. This turns out not to be the case. Usingpitigections[(74) and
(75) in the RRR algorithm witt8 = 1 on thek = 5 factorization ofCgs, we ob-
serve trapping on limit cycles that appears to be permanesibdout 20% of trials.
In these trials the initial randorﬁfj elements are uniform samples betwéesnd
(m — 1)2. The mean iteration count in the untrapped trials is 1,600uatwice
the number needed by the product-constraint method. Itaappbe limit cycle
problem is mitigated by replacing the simplex projectiBnfor the structure by
the stronger projectio’4 o P, that makes use of the fact that in these instances
the ij are integers. For the = r__ factorizations ol’s andCy the algorithm now
averages 560 and 5,000 iterationgy andC1¢ are still out of reach.
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5.3.3 Comparison with norm minimization methods

State-of-the-art non-negative factorization methads @A are all based on the
minimization of

XY = Cl2, (98)

differing only on strategies for solving this non-convexiopzation problem. The
latter include alternating a sequence of non-negativemimations with respect to
one factor while the other is held fixed, or a similar stratagplied to individual
rows/columns of the factors. As these restricted convexminations invariably
arrive at non-zero local minima of the objective](98), a #igant degree of ran-
domization is required for these methods to succeed. Thestrasegies/ [VGGIT]
in that regard involve local randomization, similar in gpio what is done in sim-
ulated annealing. By contrast, the only explicit randorsriegoked by projection
methods is in the selection of the initial point. But as weehagen, in the case of
the linear Euclidean distance matrices even this degregnofomness is unneces-
sary as a well motivated special initial point achieves gasdilts.

The assertion that projection methods are just anothenigaé for global op-
timization neglects a number of possibly relevant pointisstFwe note that non-
negative factorization by minimization df (98) never makss of the fact that, in
exact problems, the minimum of the objective is zero. This fidays a central role
in developing projection methods for this problem. A secgoiht is that non-
negative factorization problems may have interestingcsiire that minimization
methods do not exploit. For example, we are not aware of nitaition meth-
ods that address the two cases of the (real) ranks of thergagenk-limited vs.
rank-excessive), as we were forced to consider in the aartgin of compound
projections. Lastly, minimization methods normally areable to take advantage
of discrete constraints (integer, 0-1) on the factors (ok+h summands).

6 Summary

Fast projections to the matrix product constraint enabéeg methods for finding
matrices that not only have a given product but also havetecplr structure€.g.
non-negativity). The first step in implementing these méshis to determine if
the shapes and ranks of the factors are amenable to one afrthke projections
(section[2) or whether one of the compound constructionslving additional
matrices is required (sectidn 3). All of these projections lauilt from standard
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matrix decomposition algorithms (Cholesky, singular ealeigenvalue). The core
algorithm for most of these projections (sectionl 2.3) tesaa quasiprojection to
the true constraint with a true projection to the tangemtespapproximation of the
constraint to get a high quality projection.

Once the product and structure constraints are implemerst@dojections, al-
ways as a pair comprising simple or compound projectiongeaative projection
method such as ADMM or RRR is used to find matrices that are fiydabth pro-
jections and therefore solve the problem. Whereas comeegeesults for these
iterative methods is limited to problems with convex coaisir sets, their success
with non-convex, combinatorially hard problems makes tleenattractive heuris-
tic in that domain. This work examined the strengths and wesges of these
methods in a variety of problems, including Gram matrix aeposition, factoring
cyclic polynomials, and non-negative matrix factorizatio

We have not carried out systematic benchmarks for compamgth other
global optimization methods, but instead have used oucteteof applications
to highlight features that for the most part are unique tggatoon methods. Not
least of the questions confronting first-time users is thecten of parameters.
Probably the most important are the metric parameters. eTaggear only in the
compound setting (sectidd 3) and determine the distandesstizat are applied
to all the matrices in the construction. We showed in sedidhl that the opti-
mal setting of they parameter is such that neither non-negativity nor the priodu
constraint dominates the other.

The refinement cycle numbér and RRR paramete? are less critical. Our
product constraint projections always produce pairs oficest that have the cor-
rect product and fall short of true projections by failings® distance minimizing.
By increasing the number of refinement cyclésthe quality of the projections is
improved. Our polynomial and non-negative factoring eikpents showed that to
achieve good results in these combinatorially hard problieis only necessary for
T to exceed a relatively small number. Finally, a recent stfdile RRR algorithm
in bit retrieval [E2] suggests a similar threshold effecpléas to thes parameter.
The most efficient search performed by RRR appears to be netjime where the
discrete dynamics is approximating the continuous flow efih- 0 limit.
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