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SELF-CONCORDANCE IS NP-HARD

LEK-HENG LIM

Abstract. We give an elementary proof of a somewhat curious result, namely, that deciding
whether a convex function is self-concordant is in general an intractable problem.

1. Introduction

Nesterov and Nemirovskii [20] famously showed that the optimal solution of a conic programming
problem can be computed to ε-accuracy in polynomial time if the cone has a self-concordant
barrier function whose gradient and Hessian are both computable in polynomial time. Their work
established self-concordance as a singularly important notion in modern optimization theory.

We show in this article that deciding whether a convex function is self-concordant at a point
is nonetheless an NP-hard problem. In fact we will prove that deciding the self-concordance of
a convex function defined locally by a cubic polynomial (which cannot be convex on all of Rn),
arguably the simplest non-trivial instance, is already an NP-hard problem. This is not so surprising
given that deciding the convexity of a quartic polynomial, arguably the simplest non-trivial instance
of deciding convexity, is also NP-hard — a much harder recent result [1]. In addition to the NP-
hardness of self-concordance, we will see that there is no fully polynomial time approximation
scheme for the optimal self-concordant parameter and that deciding second-order self-concordance
[14] of a quartic polynomial is also an NP-hard problem.

These hardness results are intended only to add to our understanding of self-concordance. They
do not in anyway detract from the usefulness of the notion since in practice self-concordant barriers
are constructed at the outset to have the requisite property [20, Chapter 5]. It is unlikely that one
would ever need to generate random functions and then test them for self-concordance.

We deduce the NP-hardness of self-concordance using a result of Nesterov himself, namely,
minimizing a cubic form over a sphere is in general an NP-hard problem. Nesterov’s result, which
appears in an unpublished manuscript [19], contains some minor errors that have unfortunately
been widely reproduced. We take the opportunity here to correct them and also to prove a variant
of Nesterov’s result directly from Motzkin–Straus Theorem [18].

2. Self-concordance in terms of tensors

Let Ω ⊆ Rn be open and f : Ω → R be in Cd(Ω), i.e., has continuous partials up to at least
order d. Recall that the dth order derivative of f at x ∈ Ω, denoted ∇df(x), is a tensor of order d
[15]. To be more precise, this simply means that ∇df(x) is a multilinear functional on Tx(Ω), the
tangent space of Ω at x, that is,

∇df(x) : Tx(Ω)× · · · × Tx(Ω)
︸ ︷︷ ︸

d copies

→ R,

2000 Mathematics Subject Classification. 15A69, 68Q17, 90C25, 90C51, 90C60.
Key words and phrases. self-concordance, second-order self-concordance, NP-hard, co-NP-hard.

1

http://arxiv.org/abs/1303.7455v1


where

∇df(x)(h1, . . . , αhi + βh′i, . . . , hn) = α∇df(x)(h1, . . . , hi, . . . , hn)

+ β∇df(x)(h1, . . . , h
′
i, . . . , hn) for i = 1, . . . , n.

With respect to the standard basis ∂
∂x1

, . . . , ∂
∂xn

of Tx(Ω), we may identify Tx(Ω) ∼= Rn and ∇df(x)

may be regarded as a ‘d-dimensional matrix’ (d-hypermatrix for short),

∇df(x) = [ai1···id ]
n
i1,...,id=1 ∈ Rn×···×n.

Indeed, we must have

ai1···id =
∂df(x)

∂xi1 · · · ∂xid
,

and since f ∈ Cd(Ω), we get that ai1···id = aiσ(1)···iσ(d)
, i.e., ∇df(x) is a symmetric d-hypermatrix.

Every symmetric d-hypermatrix A = [ai1···id ]
n
i1,...,id=1 ∈ Rn×···×n defines a homogeneous polynomial

of degree d, denoted

A(h, . . . , h) :=
n∑

i1,...,id=1

ai1···idhi1 · · · hid ∈ R[h1, . . . , hn]d.

Readers should be able to infer from the above discussion that d-hypermatrices are coordinate
representations of d-tensors, just as matrices are coordinate representations of linear operators and
bilinear forms (both are 2-tensors). We refer the reader to [17] for more information.

The usual definition of self-concordance requires that f ∈ C3(Ω) and in which case it is given by
a condition involving the matrix ∇2f(x) ∈ Rn×n and the 3-hypermatrix ∇3f(x) ∈ Rn×n×n.

Definition 2.1 (Nesterov–Nemirovskii). Let Ω ⊆ Rn is a convex open set. Then f : Ω → R is said

to be self-concordant with parameter σ > 0 at x ∈ Ω if

(2.1) ∇2f(x)(h, h) ≥ 0

and

(2.2) [∇3f(x)(h, h, h)]2 ≤ 4σ[∇2f(x)(h, h)]3

for all h ∈ Rn; f is self-concordant on Ω if (2.1) and (2.2) hold for all x ∈ Ω. The set of

self-concordant functions on Ω with parameter σ is denoted by Sσ(Ω).

By (2.1), a function self-concordant on Ω is necessarily convex on Ω. A minor deviation from
[20] is that σ above is really the reciprocal of the self-concordance parameter as defined in [20,
Definition 2.1.1]. Our hardness results would be independent of the choice of σ. Note that

∇2f(x)(h, h) =

n∑

i,j=1

∂2f(x)

∂xi∂xj
hihj , ∇3f(x)(h, h, h) =

n∑

i,j,k=1

∂3f(x)

∂xi∂xj∂xk
hihjhk.

So for a fixed x ∈ Ω, ∇2f(x)(h, h) is a quadratic form in h and ∇3f(x)(h, h, h) is a cubic form in
h. It is well-known that deciding (2.1) at any fixed x is a polynomial-time problem (but not so for
deciding it over all x ∈ Ω, see [1]). Hence given a σ > 0, deciding self-concordance at x essentially
boils down to (2.2): Is the square of a given cubic form globally bounded above by the cube of a
given quadratic form? We shall see in the next sections that this decision problem is NP-hard.

While we shall think of ∇2f(x) as a matrix and ∇3f(x) as a hypermatrix thoughout this article,
we nonetheless wish to highlight that condition (2.2) is really a condition on ∇2f(x) regarded as a
2-tensor and∇3f(x) regarded as a 3-tensor; that is, (2.2) is independent of the choice of coordinates,
a property that follows from the affine invariance of self-concordance [20, Proposition 2.1.1]. Self-
concordance on Ω is then a global condition about the tensor fields ∇3f and ∇2f .
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3. Maximizing a cubic form over a sphere

We will include a proof that the clique and stability numbers of a graph with n vertices and m
edges may be expressed as the maximal values of cubic forms (in n+m variables) over the unit sphere
Sn+m−1. This, or at least the stability number version, is known but the reference [19, Theorem 4]
usually cited contains some slight errors that have been reproduced several times elsewhere1. We
take the opportunity to provide a corrected version below. Our proof follows Motzkin–Straus
Theorem [18] and the similar result of Nesterov [19, Theorem 4] for stability number.

Let G = (V,E) be an undirected graph with n vertices and m edges. We shall require that
E 6= ∅ throughout, so n ≥ 2 and m ≥ 1. Recall that S ⊆ V is a clique in G if {i, j} ∈ E for all
i, j ∈ S and S ⊆ V is stable in G if {i, j} /∈ E for all i, j ∈ S. The clique number and stability

number of G are respectively:

ω(G) = max{|S| : S ⊆ V is clique}, α(G) = max{|S| : S ⊆ V is stable}.
Motzkin and Straus [18] showed that ω(G) may be expressed in terms of the maximal value of a
simple quadratic polynomial over the unit simplex. Although not in [18], it is straightforward to
see that essentially the same proof also yields a similar expression for α(G).

Theorem 3.1 (Motzkin–Straus). Let ∆n = {x ∈ Rn : x1 + · · · + xn = 1, xi ≥ 0} denote the unit

simplex in Rn. Then the clique number ω(G) and stability number α(G) may be determined via

quadratic optimization over simplices:

(3.1) 1− 1

ω(G)
= 2 max

x∈∆n

∑

{i,j}∈E
xixj, 1− 1

α(G)
= 2 max

x∈∆n

∑

{i,j}/∈E
xixj.

Since deciding if a clique of a given size exists is an NP-complete problem [11], an immediate
consequence is that clique number is NP-hard and by Motzkin–Straus Theorem, so is quadratic
maximization over a simplex.

In an unpublished manuscript [19, Theorem 4], Nesterov used Motzkin–Straus Theorem to obtain
an alternate expression (3.3) for stability number involving the maximal value of a cubic form
over a sphere. In the following we derive a similar expression (3.2) for the clique number, which
yields slightly simpler expressions for our discussions in Sections 5 and 7, and may perhaps be of
independent interest.

Theorem 3.2 (Nesterov). Let G = (V,E) be an undirected graph with n vertices and m edges. Let

Sd−1 = {x ∈ Rd : ‖x‖ = 1} denote the unit ℓ2-sphere in Rd. The clique number ω(G) and stability

number α(G) may be determined via cubic optimization over spheres:

1− 1

ω(G)
=

27

2
max

(u,v)∈Sn+m−1

[
∑

{i,j}∈E
uiujwij

]2

,(3.2)

1− 1

α(G)
=

27

2
max

(u,v)∈Sn+m−1

[
∑

{i,j}/∈E
uiujwij

]2

.(3.3)

Proof. This follows from Motzkin–Straus Theorem and the equalities

max
x∈∆n

∑

{i,j}∈E
xixj = max

u∈Sn−1

∑

{i,j}∈E
u2i u

2
j(3.4)

= max
u∈Sn−1,w∈Sm−1

[
∑

{i,j}∈E
uiujwij

]2

(3.5)

=
27

4
max

(u,v)∈Sn+m−1

[
∑

{i,j}∈E
uiujwij

]2

.(3.6)

1For example, [5, Theorem 3.4]. To see that the expression is incorrect, take a graph with three vertices and one

edge, the left-hand side gives 1/
√
2 and the right-hand side gives 1.
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(3.4) comes from substituting xi = u2i , i = 1, . . . , n. Cauchy-Schwartz yields

∑

{i,j}∈E
uiujwij ≤

(
∑

{i,j}∈E
u2iu

2
j

)1/2 (∑

{i,j}∈E
w2
ij

)1/2

and so

max
‖u‖=‖w‖=1

∑

{i,j}∈E
uiujwij ≤ max

‖u‖=1

(
∑

{i,j}∈E
u2i u

2
j

)1/2

max
‖w‖=1

(
∑

{i,j}∈E
w2
ij

)1/2

= max
‖u‖=1

(
∑

{i,j}∈E
u2i u

2
j

)1/2

=: α.(3.7)

Let the maximal value α be attained at u ∈ Sn−1. We set wij = uiuj/α for all {i, j} ∈ E (note
that α > 0 if E 6= ∅). Observe that

∑

{i,j}∈E
uiujwij =

1

α

∑

{i,j}∈E
u2iu

2
j = α,

and w ∈ Sm−1 since
∑

{i,j}∈E
w2

ij =
1

α2

∑

{i,j}∈E
u2i u

2
j = 1.

Hence equality is attained in (3.7) and we have (3.5). We deduce (3.6) from

max
‖(u,w)‖=1

∑

{i,j}∈E
uiujwij = max

‖u‖2+‖w‖2=1

∑

{i,j}∈E
uiujwij

= sup
β∈(0,1)

[

max
‖u‖2=β, ‖w‖2=1−β

∑

{i,j}∈E
uiujwij

]

= sup
β∈(0,1)

[

max
‖u/

√
β‖2=1, ‖w/

√
1−β‖2=1

∑

{i,j}∈E
ui√
β

uj√
β

wij√
1− β

× β
√

1− β

]

=

[

max
‖u‖2=1, ‖w‖2=1

∑

{i,j}∈E
uiujwij

]

× sup
β∈(0,1)

β
√

1− β

=
2

3
√
3

max
‖u‖=‖w‖=1

∑

{i,j}∈E
uiujwij.

Note that the maximal value of
∑

{i,j}∈E uiujwij , whether over Sn−1 × Sm−1 or over Sn+m−1, can

always be attained with u ≥ 0 and w ≥ 0, thereby allowing one to take square in (3.5) and
(3.6). The same proof works word-for-word for stability number with the replacement of index of
summation ‘{i, j} ∈ E’ by ‘{i, j} /∈ E’. �

4. Complexity theory for casual users

In this article, we use complexity classes defined in the standard classical framework: Time
complexity measured in bits with the Cook-Karp-Levin notions of reducibility [4, 11, 16] on a
Turing machine [24]. This is also the most common framework for discussing complexity issues in
optimization [25]. We briefly recall the intuitive ideas behind the complexity classes used in this
article for our readers. This is of course not meant to be anywhere near a rigorous treatment; for
that, see [21, 23].

A decision problem, i.e., answer is yes or no, is in NP if one can verify an yes answer in
polynomial time; it is said to be in co-NP if one can verify a no answer in polynomial time. A
decision problem in NP is said to be NP-complete if one can reduce any other problem in NP to
it. Likewise, a decision problem in co-NP is said to be co-NP-complete if one can reduce any other
problem in co-NP to it. NP-complete and co-NP-complete problems are believed to be intractable.
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Example 4.1 (Subset sum problem [8]). Let S be a finite set of integers. The problem “Does S
have a non-empty subset with a zero sum?” is NP-complete — one can check a purported yes

answer, i.e., a nonempty subset of integers, is indeed a yes answer, i.e., has a zero sum. The

problem “Does every non-empty subset of S have a nonzero sum?” is co-NP-complete — one can

check a purported no answer, i.e., a nonempty subset of integers, is indeed a no answer, i.e., has

a nonzero sum. Note that the two problems are logical complements of each other. This is in fact

another way to define the co-NP class, namely, it comprises problems that are logical complements

of NP problems.

A problem is said to be NP-hard [12, 13] if one can reduce any NP-complete decision problem
to it. A problem is said to be co-NP-hard if one can reduce any co-NP-complete decision problem
to it. In other words, if one can solve an NP-hard problem, then one can solve any NP (including
NP-complete) problems; if one can solve a co-NP-hard problem, then one can solve any co-NP
(including co-NP-complete) problems. So NP-hard problems are believe to be even harder than
NP-complete problem and co-NP-hard problems are believed to be even more intractable than
co-NP-complete problems. An NP-hard problem need not be in NP, i.e., one need not be able
to check an yes answer in polynomial time; an NP-hard problem that is in NP is by definition
NP-complete. Likewise a co-NP-hard problem need not be in co-NP, i.e., one need not be able
to check a no answer in polynomial time; a co-NP-hard problem that is in co-NP is by definition
co-NP-complete.

We have used the term ‘reduce’ without stating what it meant. There are in fact two different
notions: The Cook reduction (also known as polynomial-time Turing reduction) and the Karp

reduction (also known as polynomial-time many-one reduction). For our purpose, all we need to
know is that Cook reduction is believed to be a stronger notion of reducibility than Karp reduction:
Under Cook reduction, every decision problem can be reduced to its complement. A consequence is
that with respect to Cook reducibility, there is no distinction between NP and co-NP, NP-complete
and co-NP-complete, or NP-hard and co-NP-hard. Under Karp reduction, it is believed (although
unknown) that these classes are all distinct.

Given an NP-hard maximization problem, e.g., the ones in Theorems 3.1 and 3.2, a polynomial

time approximation scheme (ptas) is an algorithm that, for any fixed ε > 0, would produce an
approximate solution within a factor of 1−ε of the maximal value, and has running time polynomial
in input size and ε.

5. Complexity of deciding self-concordance

The recent resolution of Shor’s conjecture by Ahmadi, Olshevsky, Parrilo, and Tsitsiklis [1]
shows that deciding the convexity of a quartic polynomial globally over Rn is NP-hard. So the
self-concordance of a function that is not a priori known to be convex is NP-hard in a trivial way
since deciding whether (2.1) holds for all x ∈ Ω in Definition 2.1 is already an NP-hard problem.
Our complexity result requires more stringent conditions: (i) Our functions are assumed to be
convex in Ω and so (2.1) is always satisfied and self-concordance reduces to checking (2.2); (ii) We
show that (2.2) is already NP-hard to check at a single point x ∈ Ω.

Throughout the following we shall require the inputs to our problems to take rational or finite-
extensions2 of rational values, e.g., A ∈ Qn×n×n, q ∈ Q, to ensure a finite bit-length input. Note
however that an NP-hard problem may not be in the class NP; so an NP-hard decision problem can
be posed over the reals, e.g., ‘Is there an h ∈ Rn such that [A(h, h, h)]2 ≤ q[h⊤h]3 holds?’ without
causing any issue since it is not required to have a polynomial-time checkable certificate.

2In this article we only encounter simple quadratic and cubic extensions, cf. (7.4) and (5.3). Note that for positive
q ∈ Q, elements of Q(

√
q) and Q( 3

√
q) may be written as a+ b

√
q and a+ b 3

√
q+ c( 3

√
q)2 respectively. Therefore they

may be represented by pairs and triples of rational numbers.
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We will now formulate a decision problem that will lead us to the requisite NP-hardness of self-
concordance. Let G = (V,E) be an undirected graph with n vertices and m edges where n ≥ 2 and

m ≥ 1. Let E = {{ik, jk} : k = 1, . . . ,m}. Define AG = [aijk]
n+m
i,j,k=1 ∈ Q(n+m)×(n+m)×(n+m) by

aijk =

{

1 {ik, jk} ∈ E,

0 otherwise.

Note that AG is a symmetric hypermatrix, i.e.,

aijk = aikj = ajik = ajki = akij = akji

for all i, j, k ∈ {1, . . . , n+m}. Let us denote the coordinates of h ∈ Rn+m as

h = (u1, . . . , un, wi1j1 , . . . , wimjm).

In which case,

AG(h, h, h) =
∑m

k=1
uikujkwikjk =

∑

{i,j}∈E
uiujwij ,

and so by Theorem 3.2,

(5.1) max
h 6=0

[
AG(h, h, h)

‖h‖3
]2

= max
‖h‖=1

[AG(h, h, h)]
2 =

2

27

(

1− 1

ω(G)

)

.

The clique problem asks if for a given graph G and a given k ∈ N, whether G has a clique of
size k? clique is well-known to be NP-complete [11]. In other words, deciding if ω(G) ≥ k, or
equivalently, ω(G) > k − 1, is an NP-hard problem; and by (5.1), so is deciding if

(5.2) max
h 6=0

[
AG(h, h, h)

‖h‖3
]2

>
2

27

(

1− 1

k − 1

)

.

Strictly speaking, we have restricted ourselves to the subclass of undirected graphs with at least
two vertices and one edge — clearly clique is still NP-complete for this slightly smaller class. But
with this restriction, we may assume that k ≥ 2 and therefore the right-hand side of (5.2) is always
defined.

Hence deciding if there exists an h ∈ Rn+m for which

[AG(h, h, h)]
2 >

2

27

(

1− 1

k − 1

)

[h⊤h]3

is an NP-hard problem. Note that q = 2
27 [1− (k − 1)−1] ∈ Q and so this problem is of the form:

Problem 5.1. Given a symmetric A ∈ Q(n+m)×(n+m)×(n+m) and a positive q ∈ Q, is it true that

there exists h ∈ Rn+m for which [A(h, h, h)]2 > q[h⊤h]3?

Let σ ∈ Q, σ > 0, be a self-concordance parameter and let

(5.3) γ :=
1

3

[
1

2σ

(

1− 1

k − 1

)]1/3

.

We follow the notation in Section 2. Let Ω be the ε-ball Bε(0) = {x ∈ Rn : ‖x‖ < ε} where ε > 0 is
to be chosen later. We are interested in deciding self-concordance at x = 0 of the cubic polynomial
f : Ω → R defined by

f(x) =
γ

2
x⊤x+AG(x, x, x) =

γ

2

∑n+m

i=1
x2i +

∑n+m

i,j,k=1
aijkxixjxk.

We have ∇2f(0) = γI where I is the (n+m)× (n+m) identity matrix. Since γ > 0, i.e., ∇2f(x)
is strictly positive definite in a neighborhood of x = 0 and so there exists some Bε(0) on which f
is convex — this gives us our choice of ε. Also, ∇3f(0) = AG.

6



Hence ∇2f(0)(h, h) = γh⊤h = γ‖h‖22, ∇3f(0)(h, h, h) = AG(h, h, h), and f is self-concordant at
the origin with parameter σ ∈ Q if and only if

[AG(h, h, h)]
2 ≤ 4σγ3[h⊤h]3 =

2

27

(

1− 1

k − 1

)

[h⊤h]3

for all h ∈ Rn+m. Note that this problem is of the form:

Problem 5.2. Given a symmetric A ∈ Q(n+m)×(n+m)×(n+m) and a positive q ∈ Q, is it true that

for every h ∈ Rn+m, we have [A(h, h, h)]2 ≤ q[h⊤h]3?

Mathematically, Problems 5.1 and 5.2 are of course equivalent, being logical complements of
each other. However they may or may not have the same computational complexity. By our
discussion in Section 4, if our notion of reduction is the Cook reduction, then we may indeed
conclude that Problems 5.1 and 5.2 are equivalent in terms of computational complexity, i.e.,
deciding self-concordance is NP-hard. However, if our notion of reduction is the Karp reduction,
then what we may deduce from the NP-hardness of Problem 5.1 is that Problem 5.2 is co-NP-hard.
In either case, our conclusion is that self-concordance is intractable.

Theorem 5.3. Deciding whether a cubic polynomial is self-concordant at the origin is NP-hard

under Cook reduction and co-NP-hard under Karp reduction.

The argument in this section clearly works not just for cubic polynomials but for any f ∈ C3(Ω)
as long as 0 ∈ Ω, ∇2f(0) = γI, and ∇3f(0) = AG — other derivatives and the remainder term in
the Taylor expansion of f at x = 0 may be chosen arbitrarily as long as f stays convex in Ω. This
liberty allows one to extend the construction above to functions with other desired properties. For
instance, we may want an example where Ω = Rn and since cubic polynomials cannot be convex
on the whole of Rn, we will need a quartic f and therefore need to choose ∇4f(0) accordingly; or
we may want an example where f is a barrier function, which is equivalent to f having an epigraph
{(x, t) ∈ Rn+1 : x ∈ Ω, f(x) ≤ t} that is closed. One may trivially replace 0 by any point a ∈ Rn

by considering the function fa(x) = f(x− a) on Ω = Bε(a).
While we have proved our hardness result for functions on Ω ⊆ Rn, it is easy to extend this to

any R-vector space, for example, symmetric matrices Sn×n or polynomials R[x1, . . . , xn], or even
Riemannian manifolds with a non-trivial class of geodesically convex functions (i.e., not just the
constant functions). Since self-concordance at a point is a local property, a choice of coordinate
patch would transform the problem to one over Rn; and by our remark at the end of Section 2, it
will in fact be independent of our choice of coordinates.

Deciding self-concordance on the whole of Ω is of course at least as hard as deciding self-
concordance at a point in Ω and hence we have the following.

Corollary 5.4. For any Ω and any σ > 0, deciding membership in Sσ(Ω) is NP-hard.

One may wonder why our conclusion in Theorem 5.3 is stated as NP- and co-NP-hardness as
opposed to NP- and co-NP-completeness. It may appear that given a no certificate h ∈ Rn, it would
be easy (i.e., requires polynomial time) to decide whether [A(h, h, h)]2 ≤ q[h⊤h]3 is indeed violated.
But observe that it is only easy to compute the quantities [A(h, h, h)]2 , q[h⊤h]3, and compare
their magnitudes when we measure time complexity in units of real operations (i.e., arithmetic and
ordering in R). Since we measure time complexity in units of bit operations, even if the certificate
h is in Qn, it could well have an exponential number of bits and thus it is not at all clear that we
may check [A(h, h, h)]2 ≤ q[h⊤h]3 easily.

6. Inapproximability of optimal self-concordance parameter

Let A ∈ Qn×n×n be symmetric and f : Ω → R be defined by the cubic polynomial f(x) =
1
2x

⊤x + A(x, x, x). As in Section 5, Ω is chosen to be a neighborhood of the origin so that f is
7



convex on Ω. The condition (2.2) for self-concordance of f at x = 0 with parameter σ > 0 may be
written as

(6.1) |A(h, h, h)| ≤ 2
√
σ‖h‖32

for all h ∈ Rn. This is equivalent to requiring

(6.2) max
h 6=0

A(h, h, h)

‖h‖32
≤ 2

√
σ,

as A(−h,−h,−h) = −A(h, h, h) and we may drop the absolute value in (6.1).
Since A ∈ Rn×n×n is a symmetric 3-hypermatrix, the spectral norm [7, 17] of A,

‖A‖2,2,2 := max
h1,h2,h3 6=0

A(h1, h2, h3)

‖h1‖2‖h2‖2‖h3‖2
= max

h 6=0

A(h, h, h)

‖h‖32
.

For the interested reader, the second equality above follows from Banach’s result on the polarization
constant of Hilbert spaces [2, 22]. Hence the optimal self-concordance parameter of f at x = 0, i.e.,
the smallest value of σ so that (6.2) holds, is given by

(6.3) σopt =
1

4
‖A‖22,2,2.

The spectral norm of a 3-hypermatrix is NP-hard to approximate to within a certain constant
factor by [7, Theorem 1.11], which we state here for easy reference.

Theorem 6.1 (Hillar–Lim). Let A ∈ Qn×n×n and N be the input size of A in bits. Then it is

NP-hard to approximate ‖A‖2,2,2 to within a factor of 1− ε where

ε = 1−
(

1 +
1

N(N − 1)

)−1/2

=
1

2N(N − 1)
+O

(
1

N4

)

.

By (6.3) and Theorem 6.1, σopt is NP-hard to approximate to within a factor of 1
4(1 − ε)2 and

consequently we have the following inapproximability result.

Corollary 6.2. There is no polynomial time approximation scheme for determining the optimal

self-concordance parameter σopt unless P = NP.

We refer the reader to [6, 9] for more extensive approximability results and approximation algo-
rithms (that are not ptas). In particular, the results in [9] for quartic polynomials would apply to
the optimal second-order self-concordance parameter (see the next section).

7. Complexity of deciding second-order self-concordance

There is also an interesting notion of second-order self-concordance due to Jarre [14]. This
requires that f ∈ C4(Ω) and is given by a condition involving the matrix ∇2f(x) ∈ Rn×n and the
4-hypermatrix ∇4f(x) ∈ Rn×n×n×n.

Definition 7.1 (Jarre). If Ω ⊆ Rn is a convex open set, then f : Ω → R is said to be self-

concordant of order two with parameter τ > 0 at x ∈ Ω if

(7.1) ∇2f(x)(h, h) ≥ 0

and

(7.2) ∇4f(x)(h, h, h, h) ≤ 6τ
[
∇2f(x)(h, h)

]2

for all h ∈ Rn; f is self-concordant of order two on Ω if (7.1) and (7.2) hold for all x ∈ Ω.
8



Note that

∇4f(x)(h, h, h, h) =
∑n

i,j,k,l=1

∂4f(x)

∂xi∂xj∂xk∂xl
hihjhkhl,

is a quartic polynomial in h for any fixed x ∈ Ω.
We follow the same argument in Section 5 to show that deciding (7.2) is NP-hard. This time

the result would be deduced from Motzkin–Strass Theorem except that for better parallelism with
Section 5, we will use the quartic-maximization-over-sphere form (3.4) instead of the quadratic-
maximization-over-simplex form (3.1).

Given a graph G = (V,E) with n vertices and m edges where n ≥ 2 and m ≥ 1, we define
AG ∈ Rn×n×n×n by

aijkl =

{

1 i = k, j = l, and {i, j} ∈ E,

0 otherwise.

So A = [aijkl]
n
i,j,k,l=1 ∈ Qn×n×n×n is a symmetric 4-hypermatrix. Now observe that, as in (3.4),

max
‖h‖=1

AG(h, h, h, h) = max
h∈Sn−1

∑

{i,j}∈E
h2ih

2
j =

1

2

(

1− 1

ω(G)

)

by Motzkin–Strass Theorem. As in Section 5, given an integer k ≥ 2, deciding if a k-clique exists
in G is equivalent to deciding if ω(G) > k − 1. Hence deciding if there exists h ∈ Rn with

(7.3) AG(h, h, h, h) >
1

2

(

1− 1

k − 1

)

[h⊤h]2

is NP-hard.
Given a second-order self-concordance parameter τ ∈ Q, τ > 0, let

(7.4) γ :=

[
1

12τ

(

1− 1

k − 1

)]1/2

.

We may now define f : Ω → R accordingly as the quartic polynomial

f(x) =
γ

2
x⊤x+AG(x, x, x, x) =

γ

2

∑n

i=1
x2i +

∑n

i,j,k,l=1
aijklxixjxkxl.

Hence ∇2f(0)(h, h) = γh⊤h = γ‖h‖22 and ∇4f(0)(h, h, h, h) = AG(h, h, h, h). Again we choose Ω
to be a neighborhood of the origin so that f is convex on Ω as we did in Section 5. So the function
f is second-order self-concordant at x = 0 with parameter τ if and only if

(7.5) [AG(h, h, h, h) ≤ 6τγ2[h⊤h]2 =
1

2

(

1− 1

k − 1

)

[h⊤h]2

is satisfied for all h ∈ Rn. As in Section 5, we observe that the problem of deciding if there exists
an h ∈ Rn satisfying (7.3) and the problem of deciding if (7.5) is satisfied for all h ∈ Rn are logical
complements. Since the former is NP-hard, we arrive at the following conclusion:

Theorem 7.2. Deciding if a quartic polynomial is second-order self-concordant at the origin is

NP-hard under Cook reduction and co-NP-hard under Karp reduction.

It has recently been shown that deciding various seemingly innocuous properties of quartic poly-
nomials [1, 10] all fall into the NP-hard category, Theorem 7.2 provides yet another such example.
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8. Conclusion

As we have mentioned in the introduction, the hardness results here are intended to shed light on
the properties of self-concordance. They do not in anyway invalidate the usefulness of the notion in
practice since there are basic principles that one may use to construct self-concordant (and second-
order self-concordant) functions for use as barriers in cone programming — see “How to construct
self-concordant barriers” in [20, Chapter 5] for an extensive discussion or “Self-concordant calculus”
in [3, Section 9.6] for a summary.

Self-concordance and second-order self-concordance are conditions involving high-order tensors
(orders 3 and 4 respectively), which is a topic of great interest to the author. In particular, their
NP-hardness serves as yet reminder of the complexity of tensor problems [7].
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