Skip to main content
Log in

A review of computation of mathematically rigorous bounds on optima of linear programs

  • Short Communication
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Linear program solvers sometimes fail to find a good approximation to the optimum value, without indicating possible failure. However, it may be important to know how close the value such solvers return is to an actual optimum, or even to obtain mathematically rigorous bounds on the optimum. In a seminal 2004 paper, Neumaier and Shcherbina, propose a method by which such rigorous lower bounds can be computed; we now have significant experience with this method. Here, we review the technique. We point out typographical errors in two formulas in the original publication, and illustrate their impact. Separately, implementers and practitioners can also easily make errors. To help implementers avoid such problems, we cite a technical report where we explain things to mind and where we present rigorous bounds corresponding to alternative formulations of the linear program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. A scheme using directed rounding is given in [26, Equation (5)] However, it may be simpler to use interval arithmetic, now more widely available than when [26] appeared.

References

  1. Althaus, E., Dumitriu, D.: Certifying feasibility and objective value of linear programs. Op. Res. Lett. 40(4), 292–297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applegate, D.L., Cook, W., Dash, S., Espinoza, D.G.: Exact solutions to linear programming problems. Op. Res. Lett. 35(6), 693–699 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audet, C., Hansen, P., Messine, F., Ninin, J.: The small octagons of maximal width. Discrete Comput. Geom. 49(3), 589–600 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baharev, A., Kolev, L., Rév, E.: Computing multiple steady states in homogeneous azeotropic and ideal two-product distillation. AIChE J. 57(6), 1485–1495 (2011)

    Article  Google Scholar 

  5. Baharev, A., Rév, E.: Reliable computation of equilibrium cascades with affine arithmetic. AIChE J. 54(7), 1782–1797 (2008)

    Article  Google Scholar 

  6. Benhamou, F., Granvilliers, L.: Chapter 16—continuous and interval constraints. Foundations of artificial intelligence. In: van Beek, P., Rossi, F., Walsh, T. (eds.) Handbook of Constraint Programming, vol. 2, pp. 571–603. Elsevier, New York (2006)

    Chapter  Google Scholar 

  7. Boccia, M., Sforza, A., Sterle, C., Vasilyev, I.: A cut and branch approach for the capacitated \(p\)-median problem based on Fenchel cutting planes. J. Math. Modell. Algorithms 7(1), 43–58 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chindelevitch, L., Trigg, J., Regev, A., Berger, B.: An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models. Nat. Commun. 5(4893), 1–10 (2014)

    Google Scholar 

  9. Cook, W., Dash, S., Fukasawa, R., Goycoolea, M.: Numerically safe gomory mixed-integer cuts. INFORMS J. Comput. 21(4), 641–649 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cook, W., Koch, T., Steffy, D.E., Wolter, K.: A hybrid branch-and-bound approach for exact rational mixed-integer programming. Math. Program. Comput. 5(3), 305–344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cornuéjols, G., Margot, F., Nannicini, G.: On the safety of Gomory cut generators. Math. Program. Comput. 5(4), 345–395 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Domes, F., Neumaier, A.: Rigorous filtering using linear relaxations. J. Glob. Optim. 53(3), 441–473 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fukasawa, R.: Gomory cuts. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Cole Smith, J. (eds.) Wiley Encyclopedia of Operations Research and Management Science. Wiley, New York (2011)

    Google Scholar 

  14. Gouttefarde, M., Daney, D., Merlet, J.-P.: Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots. IEEE Trans. Robot. 27(1), 1–13 (2011)

    Article  MATH  Google Scholar 

  15. Guilbeau, J.T., Hossain, M.I., Karhbet, S.D., Kearfott, R.B., Sanusi, T.S., Zhao, L.: Advice for mathematically rigorous bounds on optima of linear programs. Technical report, University of Louisiana at Lafayette. http://interval.louisiana.edu/preprints/reformulations-for-rigorous (2016)

  16. Jansson, C.: Rigorous lower and upper bounds in linear programming. SIAM J. Optim. 14(3), 914–935 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jansson, C., Chaykin, D., Keil, C.: Rigorous error bounds for the optimal value in semidefinite programming. SIAM J. Numer. Anal. 46(1), 180–200 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jansson, C.: On verified numerical computations in convex programming. Jpn. J. Ind. Appl. Math. 26(2–3), 337–363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jordan, N., Messine, F., Hansen, P.: 4OR. Reliab. Affine Relax. Method Glob. Optim. 13(3), 247–277 (2015)

    Google Scholar 

  20. Kearfott, R.B.: Discussion and empirical comparisons of linear relaxations and alternate techniques in validated deterministic global optimization. Optim. Methods Softw. 21, 715–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kearfott, R.B., Castille, J., Tyagi, G.: GlobSol user guide. Optim. Methods Softw. 24(4–5), 687–708 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.: Efficient and safe global constraints for handling numerical constraint systems. SIAM J. Numer. Anal. 42(5), 2076–2097 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lebbah, Y., Michel, C., Rueher, M.: A rigorous global filtering algorithm for quadratic constraints. Constraints 10(1), 47–65 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Margot, F.: Testing cut generators for mixed-integer linear programming. Math. Program. Comput. 1(1), 69–95 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Neumaier, A., Shcherbina, O., Huyer, W., Vinkó, T.: A comparison of complete global optimization solvers. Math. Program. 103(2), 335–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer programming. Math. Program. 99(2), 283–296 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Porta, J.M., Ros, L., Thomas, F.: A linear relaxation technique for the position analysis of multiloop linkages. IEEE Trans. Robot. 25(2), 225–239 (2009)

    Article  Google Scholar 

  28. Prodan, I., Zio, E.: A model predictive control framework for reliable microgrid energy management. Int. J. Electr. Power Energy Syst. 61, 399–409 (2014)

    Article  Google Scholar 

  29. Ralph Baker, K., Castille, J., Tyagi, G.: A general framework for convexity analysis in deterministic global optimization. J. Glob. Optim. 56(3), 765–785 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions. SIAM J. Control Optim. 48(7), 4377–4394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Smith, A.P.: Fast construction of constant bound functions for sparse polynomials. J. Glob. Optim. 43(2–3), 445–458 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. van Nooijen, R.R., Kolechkina, A.: Speed of discrete optimization solvers for real time sewer control. Urban Water J. 10(5), 354–363 (2013)

    Article  Google Scholar 

  33. Xiang, Y., Lan, T.: Smart Pricing Cloud Res. Wiley, New York (2014)

    Google Scholar 

  34. Xuan-Ha, V., Sam-Haroud, D., Faltings, B.: Enhancing numerical constraint propagation using multiple inclusion representations. Ann. Math. Artif. Intell. 55(3–4), 295–354 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Yi, X., Shunze, W., Zang, H., Hou, G.: An interval joint-probabilistic programming method for solid waste management: a case study for the city of Tianjin, China. Front. Environ. Sci. Eng. 8(2), 239–255 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank all of the referees and editors for their patience and thought. Not only did they correct errors, but they formulated wise suggestions that made the purpose and exposition clearer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Baker Kearfott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guilbeau, J.T., Hossain, M.I., Karhbet, S.D. et al. A review of computation of mathematically rigorous bounds on optima of linear programs. J Glob Optim 68, 677–683 (2017). https://doi.org/10.1007/s10898-016-0489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0489-2

Keywords

Navigation