Skip to main content
Log in

Bounds tightening based on optimality conditions for nonconvex box-constrained optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

First-order optimality conditions have been extensively studied for the development of algorithms for identifying locally optimal solutions. In this work, we propose two novel methods that directly exploit these conditions to expedite the solution of box-constrained global optimization problems. These methods carry out domain reduction by application of bounds tightening methods on optimality conditions. This scheme is implicit and avoids explicit generation of optimality conditions through symbolic differentation, which can be memory and time intensive. The proposed bounds tightening methods are implemented in the global solver BARON. Computational results on a test library of 327 problems demonstrate the value of our proposed approach in reducing the computational time and number of nodes required to solve these problems to global optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1, 1–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31, 635–672 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amaran, S., Sahinidis, N.V.: Global optimization of nonlinear least-squares problems by branch-and-bound and optimality constraints. TOP 20, 154–172 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, X., Khajavirad, A., Sahinidis, N.V., Tawarmalani, M.: Global optimization of nonconvex problems with multilinear intermediates. Math. Program. Comput. 7, 1–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically-constrained quadratic programs. Optim. Methods Softw. 24, 485–504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming, Theory and Algorithms, 2nd edn, Series in Discrete Mathematics and Optimization. Wiley Interscience, Hoboken (1993)

  7. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bierlaire, M., Toint, P.L.: Meuse: an origin-destination matrix estimator that exploits structure. Transp. Res. Part B Methodol. 29, 47–60 (1995)

    Article  Google Scholar 

  9. Bound-constrained programs. http://minlp.com/nlp-and-minlp-test-problems

  10. Brooke, A., Kendrick, D., Meeraus, A.: GAMS-A User’s Guide. The Scientific Press, Redwood City (1988)

    Google Scholar 

  11. Burer, S., Chen, J.: Relaxing the optimality conditions of box QP. Comput. Optim. Appl. 48, 653–673 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113, 259–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burer, S., Vandenbussche, D.: Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. Comput. Optim. Appl. 43, 181–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive programming. Math. Program. Comput. 4, 33–52 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dolan, E.D., Moré, J.J., Munson, T.S.: Benchmarking Optimization Software with COPS 3.0. Argonne National Laboratory Research Report (2004)

  17. Domes, F., Neumaier, A.: Constraint aggregation for rigorous global optimization. Math. Program. 155, 375–401 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization, vol. 33. Springer, Berlin (2013)

    MATH  Google Scholar 

  19. GLOBAL Library. http://www.gamsworld.org/global/globallib.htm

  20. Hansen, P., Jaumard, B., Ruiz, M., Xiong, J.: Global minimization of indefinite quadratic functions subject to box constraints. Nav. Res. Logist. (NRL) 40, 373–392 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  22. Hu, J., Mitchell, J.E., Pang, J.: An LPCC approach to nonconvex quadratic programs. Math. Program. 133, 243–277 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Karush, W.: Minima of Functions of Several Variables with Inequalities as Side Constraints. Master’s thesis, Department of Mathematics, University of Chicago, Chicago, IL (1939)

  24. Khajavirad, A., Sahinidis, N.V.: Convex envelopes of products of convex and component-wise concave functions. J. Glob. Optim. 52, 391–409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khajavirad, A., Sahinidis, N.V.: Convex envelopes generated from finitely many compact convex sets. Math. Program. 137, 371–408 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings ofthe Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492. University of California Press, Berkeley (1951)

    Google Scholar 

  27. Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24, 657–668 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lundell, A., Westerlund, T.: Convex underestimation strategies for signomial functions. Optim. Methods Softw. 24, 505–522 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. MacMOOP Library. https://wiki.mcs.anl.gov/leyffer/index.php/MacMOOP

  30. Markót, M.C., Schichl, H.: Bound constrained interval global optimization in the COCONUT environment. J. Glob. Optim. 60, 751–776 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math. Program. 103, 207–224 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59, 503–526 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nocedal, J.: Solving large nonlinear systems of equations arising in mechanics. In: Hennart, J.P. (ed.) Numerical Analysis, pp. 132–141. Springer, Berlin (1982)

    Chapter  Google Scholar 

  35. Princeton Library. http://www.gamsworld.org/performance/princetonlib/princetonlib.htm

  36. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19, 551–566 (1995)

    Article  Google Scholar 

  37. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–139 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sahinidis, N.V.: Global optimization and constraint satisfaction: the branch-and-reduce approach. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction. Lecture Notes in Computer Science, vol. 2861, pp. 1–16. Springer, Berlin (2003)

    Chapter  Google Scholar 

  39. Sahinidis, N.V., Tawarmalani, M.: Accelerating branch-and-bound through a modeling language construct for relaxation-specific constraints. J. Glob. Optim. 32, 259–280 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schichl, H., Neumaier, A.: Transposition theorems and qualification-free optimality conditions. SIAM J. Optim. 17, 1035–1055 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  42. Shectman, J.P., Sahinidis, N.V.: A finite algorithm for global minimization of separable concave programs. J. Glob. Optim. 12, 1–36 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. SymPy. http://sympy.org/en/index.html

  44. Tawarmalani, M., Richard, J.P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. 138, 531–577 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and convex envelopes of l.s.c. functions. Math. Program. 93, 247–263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Toint, P.L.: Some numerical results using a sparse matrix updating formula in unconstrained optimization. Math. Comput. 32, 839–851 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  49. Vandenbussche, D., Nemhauser, G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102, 559–575 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Vandenbussche, D., Nemhauser, G.L.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 102, 531–557 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wesolowsky, G.: The Weber problem: history and perspective. Locat. Sci. 1, 5–23 (1993)

    MATH  Google Scholar 

  52. Zhang, Z.: Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis. Comput. 15, 59–76 (1997)

    Article  Google Scholar 

  53. Zorn, K., Sahinidis, N.V.: Global optimization of general nonconvex problems with intermediate bilinear substructures. Optim. Methods Softw. 29, 442–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos V. Sahinidis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puranik, Y., Sahinidis, N.V. Bounds tightening based on optimality conditions for nonconvex box-constrained optimization. J Glob Optim 67, 59–77 (2017). https://doi.org/10.1007/s10898-016-0491-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0491-8

Keywords

Navigation