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Abstract The interval subset sum problem (ISSP) is a generalization of the well-
known subset sum problem. Given a set of intervals {[ai,1, ai,2]}

n
i=1 and a target

integer T, the ISSP is to find a set of integers, at most one from each interval,
such that their sum best approximates the target T but cannot exceed it. In
this paper, we first study the computational complexity of the ISSP. We show
that the ISSP is relatively easy to solve compared to the 0-1 Knapsack problem
(KP). We also identify several subclasses of the ISSP which are polynomial time
solvable (with high probability), albeit the problem is generally NP-hard. Then, we
propose a new fully polynomial time approximation scheme (FPTAS) for solving
the general ISSP problem. The time and space complexities of the proposed scheme
are O (nmax {1/ǫ, logn}) and O (n+ 1/ǫ) , respectively, where ǫ is the relative
approximation error. To the best of our knowledge, the proposed scheme has almost
the same time complexity but a significantly lower space complexity compared
to the best known scheme. Both the correctness and efficiency of the proposed
scheme are validated by numerical simulations. In particular, the proposed scheme
successfully solves ISSP instances with n = 100, 000 and ǫ = 0.1% within one
second.
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1 Introduction

The subset sum problem (SSP) is a fundamental problem in complexity theory
and cryptology. The optimization formulation of the SSP is given as follows:

max
x

n
∑

i=1

aixi

s.t.
n
∑

i=1

aixi ≤ T,

xi ∈ {0, 1}, i = 1, 2, . . . , n,

(1.1)

where {ai}
n
i=1 and T are some given positive integers.

The SSP is a famous NP-hard problem [12]. Therefore, all exact algorithms
for the SSP are not polynomial unless P=NP. The classical pseudo-polynomial1

algorithm based on the dynamic programming technique for solving the SSP has
O(nT ) time and space complexities. An algorithm with an improved complexity
O(n max

1≤i≤n
ai) was proposed by Pisinger [13]. Various fully polynomial time ap-

proximation schemes (FPTAS2) have also been proposed for the SSP. The first
FPTAS for the SSP was proposed by Ibarra and Kim [5] in 1975, which has a
time complexity of being O(n/ǫ2) and a space complexity of being O

(

n+ 1/ǫ3
)

.
To the best of our knowledge, the current best FPTAS for the SSP was proposed
by Kellerer and Pferschy [6]. The time complexity and space complexity of the
proposed FPTAS in [6] are O(min{n/ǫ,n+1/ǫ2 log(1/ǫ)}) and O(n+1/ǫ), respec-
tively. There are also some works focusing on characterizing the easy subclass of
the SSP. For instance, in [1, 4, 9], both theory and algorithms were proposed for
the SSP when n/ log2 max

1≤i≤n
ai is small.

The 0-1 Knapsack problem (KP) is a generalization of the SSP, which has the
optimization form as follows:

max
x

n
∑

i=1

vixi

s.t.
n
∑

i=1

aixi ≤ T,

xi ∈ {0, 1}, i = 1, 2, . . . , n,

(1.2)

where {vi}
n
i=1

, {ai}
n
i=1

, and T are some given positive integers. When vi = ai for
all i = 1, 2, . . . , n, the 0-1 KP reduces to the SSP.

1 An algorithm that solves a problem is called a pseudo-polynomial time algorithm if its
time complexity function is bounded above by a polynomial function related to the numeric
value of the input, but exponential in the length of the input.

2 An algorithm is called an FPTAS for a maximization problem if, for any given instance
of the problem and any relative error ǫ ∈ (0, 1), the algorithm returns a solution value vA

satisfying vA ≥ (1− ǫ) v∗, where v∗ is the optimal value of the corresponding instance, and
its time complexity function is polynomial both in the length of the given data of the problem
and in 1/ǫ.
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Various FPTASs have also been proposed for the 0-1 KP. For instance, Lawler
[10] proposed an FPTAS for the 0-1 KP with time and space complexities being
O(n log(1/ǫ)+1/ǫ4) and O(n+1/ǫ3), respectively. Later, Magazine and Oguz [11]
proposed another PFTAS for the 0-1 KP. The time and space complexities of the
proposed FPTAS in [11] are O(n2 logn/ǫ) and O(n/ǫ), respectively. A relatively
recent FPTAS, with the time complexity O(n logn + min{n, 1/ǫ log(1/ǫ)}1/ǫ2)
and the space complexity O(n+1/ǫ2), was proposed by Kellerer and Pferschy [7].
These FPTASs for the 0-1 KP are summarized in Table 1.1.

Another generalization of the SSP is the interval subset sum problem (ISSP),
which is the focus of this paper. Mathematically, the ISSP can be formulated as
follows:

max
x

n
∑

i=1

xi

s.t.
n
∑

i=1

xi ≤ T,

xi ∈ {0} ∪ [ai,1, ai,2], xi ∈ Z, i = 1, 2, . . . , n,

(1.3)

where ai,2 ≥ ai,1, i = 1, 2, . . . , n are positive integers and Z denotes the set of
integers. When ai,1 = ai,2 for all i = 1, 2, . . . , n, the ISSP reduces to the SSP.

The ISSP was first studied by Kothari et al. [8] with applications in auction
clearing for uniform-price multi-unit auctions. The ISSP has also found wide appli-
cations in unit commitment, power generation [2], and many others. For instance,
in dispatch of the power system, the electric power units need be operated to
match the total power load. Each power unit can be chosen to be off or on and
the output of each power unit can be adjusted in an interval when it is on. These
features can be represented and formulated as the constraints in problem (1.3).
Currently, the FPTAS proposed by Kothari et al. [8] is the only known algorithm
designed for solving the ISSP. Both the time complexity and the space complexity
of the FPTAS in [8] are O(n/ǫ).

In this paper, we consider the ISSP and propose a new efficient FPTAS for
solving it. Compared to the FPTAS for the ISSP in [8], the proposed FPTAS in
this paper has almost the same time complexity but a significantly lower space
complexity. Some of the existing FPTASs for the SSP, the ISSP and the 0-1 KP
are summarized in Table 1.1. The main contributions of this paper are listed as
follows.

- The ISSP is shown to be easier than the 0-1 KP in the sense that the ISSP
can be equivalently reformulated as a 0-1 KP and therefore any algorithms for
the 0-1 KP can be applied to solve the ISSP (see Theorem 2.1);

- Some polynomial time solvable subclasses of the ISSP are identified (see The-
orems 2.2 and 2.3). For instance, it is shown in Theorem 2.3 that the ISSP is
polynomial time solvable when ai,2 ≥ 2ai,1 for all i = 1, 2, . . . , n;

- By exploiting a new solution structure of the ISSP (see Lemma 3.4), a new FP-
TAS is proposed to solve the ISSP. The proposed FPTAS enjoys a significantly
lower space complexity compared to the existing one; See Theorems 3.10 and
3.11.

- Both the correctness and efficiency of the proposed FPTAS are shown by ap-
plying it to solve large scale ISSP instances. In particular, the proposed FPTAS
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is capable of solving ISSP instances with n = 100,000 and ǫ = 0.1% within
one second; see Section 5.

The rest of this paper is organized as follows. In Section 2, we study the com-
putational complexity of the ISSP. In Section 3, we propose a new FPTAS for
the ISSP and analyze the time and space complexities of the proposed scheme.
Simulation results are presented in Section 4 to validate the correctness and ef-
ficiency of the proposed FPTAS. The C++ simulation codes are available at
[http://bitbucket.org/diaorui/issp]. Finally, some concluding remarks are drawn
in Section 5.

To streamline the presentation, all proofs of Lemmas/Theorems/Corollaries in
this paper are relegated to Appendix A.

Table 1.1 Summary of FPTASs for SSP, ISSP, and 0-1 KP

Problem Time Complexity Space Complexity Reference

SSP O(min{n/ǫ, n+ 1/ǫ2 log(1/ǫ)}) O(n+ 1/ǫ) [6]

ISSP
O(n/ǫ) O(n/ǫ) [8]

O (nmax {1/ǫ, logn}) O(n+ 1/ǫ) this paper

0-1 KP

O(n log(1/ǫ) + 1/ǫ4) O(n+ 1/ǫ3) [10]

O(n2 logn/ǫ) O(n/ǫ) [11]

O(n logn+min{n, 1/ǫ log(1/ǫ)}1/ǫ2) O(n+ 1/ǫ2) [7]

2 Hardness Analysis

The ISSP is generally NP-hard, since it contains the SSP as a special case which
is NP-hard. In this section, we first show that the ISSP is easier to solve than
the 0-1 KP by proving that the ISSP can be equivalently reformulated as a 0-1
KP. Then, we identify some easy subclasses of the ISSP which can be solved in
polynomial time (to global optimality) and therefore clearly delineate the set of
computationally tractable problems within the general class of NP-hard ISSPs.

Without loss of generality, we make the following assumption on the inputs of
the ISSP throughout this paper.

Assumption 1 The inputs of ISSP (1.3) satisfies T > max
1≤i≤n

ai,2.

If Assumption 1 is not satisfied, there must exist an index i such that T ≤ ai,2.
In this case, we can either find the solution of the ISSP which is xi = T and xj = 0
for all j 6= i (if T ≥ ai,1), or remove the corresponding interval [ai,1, ai,2] without
losing any optimality (if T < ai,1).

http://bitbucket.org/diaorui/issp
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Next we give an equivalent reformulation of the ISSP. The variables {xi}
n
i=1

in the ISSP are often called semi-continuous3 [14]. Problems with semi-continuous
variables can be equivalently transformed into a mixed integer program by in-
troducing some auxiliary variables. Specifically, we can introduce binary variables
{yi}

n
i=1

and real variables {zi}
n
i=1

satisfying 0 ≤ zi ≤ (ai,2−ai,1)yi, i = 1, 2, . . . , n.
Then, for any i = 1, 2, . . . , n, it is simple to verify

xi ∈ {0} ∪ [ai,1, ai,2] ⇐⇒ xi = ai,1yi + zi, yi ∈ {0, 1} , 0 ≤ zi ≤ (ai,2 − ai,1)yi.

Therefore, ISSP (1.3) can be equivalently reformulated as

max
y,z

n
∑

i=1

(ai,1yi + zi)

s.t.

n
∑

i=1

(ai,1yi + zi) ≤ T,

yi ∈ {0, 1}, i = 1, 2, . . . , n,

0 ≤ zi ≤ (ai,2 − ai,1)yi, i = 1, 2, . . . , n.

(2.1)

We can further eliminate the variables {zi}
n
i=1

in the above problem (2.1) and
transform it into an equivalent problem with only binary variables.

Theorem 2.1 ISSP (2.1) is equivalent to

max
y

min

{

n
∑

i=1

ai,2yi, T

}

s.t.

n
∑

i=1

ai,1yi ≤ T,

yi ∈ {0, 1}, i = 1, 2, . . . , n.

(2.2)

Theorem 2.1 builds a bridge between the ISSP and the 0-1 KP. It shows that
any algorithms designed for the 0-1 KP

max
y

n
∑

i=1

ai,2yi

s.t.

n
∑

i=1

ai,1yi ≤ T,

yi ∈ {0, 1}, i = 1, 2, . . . , n

(2.3)

can be used to solve the corresponding ISSP and thus the ISSP is easier than
the 0-1 KP. In particular, if the optimal value of problem (2.3) is greater than

3 Strictly speaking, the variables {xi}
n
i=1 in the ISSP are not semi-continuous, since xi in

the ISSP can be either zero or integers in the interval [ai,1, ai,2] while the semi-continuous
variable xi can be zero or any continuous value in the corresponding interval. However, as will
become clear soon, the intrinsic difficulty of solving the ISSP lies in determining whether xi

should be zero or belong to [ai,1, ai,2]. Once this is done, it is simple to obtain an optimal
solution of the ISSP. Therefore, we actually can drop the constraint xi ∈ Z in the ISSP.
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or equal to T, we can obtain a solution of the ISSP from the solution of problem
(2.3) (see Case A of the proof of Theorem 2.1 in Appendix A); otherwise, the two
problems share the same solution. Table 1.1 summarizes some known FPTASs for
the SSP, the ISSP, and the 0-1 KP, which are consistent with the above analysis,
i.e., the difficulty of the ISSP lies between the SSP and the 0-1 KP. Theorem
2.1 also implies that any subclass of the ISSP is polynomial time solvable if the
corresponding 0-1 KP problem (2.3) is polynomial time solvable.

Now, we present some polynomial time solvable subclasses of the ISSP.

Theorem 2.2 Suppose the inputs of the ISSP satisfy

T ≥









max
1≤i≤n

{ai,1}

min
1≤i≤n

{ai,2 − ai,1}









max
1≤i≤n

{ai,1}. (2.4)

Then the ISSP is polynomial time solvable.

Theorem 2.3 Suppose

ai,2 ≥ c ai,1, i = 1, 2, . . . , n (2.5)

holds true for some c > 1 and T obeys the uniform distribution over the interval
(

max
1≤i≤n

ai,2,

n
∑

i=1

ai,2

]

. Then, the probability that the ISSP is polynomial time solv-

able is at least min
{

1, 2(1− 1
c )
}

. Moreover, if (2.5) holds true with c ≥ 2, then

ISSP (1.3) is polynomial time solvable.

Theorems 2.2 and 2.3 identify two subclasses of the ISSP which are polynomial
time solvable. They essentially indicate that the ISSP is polynomial time solvable
if the length of the intervals are sufficiently large. In particular, Theorem 2.2 shows
that the ISSP is polynomial time solvable if ai,2 − ai,1 is sufficiently large for all
i and Theorem 2.3 shows that the ISSP is polynomial time solvable if ai,2/ai,1
is sufficiently large for all i. These results are consistent with our intuition, since
there is more freedom to pick an element in a large interval.

3 A New FPTAS for the ISSP

In this section, we propose a new FPTAS for the ISSP and analyze its time and
space complexities. More specifically, we first give a new solution structure of the
ISSP in Section 3.1. By the use of this new solution property, we propose a new
FPTAS for the ISSP. Since the proposed FPTAS is rather lengthy and complicated,
we first give a high level preview of it in Section 3.2 and then provide a technical
description of it in Section 3.3. Finally, we analyze the time and space complexities
of the proposed FPTAS in Section 3.4.
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3.1 A New Solution Structure

To present the new structure, we first review some existing results of the solution
of the ISSP in [8].

Definition 3.1 ( [8]) For any feasible solution {xi}
n
i=1 of ISSP (1.3), if xi = ai,1,

then [ai,1, ai,2] is called the left anchored interval; if xi = ai,2, then [ai,1, ai,2] is
called the right anchored interval; if xi ∈ (ai,1, ai,2), then [ai,1, ai,2] is called the
midrange interval.

Lemma 3.2 ( [8]) The ISSP has an optimal solution with at most one midrange
interval.

Lemma 3.3 ( [8]) The ISSP has an optimal solution with the following property:
if the optimal solution has one midrange interval, then all left anchored intervals
precede the midrange interval and all right anchored intervals follow the midrange
interval.

Now, we present the new solution structure of the ISSP.

Lemma 3.4 Suppose the inputs of the ISSP satisfy

a1,2 − a1,1 ≤ a2,2 − a2,1 ≤ · · · ≤ an,2 − an,1.

Then the ISSP has an optimal solution with the following property: if xj is the
midrange element in the solution, then neither the left anchored intervals nor the
right anchored intervals follow [aj,1, aj,2].

By exploiting the special structure of the solution of the ISSP in Lemma 3.3,
an FPTAS was proposed by Kothari et al. in [8]. The proposed FPTAS in this
paper is based on the new solution structure of the ISSP in Lemma 3.4. The time
and space complexities of the two FPTASs can be found in Table 1.1.

3.2 High Level Preview of the Proposed FPTAS

In this subsection, we give a high level preview of the proposed FPTAS. Before
doing that, we first present a pseudo-polynomial time dynamic programming al-
gorithm (Algorithm 3.2) for solving the ISSP. Algorithm 3.2 exploits the special
solution structure of the ISSP in Lemma 3.4 and its basic idea is to enumerate the
possible midrange interval. More specifically, in Algorithm 3.2, the set ∆∗

i in line
12 contains all values







∑

j∈Ji

xj |
∑

j∈Ji

xj ≤ T, xj ∈ {aj,1, aj,2} , Ji ⊂ {1, 2, . . . , i}







and the only possible midrange interval is [am,1, am,2] (see line 7), where m is the
smallest one achieving the maximum value among

{

max{δ ∈ ∆∗
i−1 | δ ≤ T − ai,1}+ ai,2

}n

i=1
.
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In particular, if

max{δ ∈ ∆∗
m−1 | δ ≤ T − am,1}+ am,2 ≥ T,

then the target T is achievable. In this case, there is no need to compute {∆∗
i }

n
i=m

(see line 10). Once the only possible midrange interval [am,1, am,2] is found, the
optimal solution {x∗

i }
n
i=1 of the ISSP can be obtained as follows: the optimal

solution {x∗
i }

m−1
i=1

, which contributes to generate δ∗ in line 14, can be found by a
simple backtracking procedure (see line 15); the optimal solution x∗

m is set to be
min{am,2, T − δ∗} (see line 16); and the optimal solution {x∗

i }
n
i=m+1

are set to be
zero (see line 17). Therefore, Algorithm 3.2 returns an optimal solution satisfying
the property in Lemma 3.4. An illustration how Algorithm 3.2 works is given in
Appendix B. Although Algorithm 3.2 can solve the ISSP to global optimality, both
of its time complexity (of computing all values in {∆∗

i }
n
i=1

) and space complexity
(of storing them) are O(nT ).

Algorithm 3.2: A Pseudo-Polynomial Time Algorithm for the

ISSP

Input: a set of intervals Λ = {[ai,1, ai,2]}
n
i=1 and a target value T

Output: the optimal solution
{

x∗
i

}n

i=1
and the optimal value T ∗

1: sort the intervals such that ai,2 − ai,1 ≤ ai+1,2 − ai+1,1, i = 1, 2, . . . , n− 1
2: T ∗ ← 0, ∆∗

0 ← ∅ (here ∅ is the empty set)
3: for i = 1, 2, . . . , n do

4: δ∗ ← max{δ ∈ ∆∗
i−1 | δ ≤ T − ai,1} (here we define max ∅ = 0)

5: if min{δ∗ + ai,2, T} > T ∗ then

6: T ∗ ← min{δ∗ + ai,2, T}
7: m← i
8: end if

9: if T ∗ = T then

10: go to line 14
11: end if

12: ∆∗
i ←

(

{δ + ai,1, δ + ai,2 | δ ∈ ∆∗
i−1} ∪ {ai,1, ai,2} ∪∆∗

i−1

)

∩ (0, T ]

13: end for

14: δ∗ ← max{δ ∈ ∆∗
m−1 | δ ≤ T − am,1}

15: backtrack to find a subset of {ai,1, ai,2}
m−1
i=1

which contributes to generate δ∗, and then

construct the solution
{

x∗
i

}m−1

i=1

16: x∗
m ← min{am,2, T − δ∗}

17: x∗
i ← 0, i = m+ 1, . . . , n

18: return T ∗ and
{

x∗
i

}n

i=1

Next, we give a high level preview of the proposed FPTAS (Algorithm 3.3),
which can be obtained by doing some nontrivial modifications to the above Algo-
rithm 3.2. We remark that the proposed FPTAS for the ISSP can be used to solve
the SSP.

One main modification made to Algorithm 3.2 is to partition the interval (0, T ]
into finitely many subintervals (depending on the given relative error ǫ) and to store
only the smallest and largest values lying in the subintervals at each iteration.More
specifically, for any given relative error ǫ > 0, Algorithm 3.3 partitions the interval
(0, T ] into l = ⌈1/ǫ⌉ subintervals

I1 = (0, ǫT ], I2 = (ǫT, 2ǫT ], . . . , Il = ((l− 1)ǫT, T ]
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and only stores the smallest value δ−(k) and the largest value δ+(k) in each subin-
terval Ik, k = 1, 2, . . . , l; see lines 17 – 22. This is in sharp contrast to Algorithm
3.2, where all values in {∆∗

i }
n
i=1

(if the target T is not achievable) or all values

in {∆∗
i }

m−1
i=1 (if the target T is achievable and [am,1, am,2] is the only possible

midrange interval) are stored. Lemma 3.5 and Corollary 3.6 show that doing so
will not lose much optimality. If we are only interested in obtaining an approx-
imate objective value but not in getting the corresponding solution set, we can
run Algorithm 3.3 without line 27. Line 27 of Algorithm 3.3 aims at recovering a
corresponding solution set.

According to lines 14–23 of Algorithm 3.3, for each δ ∈
{

δ−(k), δ+(k)
}l

k=1
,

there exist δ′ and ai,j such that δ = δ′ + ai,j , where δ′ is either zero or a sum-
mation of end points of some subset of {[ak,1, ak,2]}

i−1

k=1
and ai,j is the last item

contributed to generate δ. Obviously, to recover the approximate solution, it is
useful to store such i and j. These indices are stored in d1(·) ∈ {1, 2, . . . , n} and
d2(·) ∈ {1, 2} in the procedure relaxed dynamic programming. Therefore, one
natural way of recovering the approximate solution is to simply backtrack the el-

ements in
{

δ−(k), δ+(k)
}l

k=1
with the help of d1(·) and d2(·). However, there is a

potential problem with such a simple backtracking procedure, since an element in
the subinterval Ik which generates an element in the interval Ij with j > k might
be updated after considering the item with the index d1(j). For instance, the above
δ′ which contributes to generate δ might be updated, and thus δ′ does no belong to
{

δ−(k), δ+(k)
}l

k=1
any more. Therefore, the simple backtracking procedure does

not work and it is necessary to make a modification to it in order to reconstruct
a correct approximate solution.

Algorithm 3.3 overcomes the previously mentioned backtracking problem by
performing the procedure divide and conquer. Once the procedure backtrack-
ing can not continue, the procedure divide and conquer splits the task of con-
structing an approximate solution with inputs Λ̃ and T̃ into two subsets Λ̃1 and
Λ̃2 of (almost) the same cardinality. The procedure relaxed dynamic program-
ming is then performed for both item sets independently with the target value
T̃ , which returns four reduced achievable arrays δ−1 (·), δ+1 (·), δ−2 (·), δ+2 (·) and the
associated interval and end point sets d1,1(·), d1,2(·), d2,1(·), d2,2(·). Lemma 3.7
guarantees that there exist u1 ∈ {0, δ−1 (·), δ+1 (·)} and u2 ∈ {0, δ−2 (·), δ+2 (·)} such
that T̃ − ǫT ≤ u1 + u2 ≤ T̃ .

To find the approximate solution corresponding to values u1 and u2 in the
above, the procedure backtracking is first performed for the item set Λ̃1 with
the target value T̃ − u2, which reconstructs a part of the solution contributed by
Λ̃1 with value yB1 . In addition, the procedure backtracking also records the items
that have been considered to reconstruct the approximate solution. These items
are collected in the set ΛE and will not be considered any more. Obviously, by
doing so, no item will appear twice in the approximate solution. Lemma 3.8 states
that this will not lose any optimality in terms of reconstructing an approximate
solution. If yB1 is not sufficiently close to T̃ − u2, a recursive execution of the
procedure divide and conquer for the item set Λ̃1 \ ΛE with the target value
T̃ −u2−yB1 finally reconstructs a solution with the value yB1 +yDC

1 , which is close
enough to u1. The same can be applied to the item set Λ̃2 with the target value
T̃ −yB1 −yDC

1 , which reconstructs a solution with the value yB2 +yDC
2 . Lemma 3.9
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shows that the returned approximate value yDC = yB1 + yDC
1 + yB2 + yDC

2 satisfies
T̃ − ǫT ≤ yDC ≤ T̃ .

Since each execution of the procedure divide and conquer returns at least
one item for the solution by backtracking, the depth of its recursion is bounded by
O(logn). Therefore, Algorithm 3.3 will terminate after (totally) recursively calling
the procedure divide and conquer n times. Theorems 3.10 and 3.11 show that
Algorithm 3.3 is indeed an FPTAS for the ISSP with time and space complexities
being O (nmax {1/ǫ, logn}) and O(n+ 1/ǫ), respectively.

3.3 Technical Description of the Proposed FPTAS

In this subsection, we describe the proposed FPTAS for the ISSP in a technical
fashion, where we use Ik to denote the k-th subinterval, use δ−(k) and δ+(k) to
denote the smallest and largest values in Ik, and use ΛE to denote the set of
intervals to be removed during the execution of the algorithm. Algorithm 3.3 be-
low is the proposed FPTAS for the ISSP, which calls the procedure divide and
conquer. The procedure divide and conquer further calls the procedures re-
laxed dynamic programming and backtracking to construct the approximate
solution.

In Algorithm 3.3, only the largest value δ+(k) and the smallest value δ−(k)
in each subinterval k = 1, 2, . . . , l := ⌈1/ǫ⌉ are stored; see lines 17 – 22. Lemma
3.5 and Corollary 3.6 show that this will not lose much optimality. It will become
clear from Theorem 3.10 and the discussions below it why the the last input of

the procedure divide and conquer is set to be min
{

δ̂ + ǫT, T − am,1

}

in line

27. By doing so, Algorithm 3.3 is able to return an (exactly) optimal solution of
the ISSP when δ̂ + ǫT ≤ T − am,1.

The procedure divide and conquer, with inputs (Λ̃, T̃ ), aims at finding an
approximate solution {x̂i}

n
i=1 and the approximate value yDC from the given

subset of intervals Λ̃ ⊆ {[ai,1, ai,2]}
n
i=1 such that T̃ − ǫT ≤ yDC ≤ T̃ . Lemma 3.9

establishes that the returned approximate value yDC = yB1 + yDC
1 + yB2 + yDC

2

indeed satisfies T̃ − ǫT ≤ yDC ≤ T̃ .

The procedure relaxed dynamic programming, with inputs (Λ̃, T̃ ), is a
subroutine used in the procedure divide and conquer to recover the approximate
solution. In the procedure relaxed dynamic programming, besides the largest
value δ+(k) and the smallest value δ−(k) in each subinterval k = 1, 2, . . . , l̃ :=
⌈

T̃ /(ǫT )
⌉

, the index and the end point of the last interval which generates δ ∈
{

δ+(k), δ−(k)
}l̃

k=1
are also stored in d1(·) ∈

{

1, 2, . . . , l̃
}

and d2(·) ∈ {1, 2} .

These information will be used in the procedure backtracking to recover the
approximate solution.

Taking the outputs of the procedure relaxed dynamic programming δ−(·),
δ+(·), d1(·), and d2(·) as inputs, the procedure backtracking backtracks the in-
tervals which contribute to generate the largest value in {δ+(j), δ−(j) | δ+(j) ≤
T̃ , δ−(j) ≤ T̃} (see line 1) with the help of d1(·) and d2(·) and reconstructs a par-
tial approximate solution. The procedure backtracking stops if for some u ∈ Ik,
the solution value conditions δ+(k) + y ≤ T̃ and δ−(k) + y ≥ T̃ − ǫT do not
hold true, or δ+(k) + y ≤ T̃ holds true but u is updated by some later interval
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Algorithm 3.3: A New FPTAS for the ISSP

Input: a set of intervals Λ = {[ai,1, ai,2]}
n
i=1

, the target value T , and the relative approxi-
mation error ǫ

Output: the approximate solution
{

xA
i

}n

i=1
and the approximate value TA

1: sort the intervals such that ai,2 − ai,1 ≤ ai+1,2 − ai+1,1, i = 1, 2, . . . , n− 1

2: T̂ ← 0, δ̂ ← 0
3: δ+(i)← 0, δ−(i)← 0, i = 1, 2, . . . , l :=

⌈

1
ǫ

⌉

4: for i = 1, 2, . . . , n do

5: δ̄ ← max
1≤k≤l

{δ−(k), δ+(k) | δ−(k), δ+(k) ≤ T − ai,1}

6: if min{δ̄ + ai,2, T} > T̂ then

7: T̂ ← min{δ̄ + ai,2, T}

8: δ̂ ← δ̄
9: m← i
10: end if

11: if T ∗ = T̂ then

12: go to line 25
13: end if

14: ∆̃←
(

{δ−(k) + ai,1, δ+(k) + ai,1, δ−(k) + ai,2, δ+(k) + ai,2}lk=1
∪ {ai,1, ai,2}

)

∩ (0, T ]

15: for each δ̃ ∈ ∆̃ do

16: find Ik that contains δ̃
17: if δ̃ < δ−(k) or δ−(k) = 0 then

18: δ−(k)← δ̃
19: end if

20: if δ̃ > δ+(k) or δ+(k) = 0 then

21: δ+(k)← δ̃
22: end if

23: end for

24: end for

25: ΛE ← {[ai,1, ai,2] | m ≤ i ≤ n}

26: xA
i ← 0, i = 1, . . . , m− 1

27: call the procedure divide and conquer
(

Λ \ ΛE ,min
{

δ̂ + ǫT, T − am,1

})

for the ap-

proximate solution
{

xA
i

}m−1

i=1
and the approximate value T̂A

28: xA
m ← min{am,2, T − T̂A}

29: xA
i ← 0, i = m + 1, . . . , n

30: TA ← T̂A + xA
m

31: return TA and
{

xA
i

}n

i=1

with index d1(δ
+(k)) ≥ i; or δ−(k) + y ≥ T̃ − ǫT holds true but u is updated by

some later interval with index d1(δ
−(k)) ≥ i. Actually, lines 9 – 18 are to speed

up the procedure backtracking. It will become clear from Lemma 3.8 and the
discussions below it that Algorithm 3.3 can still recover an approximate solution
of the ISSP if there are no lines 9 – 18 in the procedure backtracking.

An illustration how Algorithm 3.3 works is given in Appendix B.

3.4 Worst-Case Time and Space Complexity Analysis

For simplicity of our analysis, we introduce the following notation. Let ∆∗
Λ̃
denote

the full dynamic programming arrays computed from the intervals in Λ̃, and ∆Λ̃

the relaxed dynamic programming arrays computed from the intervals in Λ̃. In
particular, when Λ̃ = {1, 2, . . . , i} , we denote them by ∆∗

i and ∆i, respectively.
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Procedure divide and conquer (Λ̃, T̃ )

Input: a subset of intervals Λ̃ ⊆ {[ai,1, ai,2]}ni=1 and the target value T̃

Output: the updated approximate solution {x̂i}
n
i=1 and the approximate value yDC

1: split Λ̃ into Λ̃1 and Λ̃2, which contain

⌈

|Λ̃|
2

⌉

and

⌊

|Λ̃|
2

⌋

elements respectively

2: call relaxed dynamic programming (Λ̃1, T̃ ) to obtain δ−1 (·), δ+1 (·), d1,1(·), d1,2(·)

3: call relaxed dynamic programming (Λ̃2, T̃ ) to obtain δ−2 (·), δ+2 (·), d2,1(·), d2,2(·)

4: find u1 ∈ {0, δ
−
1 (·), δ+1 (·)} and u2 ∈ {0, δ

−
2 (·), δ+2 (·)} such that T̃ − ǫT ≤ u1 + u2 ≤ T̃

(Lemma 3.7 guarantees the existence of such u1 and u2)
5: yB1 ← 0, yDC

1 ← 0, yB2 ← 0, yDC
2 ← 0

6: if T̃ − u2 > ǫT then

7: call backtracking (δ−1 (·), δ+1 (·), d1,1(·), d1,2(·), Λ̃1, T̃ − u2) to obtain yB1 and ΛE

8: end if

9: if T̃ − u2 − yB1 > ǫT then

10: call divide and conquer (Λ̃1 \ ΛE , T̃ − u2 − yB1 ) to obtain yDC
1

11: end if

12: if T̃ − yB1 − yDC
1 > ǫT then

13: call relaxed dynamic programming (Λ̃2, T̃ − yB1 − yDC
1 ) to obtain δ−2 (·), δ+2 (·),

d2,1(·), d2,2(·)

14: call backtracking (δ−2 (·), δ+2 (·), d2,1(·), d2,2(·), Λ̃2, T̃ − yB1 − yDC
1 ) to obtain yB2 and

ΛE

15: end if

16: if T̃ − yB1 − yDC
1 − yB2 > ǫT then

17: call divide and conquer (Λ̃2 \ ΛE , T̃ − yB1 − yDC
1 − yB2 ) to obtain yDC

2

18: end if

19: yDC ← yB1 + yDC
1 + yB2 + yDC

2

20: return yDC

Procedure relaxed dynamic programming (Λ̃, T̃ )

Input: a subset of intervals Λ̃ ⊆ {[ai,1, ai,2]}ni=1 and the target value T̃
Output: dynamic programming arrays δ−(·), δ+(·), d1(·), d2(·)

1: δ+(i)← 0, δ−(i)← 0, i = 1, 2, . . . , l̃ :=
⌈

T̃ /(ǫT )
⌉

2: for each i ∈ {i | [ai,1, ai,2] ∈ Λ̃} do
3: for j = 1, 2 do

4: ∆̃←
(

{δ−(k) + ai,j , δ
+(k) + ai,j}

l̃
k=1
∪ {ai,j}

)

∩ (0, T̃ ]

5: for each δ̃ ∈ ∆̃ do

6: find Ik that contains δ̃
7: if δ̃ < δ−(k) or δ−(k) = 0 then

8: δ−(k)← δ̃, d1(δ−(k))← i, d2(δ−(k))← j
9: end if

10: if δ̃ > δ+(k) or δ+(k) = 0 then

11: δ+(k)← δ̃, d1(δ+(k))← i, d2(δ+(k))← j
12: end if

13: end for

14: end for

15: end for

16: return δ−(·), δ+(·), d1(·), d2(·)
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Procedure backtracking (δ−(·), δ+(·), d1(·), d2(·), Λ̃, T̃ )

Input: dynamic programming arrays δ−(·), δ+(·), d1(·), d2(·), a subset of intervals Λ̃ ⊆

{[ai,1, ai,2]}
n
i=1, and the target value T̃

Output: the updated approximate solution {x̂i}
n
i=1, the set of intervals ΛE , and the partial

approximate value y
1: u← max{δ+(j), δ−(j) | δ+(j) ≤ T̃ , δ−(j) ≤ T̃}
2: y ← 0
3: repeat

4: i← d1(u), j ← d2(u)
5: x̂i ← ai,j

6: ΛE ← ΛE ∪
{

[ak,1, ak,2] ∈ Λ̃ | k ≥ i
}

7: y ← y + ai,j
8: u← u− ai,j
9: if u > 0 then

10: find Ik that contains u
11: if δ+(k) + y ≤ T̃ and d1(δ+(k)) < i then
12: u← δ+(k)

13: else if δ−(k) + y ≥ T̃ − ǫT and d1(δ−(k)) < i then
14: u← δ−(k)
15: else

16: u← 0
17: end if

18: end if

19: until u = 0
20: return y and ΛE

Throughout this section, we shall also use the term “∆∗
Λ̃
associated with a target

T̃” to denote the set
{

δ | δ ∈ ∆∗
Λ̃
, δ ≤ T̃

}

. The same applies to ∆Λ̃, ∆
∗
i , and ∆i.

With the above notation, it is obvious to see that {δ ∈ ∆∗
n | δ ≤ T} is the

optimal value of the ISSP. According to lines 14 – 22 of Algorithm 3.3, we know
∆i ⊆ ∆∗

i for all i = 1, 2, . . . , n and ∆Λ̃ ⊆ ∆∗
Λ̃
for all Λ̃ ⊆ {1, 2, . . . , n} .

The next lemma (Lemma 3.5) plays a fundamental role in analyzing the pro-
posed FPTAS for the ISSP. It says that each element computed by the full dynamic
programming procedure can be well approximated (with a bounded error) by some
element computed by the relaxed dynamic programming procedure. More specif-
ically, Lemma 3.5 shows that, for any δ ∈ ∆∗

Λ̃
, there exists an δ ∈ ∆Λ̃ such that

0 ≤ δ − δ ≤ ǫT.

Lemma 3.5 For each δ ∈ ∆∗
i associated with the target T̃ , one of the following

two statements is true:

1. There exist δ, δ ∈ ∆i such that δ ≤ δ ≤ δ and δ − δ ≤ ǫT.
2. There exists δ ∈ ∆i such that T̃ − ǫT ≤ δ ≤ δ ≤ T̃ .

By setting δ to be the optimal value of the ISSP in Lemma 3.5, we have the
following corollary.

Corollary 3.6 Suppose δ∗ is the optimal value of the ISSP with inputs Λ̃ and T̃ .
Then, there exists δ ∈ ∆Λ̃ such that either δ = δ∗ or T̃ − ǫT ≤ δ ≤ δ∗ ≤ T̃ holds
true.

The following lemma (Lemma 3.7) shows the existence of u1 and u2 in line 4
of the procedure divide and conquer.
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Lemma 3.7 Suppose there exists δ ∈ ∆Λ̃ such that T̃ − ǫT ≤ δ ≤ T̃ when the

procedure divide and conquer starts. Then, after the splitting of Λ̃ into Λ̃1 and
Λ̃2, there must exist u1 ∈ {0} ∪ ∆Λ̃1

and u2 ∈ {0} ∪ ∆Λ̃2

such that T̃ − ǫT ≤

u1 + u2 ≤ T̃ .

Lemma 3.7 establishes the existence of u1 ∈ {0} ∪ ∆Λ̃1

and u2 ∈ {0} ∪ ∆Λ̃2

such that T̃ − ǫT ≤ u1 +u2 ≤ T̃ . In fact, such u1 and u2 might not be unique; see
the remark in Appendix B. In our implementation of the procedure divide and
conquer, we use the following strategy, with both time and space complexities
being O(1/ǫ), to find a pair of u1 and u2 satisfying T̃−ǫT ≤ u1+u2 ≤ T̃ . Without
loss of generality, suppose ∆Λ̃1

=
{

δ11 , δ
2
1 , . . . , δ

2l
1

}

and ∆Λ̃2

=
{

δ12 , δ
2
2 , . . . , δ

2l
2

}

,

where δi1 ≤ δi+1
1 and δi2 ≤ δi+1

2 for all i = 1, 2, . . . , 2l − 1 and l ≤ ⌈1/ǫ⌉ . For
convenience, we also define δ01 = δ02 = 0. Let i = 0 and j = 2l, u1 = δ01, and
u2 = δ2l2 , then repeatedly do the following until u1+u2 ∈ [T̃ − ǫT, T̃ ] : if u1+u2 <
T̃ − ǫT, let u1 = δi+1

1 and increment i by 1; if u1 + u2 > T̃ , let u2 = δj−1
2 and

decrement j by 1. It is simple to verify that the above strategy returns a pair of
desired u1 and u2 and its time and space complexities are O(1/ǫ).

The following lemma (Lemma 3.8) states that the procedure backtracking
can successfully backtrack a part of the approximate solution by using the relaxed
dynamic programming arrays. This is in sharp contrast to the pseudo-polynomial
time algorithm (Algorithm 3.2) for the ISSP, where the solution is backtracked by
using the full dynamic programming arrays. We remark that the space complex-
ity of storing the relaxed dynamic programming arrays is O(1/ǫ) and the space
complexity of storing the full dynamic programming arrays is O(nT ).

Lemma 3.8 Suppose there exists δ′ ∈ ∆∗
Λ̃

such that T̃ − ǫT ≤ δ′ ≤ T̃ when
the procedure backtracking starts and y is its output. Then, there exists δ ∈
{0} ∪∆∗

Λ̃\ΛE
such that T̃ − ǫT ≤ y + δ ≤ T̃ .

It is worthwhile remarking that lines 9 – 18 are for speeding up the pro-
cedure backtracking. More specifically, the procedure backtracking equipped
with lines 9 – 18 could potentially backtrack more than one step. In contrast, the
procedure backtracking, without lines 9 – 18, can only backtrack one step. Lines
9 – 18 will not affect the time and space complexities of the proposed FPTAS,
which will become more clear in the following Theorem 3.11.

Lemma 3.9 Suppose there exists δ ∈ ∆∗
Λ̃

such that T̃ − ǫT ≤ δ ≤ T̃ when the

procedure divide and conquer starts. Then, the output yDC of the procedure
divide and conquer satisfies T̃ − ǫT ≤ yDC ≤ T̃ .

We are now ready to present the main results of this section.

Theorem 3.10 Algorithm 3.3 returns an (1−ǫ)-approximate solution of the ISSP.

Note that in line 27 of Algorithm 3.3, the last input of the procedure divide

and conquer is set to be min
{

δ̂ + ǫT, T − am,1

}

. This trick makes Algorithm

3.3 return an (exactly) optimal solution of the ISSP when δ̂ + ǫT ≤ T − am,1;
see Case A of the proof of Theorem 3.10 in Appendix A. Actually, the result

presented in Theorem 3.10 still holds true if min
{

δ̂ + ǫT, T − am,1

}

is replaced
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with δ̂ = min
{

δ̂, T − am,1

}

, where the last equality is due to δ̂ ≤ T − am,1.

However, if so, Algorithm 3.3 would not enjoy the nice property of returning the
(exactly) optimal solution when δ̂ + ǫT ≤ T − am,1.

Theorem 3.11 The time complexity of Algorithm 3.3 is O (nmax {1/ǫ, logn}),
and the space complexity is O(n+ 1/ǫ).

We compare the proposed FPTAS and the one in [8] in terms of the time
and space complexities; see Table 1.1. The time complexity of the two FPTASs
are comparable to each other. This is because logn is generally smaller than 1/ǫ.
However, the space complexity of the proposed FPTAS is significantly lower than
the one in [8]. The significant improvement in the space complexity makes the
proposed FPTAS possible to solve large scale ISSP instances on a limited memory
machine, which is generally impossible for the FPTAS in [8].

4 Numerical Experiments

We implemented the proposed FPTAS for solving the ISSP with C++. Our numer-
ical experiments were done on a personal computer with Ubuntu 10.04.2 operating
system, Intel Core i7 CPU, 8 GB memory, and the source code is compiled with
GCC 4.4.3.

Since there is no available test set for the ISSP, we tested the proposed FPTAS
on the test set for the SSP, with some modifications.

Instance A: ai,1 = ai,2 = 2k+n+1 + 2k+i + 1 and T =

⌊

1
2

n
∑

i=1

ai,2

⌋

, where k =

⌊log2(n)⌋;

Instance B: ai,1 = ai,2 = n(n+ 1) + i and T =
⌊

n− 1
2

⌋

n(n+ 1) +
n(n− 1)

2 ;

Instance C: ai,2 is an integer generated by uniformly randomly sampling in [1, 1014],

ai,1 =
⌊

ai,2
c

⌋

, and T = 3× 1014, where c ≥ 1 is a given parameter;

Instance D: ai,2 is an integer generated by uniformly randomly sampling in [1, 1014],

ai,1 =
⌊

ai,2
ci

⌋

, and T = 3×1014, where ci is a real number generated by uniformly

randomly sampling in [1, C] with a given parameter C ≥ 1.
Instances A and B [3] are the SSPs. They are used to test whether the proposed

FPTAS (Algorithm 3.3) for the ISSP can correctly and efficiently solve the degen-
erating problems. The optimal solutions of these two instances are easy to obtain
but very hard to compute by the branch and bound method [3]. Instances C and
D are randomly generated. They are used to test the correctness and efficiency of
the proposed FPTAS for solving the ISSP.

Table 4.1 summarizes the numerical results of applying the proposed FPTAS to
solve Instance A. The parameter n in Instance A can not be very large; otherwise
ai,1, ai,2, and T will be extremely large. From Table 4.1, we can observe that
the returned relative errors of all tested SSP instances are strictly less than the
preselected parameter ǫ. In particular, when ǫ = 0.1%, the returned relative errors
of all tested SSP instances are zero, which implies that the proposed FPTAS
successively solves all tested SSP instances to global optimality. These numerical
results show the correctness of the proposed FPTAS for solving the SSP.
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Table 4.1 Numerical Results of Instance A

ǫ = 10% ǫ = 1% ǫ = 0.1%

n relative error time(s) relative error time(s) relative error time(s)

10 0.000% < 0.001 0.000% < 0.001 0.000% < 0.001

15 1.515% < 0.001 0.342% < 0.001 0.000% 0.001

20 0.000% < 0.001 0.000% < 0.001 0.000% 0.002

25 9.616% < 0.001 0.059% < 0.001 0.000% 0.003

30 9.690% < 0.001 0.000% < 0.001 0.000% 0.004

35 5.558% < 0.001 0.347% < 0.001 0.000% 0.005

Table 4.2 summarizes the numerical results of applying the proposed FPTAS to
solve Instance B. Again, the returned relative errors of all tested SSP instances are
not greater than the given tolerance ǫ, which means that the proposed FPTAS can
solve SSP correctly as claimed in Theorem 3.10. From Table 4.2, we can observe
that the computational time of the proposed FPTAS grows (roughly) linearly
with n when ǫ is fixed and also (roughly) linearly with 1/ǫ when n is fixed. This
matches with the time complexity O (nmax {1/ǫ, logn}) of the proposed FPTAS,
since 1/ǫ and logn are comparable to each other for the tested case ǫ = 10%
and 1/ǫ ≫ logn for the tested cases ǫ = 1% and ǫ = 0.1%. In particular, it
takes the proposed FPTAS less than 0.8 seconds to solve the SSP instance with
n = 10, 000 and ǫ = 0.1%. From the above numerical results, we can conclude that
the proposed FPTAS can efficiently solve the SSP.

Table 4.2 Numerical Results of Instance B

ǫ = 10% ǫ = 1% ǫ = 0.1%

n relative error time(s) relative error time(s) relative error time(s)

10 0.844% < 0.001 0.000% < 0.001 0.000% < 0.001

50 8.353% < 0.001 0.071% 0.001 0.000% 0.002

100 8.166% < 0.001 0.019% 0.002 0.000% 0.004

500 9.637% 0.002 0.902% 0.008 0.000% 0.015

1, 000 9.818% 0.001 0.851% 0.008 0.000% 0.049

5, 000 9.964% 0.007 0.970% 0.042 0.080% 0.400

10, 000 9.982% 0.014 0.985% 0.085 0.080% 0.795
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Table 4.3 summarizes the numerical results of applying the proposed PFTAS
to solve Instance C. The results in Table 4.3 are obtained by averaging over 100
randomly generated ISSP instances for each fixed n and c. The worst results among
these 100 tested instances (in terms of the relative error and the computational
time, respectively) are also reported in parentheses in Table 4.3. Since the optimal
value of Instance C is difficult to obtain, we set it to be the target T when calcu-
lating the relative errors. The relative errors computed in this way are obviously
larger than or equal to the “true” relative errors. It can be observed from Table 4.3
that the worst relative errors of all tested instances (and thus the average relative
errors) are not greater than the desired relative error ǫ, which shows the correct-
ness of the proposed FPTAS for solving the ISSP. Table 4.3 also demonstrates the
efficiency of the proposed FPTAS when applied to solve large scale instances of
Instance C. The proposed FPTAS is capable of returning an approximate solution
of the tested ISSP instances with n = 100, 000 and ǫ = 0.1% within 0.1 second in
average.

It is worthwhile remarking that the choice of the parameter c in Instance C
actually affects the efficiency of the proposed FPTAS. As we can observe from
Table 4.3, as the parameter c in Instance C decreases, the average computational
time of using the proposed FPTAS to solve the corresponding ISSP instances
slightly increases. This becomes obvious for the ISSP instances with n ≥ 50, 000.
The above observation is consistent with Theorem 2.3, which basically says that
the ISSP becomes more difficult to solve as the parameter c there decreases.

Table 4.4 summarizes the numerical results of applying the proposed FPTAS to
solve Instance D. Instance D is similar to Instance C but more general. Therefore,
it can better evaluate the performance of the proposed FPTAS. The same obser-
vations as on Instance C can be made on Instance D. Therefore, we can conclude
that the proposed FPTAS can solve the ISSP correctly and efficiently.

5 Concluding Remarks

In this paper, we considered the NP-hard ISSP, which is a generalization of the
well-known SSP. We first showed that the ISSP can be equivalently reformulated
as a 0-1 KP. This reformulation implies that the ISSP is easier to solve than
the 0-1 KP, since any algorithms designed for the 0-1 KP can be used to solve
the ISSP. Moreover, we identified several polynomial time solvable subclasses of
the ISSP and thus clearly delineated a set of computationally tractable problems
within the general class of NP-hard ISSPs. Then, by exploiting a new solution
structure of the ISSP, we proposed a new FPTAS for it. Compared to the currently
best known FPTAS, the proposed one has a comparable time complexity but a
significantly lower space complexity. Numerical results demonstrate the correctness
and efficiency of the proposed FPTAS.

The cardinality constrained ISSP [8] is an extension of the ISSP with an extra
cardinality constraint ‖x‖0 ≤ kmax, where ‖x‖0 denotes the number of nonzero
elements in x. The proposed FPTAS for the ISSP in this paper can be modified
to solve the cardinality constrained ISSP. The major modification is that kmax of
dynamic programming arrays ∆̃k, k = 1, 2, . . . , kmax need to be introduced in the
proposed FPTAS for the ISSP, where ∆̃k is the same as the dynamic programming
array in Algorithm 3.3 except that each element in ∆̃k is a summation of exactly
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Table 4.3 Numerical Results of Instance C

ǫ = 10% ǫ = 1% ǫ = 0.1%

n c relative error time(s) relative error time(s) relative error time(s)

1.5
7.158%

(9.218%)

0.000

(0.001)

0.076%

(0.209%)

0.001

(0.001)

0.000%

(0.000%)

0.006

(0.006)

1, 000 1.3
7.874%

(9.415%)

0.000

(0.001)

0.308%

(0.470%)

0.001

(0.001)

0.000%

(0.000%)

0.006

(0.008)

1.1
8.029%

(9.771%)

0.000

(0.001)

0.643%

(0.783%)

0.001

(0.001)

0.000%

(0.000%)

0.005

(0.007)

1.5
7.498%

(9.614%)

0.002

(0.003)

0.581%

(0.648%)

0.002

(0.002)

0.000%

(0.000%)

0.014

(0.018)

5, 000 1.3
8.187%

(9.733%)

0.002

(0.002)

0.696%

(0.750%)

0.002

(0.002)

0.000%

(0.000%)

0.014

(0.016)

1.1
8.033%

(9.893%)

0.002

(0.003)

0.848%

(0.901%)

0.002

(0.004)

0.000%

(0.000%)

0.014

(0.015)

1.5
7.373%

(9.732%)

0.004

(0.005)

0.665%

(0.746%)

0.003

(0.004)

0.000%

(0.000%)

0.020

(0.021)

10, 000 1.3
8.144%

(9.831%)

0.004

(0.005)

0.755%

(0.820%)

0.003

(0.004)

0.000%

(0.000%)

0.020

(0.022)

1.1
8.168%

(9.921%)

0.004

(0.005)

0.892%

(0.927%)

0.004

(0.005)

0.009%

(0.029%)

0.020

(0.021)

1.5
7.304%

(9.880%)

0.020

(0.027)

0.701%

(0.883%)

0.017

(0.024)

0.000%

(0.000%)

0.049

(0.053)

50, 000 1.3
7.954%

(9.917%)

0.021

(0.027)

0.764%

(0.918%)

0.018

(0.026)

0.008%

(0.020%)

0.049

(0.051)

1.1
7.667%

(9.965%)

0.023

(0.026)

0.900%

(0.967%)

0.019

(0.025)

0.053%

(0.067%)

0.053

(0.062)

1.5
7.570%

(9.911%)

0.037

(0.054)

0.749%

(0.916%)

0.033

(0.049)

0.010%

(0.019%)

0.073

(0.077)

100, 000 1.3
7.999%

(9.941%)

0.042

(0.050)

0.795%

(0.942%)

0.038

(0.050)

0.035%

(0.043%)

0.074

(0.086)

1.1
7.416%

(9.974%)

0.045

(0.050)

0.914%

(0.977%)

0.041

(0.055)

0.066%

(0.077%)

0.084

(0.101)
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Table 4.4 Numerical Results of Instance D

ǫ = 10% ǫ = 1% ǫ = 0.1%

n C relative error time(s) relative error time(s) relative error time(s)

1.5
5.353%

(9.881%)

0.000

(0.001)

0.319%

(0.945%)

0.000

(0.001)

0.003%

(0.049%)

0.001

(0.003)

1, 000 1.3
4.830%

(9.866%)

0.000

(0.000)

0.247%

(0.926%)

0.000

(0.001)

0.004%

(0.057%)

0.001

(0.003)

1.1
4.891%

(9.851%)

0.000

(0.001)

0.239%

(0.931%)

0.001

(0.002)

0.006%

(0.086%)

0.002

(0.005)

1.5
5.986%

(9.979%)

0.001

(0.001)

0.392%

(0.974%)

0.001

(0.003)

0.017%

(0.082%)

0.002

(0.005)

5, 000 1.3
4.576%

(9.805%)

0.001

(0.001)

0.362%

(0.991%)

0.001

(0.003)

0.018%

(0.087%)

0.002

(0.007)

1.1
5.232%

(9.949%)

0.001

(0.002)

0.314%

(0.986%)

0.002

(0.004)

0.017%

(0.091%)

0.004

(0.010)

1.5
6.375%

(9.943%)

0.001

(0.002)

0.324%

(0.985%)

0.002

(0.005)

0.023%

(0.091%)

0.003

(0.009)

10, 000 1.3
6.511%

(9.988%)

0.001

(0.002)

0.397%

(0.979%)

0.002

(0.004)

0.019%

(0.088%)

0.003

(0.011)

1.1
5.191%

(9.967%)

0.002

(0.004)

0.324%

(0.982%)

0.003

(0.007)

0.017%

(0.096%)

0.007

(0.014)

1.5
6.637%

(9.969%)

0.005

(0.007)

0.415%

(0.987%)

0.006

(0.010)

0.033%

(0.098%)

0.010

(0.021)

50, 000 1.3
6.148%

(9.982%)

0.005

(0.008)

0.372%

(0.991%)

0.007

(0.014)

0.032%

(0.099%)

0.012

(0.034)

1.1
5.695%

(9.991%)

0.006

(0.009)

0.376%

(0.995%)

0.009

(0.019)

0.026%

(0.095%)

0.021

(0.054)

1.5
6.477%

(9.994%)

0.010

(0.013)

0.389%

(0.990%)

0.012

(0.023)

0.030%

(0.097%)

0.018

(0.046)

100, 000 1.3
6.256%

(9.993%)

0.011

(0.014)

0.438%

(0.999%)

0.013

(0.022)

0.029%

(0.098%)

0.022

(0.055)

1.1
6.245%

(9.983%)

0.012

(0.017)

0.431%

(0.980%)

0.017

(0.029)

0.025%

(0.098%)

0.035

(0.096)
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k end points of the intervals {[ai,1, ai,2]}
n
i=1

. In this way, the above modified algo-
rithm is able to efficiently deal with the cardinality constraint. By using the same
argument as in Theorems 3.10 and 3.11, it can be shown that the above modified
algorithm is an FPTAS for the cardinality constrained ISSP and its time and space
complexities is O (nmax {kmax/ǫ, logn}) and O (n+ kmax/ǫ) , respectively.

Appendix A: Proofs of Lemmas/Theorems/Corollaries

Proof of Theorem 2.1

Proof We prove the theorem by dividing the proof into two cases, i.e., whether
there exists binary {ȳi}

n
i=1 such that

n
∑

i=1

ai,1ȳi ≤ T ≤

n
∑

i=1

ai,2ȳi. (5.1)

Case A: there exists binary {ȳi}
n
i=1

such that (5.1) holds true. Without loss of
generality, assume

ȳi = 1, i = 1, 2, . . . , Ī; ȳi = 0, i = Ī + 1, . . . , n. (5.2)

In this case, we claim that both the optimal value of problems (2.1) and (2.2) are
equal to T. Let us argue the above claim holds. First, it follows from (5.1) that
{ȳi}

n
i=1

is feasible to problem (2.2) and the optimal value of problem (2.2) is equal
to T. Now, we evaluate the objective function of problem (2.1) at point {ȳi}

n
i=1 :

g(z) :=

n
∑

i=1

(ai,1ȳi + zi) =

Ī
∑

i=1

ai,1 +

Ī
∑

i=1

zi,

where the last equality is due to the assumption (5.2). Since zi can take any value
in the interval [0, ai,2−ai,1] for each i = 1, 2, . . . , Ī , we know that g(z) can take any

value between
[

∑Ī
i=1 ai,1,

∑Ī
i=1 ai,2

]

. Combining this, (5.1), and the constraint
∑n

i=1
(ai,1yi + zi) ≤ T, we know that the optimal value of problem (2.1) is exactly

equal to T. As a matter of fact, an integer solution {z̄i}
n
i=1 to achieve the optimal

value T can be found as follows. Calculate

vi =

i
∑

l=1

al,2 +

Ī
∑

l=i+1

al,1, i = 0, 1, . . . , Ī − 1.

Then there must exist an index i∗ ∈ {0, 1, . . . , Ī − 1} such that vi
∗

< T ≤ vi
∗+1,

and {z̄i}
n
i=1 to achieve the optimal value T is given by

z̄i =































ai,2 − ai,1, i = 1, . . . , i∗,

T − vi
∗

, i = i∗ + 1,

0, i = i∗ + 2, . . . , n.

(5.3)
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We now show that there is a correspondence between the solutions of prob-
lems (2.1) and (2.2). On one hand, for any solution {y∗i , z

∗
i }

n
i=1 of problem (2.1)

achieving the optimal value T (from the above claim), we have
∑n

i=1
ai,1y

∗
i ≤

∑n
i=1(ai,1y

∗
i + z∗i ) = T , and

n
∑

i=1

ai,2y
∗
i ≥

n
∑

i=1

(ai,1y
∗
i + z∗i ) = T. This immediately

shows that {y∗i }
n
i=1

is a solution of problem (2.2). On the other hand, suppose
that {y∗i }

n
i=1 is a solution of problem (2.2) achieving the optimal value T (from

the above claim). Then, there must hold
n
∑

i=1

ai,1y
∗
i ≤ T ≤

n
∑

i=1

ai,2y
∗
i . By using the

same argument as in the proof of the above claim, we can show that there exists
integers {z∗i }

n
i=1 such that {y∗i , z

∗
i }

n
i=1 is a solution of problem (2.1).

Case B: there does not exist binary {ȳi}
n
i=1

such that (5.1) holds true. This
means that, for any binary {yi}

n
i=1 satisfying

∑n
i=1 ai,1yi ≤ T , we must have

∑n
i=1

ai,2yi < T. Therefore, for any binary {yi}
n
i=1

, we have

n
∑

i=1

ai,1yi ≤ T ⇐⇒

n
∑

i=1

ai,2yi < T. (5.4)

Hence, the optimal value of problem (2.2) is strictly less than T and it is equivalent
to

max
y

n
∑

i=1

ai,2yi

s.t.
n
∑

i=1

ai,1yi ≤ T,

yi ∈ {0, 1}, i = 1, 2, . . . , n.

(5.5)

Moreover, the relation (5.4) implies that the solution of problem (2.1) must satisfy
zi = yi (ai,2 − ai,1) for all i = 1, 2, . . . , n, since this maximizes the objective with-
out violating the constraints. Combining this and (5.4), we know that problem
(2.1) is equivalent to problem (5.5).

Combining Cases A and B, we can conclude that ISSP (2.1) is equivalent to
problem (2.2). This completes the proof. ⊓⊔

Proof of Theorem 2.2

Proof We prove the theorem by considering the following two cases.
Case A: T ≥

∑n
i=1

ai,1. In this case, it is simple to find the solution of ISSP
(2.1): if T ≤

∑n
i=1 ai,2, then the solution to ISSP (2.1) is yi = 1 for all i =

1, 2, . . . , n and zi is given by (5.3) with Ī there being replaced with n; otherwise
the solution to ISSP (2.1) is yi = 1 and zi = ai,2 − ai,1 for all i = 1, 2, . . . , n.

Case B: T <
∑n

i=1
ai,1. Then, we can find I ≥ 0 such that

I
∑

i=1

ai,1 ≤ T <

I+1
∑

i=1

ai,1 (5.6)

in polynomial time. If
I
∑

i=1

ai,2 > T, (5.7)
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then we can easily construct a solution such that the optimal value of ISSP (2.1) is
T in polynomial time as in Case A of the proof of Theorem 2.1 and thus ISSP (2.1)
is polynomial time solvable. Next, we show the truth of (5.7) under the assumption
(2.4).

From the right hand side of (5.6), we get

T <

I+1
∑

i=1

ai,1 ≤ (I + 1) max
1≤i≤n

{ai,1},

which further implies

I ≥









T

max
1≤i≤n

{ai,1}







 .

Combining this with (2.4) yields

I ≥









max
1≤i≤n

{ai,1}

min
1≤i≤n

{ai,2 − ai,1}









, (5.8)

which means

I min
1≤i≤n

{ai,2 − ai,1} ≥ max
1≤i≤n

{ai,1}. (5.9)

Now, we can use (5.6) and (5.9) to obtain (5.7). In particular, we have

I
∑

i=1

ai,2 =
I
∑

i=1

(ai,2 − ai,1) +
I
∑

i=1

ai,1

≥ I min
1≤i≤n

{ai,2 − ai,1}+

I
∑

i=1

ai,1

≥ max
1≤i≤n

{ai,1}+

I
∑

i=1

ai,1

> T,

where the second inequality is due to (5.9) and the last inequality is due to the
right hand side of (5.6). This completes the proof of Theorem 2.2. ⊓⊔

Proof of Theorem 2.3

Proof Without loss of generality, assume a1,2 = max
1≤i≤n

ai,2 in this proof. We have

the following result.

Lemma 5.1 Suppose (2.5) holds true for some c > 1 and T obeys the uniform

distribution over the interval

(

a1,2,
n
∑

i=1

ai,2

]

. Then, the probability that ISSP (1.3)
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is polynomial time solvable is at least

n
∑

j=2

min

{

j
∑

i=1

(

1−
1

c

)

ai,2, aj,2

}

n
∑

j=2

aj,2

.

Combining Lemma 5.1 and the following inequality

n
∑

j=2

min

{

j
∑

i=1

(

1−
1

c

)

ai,2, aj,2

}

≥
n
∑

j=2

min

{

2

(

1−
1

c

)

aj,2, aj,2

}

,

=min

{

2

(

1−
1

c

)

, 1

} n
∑

j=2

aj,2,

we immediately obtain Theorem 2.3.

Next, we show the truth of Lemma 5.1. The interval

(

a1,2,
n
∑

i=1

ai,2

]

can be

partitioned as follows:

(

a1,2,

n
∑

i=1

ai,2

]

=

n
⋃

j=2

(

j−1
∑

i=1

ai,2,

j
∑

i=1

ai,2

]

. (5.10)

As shown in Case A of Theorem 2.1, for any T ∈

[

j
∑

i=1

ai,1,
j
∑

i=1

ai,2

]

with j ∈

{1, 2, . . . , n}, ISSP (1.3) is polynomial time solvable. Therefore, the probability
that ISSP (1.3) is polynomial time solvable is greater than or equal to

∣

∣

∣

∣

∣

∣

n
⋃

j=2

([

j
∑

i=1

ai,1,

j
∑

i=1

ai,2

]

⋂

(

j−1
∑

i=1

ai,2,

j
∑

i=1

ai,2

])

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
⋃

j=2

(

j−1
∑

i=1

ai,2,

j
∑

i=1

ai,2

]

∣

∣

∣

∣

∣

∣

, (5.11)

where | · | denotes the length of the corresponding set. Moreover, it can be verified

that the denominator of (5.11) is equal to
n
∑

j=2

aj,2 and the numerator of (5.11)

is lower bounded by
n
∑

j=2

min

{

j
∑

i=1

(

1− 1
c

)

ai,2, aj,2

}

. This completes the proof of

Lemma 5.1. ⊓⊔

Proof of Lemma 3.4

Proof By Lemma 3.3, the ISSP has an optimal solution with at most one midrange
element and all left anchored intervals precede the midrange interval and all right
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anchored intervals follow the midrange interval. Without loss of generality, sup-
pose {x∗

i }
n
i=1 is such an optimal solution with [aj,1, aj,2] being the only midrange

interval (i.e., x∗
j ∈ (aj,1, aj,2)) and [ak,1, ak,2] with k > j being the last right an-

chored interval (i.e., x∗
k = ak,2). Next, we construct an optimal solution {x̃∗

i }
n
i=1

as follows:

x̃∗
i =































x∗
i , if i 6= j or k,

ak,2 − aj,2 + x∗
j , if i = k,

aj,2, if i = j.

Since aj,2 − aj,1 ≤ ak,2 − ak,1 and x∗
j ∈ (aj,1, aj,2), it follows that

ak,1 = ak,2 − (ak,2 − ak,1) ≤ ak,2 − (aj,2 − aj,1) < ak,2 − (aj,2 − x∗
j ) < ak,2.

Therefore, {x̃∗
i }

n
i=1 constructed in the above is feasible and optimal to the ISSP.

Moreover, the solution {x̃∗
i }

n
i=1 contains only one midrange element x̃∗

k and there
are neither left nor right anchored intervals following this midrange interval. The
proof is completed. ⊓⊔

Proof of Lemma 3.5

Proof We prove the lemma by induction. Obviously, the lemma is true for i = 1.
Assume it is true for some i ≥ 1. Next, we show it is also true for i + 1. By the
assumption and the fact ∆∗

i ⊆ ∆∗
i+1, we only need to consider the elements δ in

the set

∆∗
i+1 \∆

∗
i =

{

δ + ai+1,1, δ + ai+1,2 | δ ∈ ∆∗
i } ∪ {ai+1,1, ai+1,2

}

. (5.12)

The lemma is trivially true if δ = ai+1,1 or δ = ai+1,2. It remains to show that
the lemma is true for δ = δ′ + v ≤ T̃ where δ′ ∈ ∆∗

i and v ∈ {ai+1,1, ai+1,2}.
According to the assumption, we divide the subsequent proof into two Cases A
and B.

Case A: there exist δ′, δ′ ∈ ∆i such that

δ′ ≤ δ′ ≤ δ′ and δ′ − δ′ ≤ ǫT. (5.13)

In this case, we further consider the following three subcases A1, A2, and A3.

A1: δ′ + v ∈ Ij and δ′ + v ∈ Ij for some j. Then, let δ and δ be the minimum
and maximum values of ∆i+1 in the subinterval Ij , respectively. It is simple
to check that δ ≤ δ′ + v ≤ δ ≤ δ′ + v ≤ δ and δ − δ ≤ ǫT.

A2: δ′ + v ∈ Ij and δ′ + v ∈ Ij+1 for some j. Let δj and δj (δj+1 and δj+1)
be the minimum and maximum values of ∆i+1 in the subinterval Ij (Ij+1),
respectively. Then, by (5.13) and the assumption in the subcase A2, there must
exist δj , δj , δj+1, δj+1 ∈ ∆i+1 such that δj ≤ δ′ + v ≤ δj ≤ δj+1 ≤ δ′ + v ≤

δj+1, δj − δj ≤ ǫT , δj+1 − δj ≤ (δ′ + v)− (δ′ + v) ≤ ǫT , and δj+1 − δj+1 ≤ ǫT.

If δ′ + v ∈ [δj , δj ], let δ = δj and δ = δj ; if δ
′ + v ∈ [δj , δj+1], let δ = δj and

δ = δj+1; and if δ′ + v ∈ [δj+1, δj+1], let δ = δj+1 and δ = δj+1. It is simple to

verify that δ and δ constructed in the above satisfy δ ≤ δ ≤ δ and δ − δ ≤ ǫT.
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A3: δ′ + v ∈ Ij for some j and δ′ + v > T̃ . Since T̃ − ǫT and T̃ are in different
subintervals, we assume T̃ − ǫT ∈ Ij and T̃ ∈ Ij+1 without loss of generality.
Then, we get either δ′ + v ∈ Ij or δ′ + v ∈ Ij+1. If δ′ + v ∈ Ij , let δ and
δ(≤ T̃ ) to be the minimum and maximum values of ∆i+1 in the subinterval
Ij , respectively, and we thus have δ ≤ δ ≤ δ and δ − δ ≤ ǫT. If δ′ + v ∈ Ij+1,
let δ be the minimum value of ∆i+1 in Ij+1. Since T̃ − ǫT ∈ Ij , it follows that
T̃ − ǫT ≤ δ ≤ δ ≤ T̃ .

Case B: there exists δ′ ∈ ∆i such that T̃ − ǫT ≤ δ′ ≤ δ′ ≤ T̃ . Without
loss of generality, assume T̃ − ǫT ∈ Ij and T̃ ∈ Ij+1 for some j. We can show
that the lemma is true for this case by using the same argument as in the above
subcase A3. More specifically, we can show that: if δ ∈ Ij , there exist δ, δ ∈ ∆i+1

such that δ ≤ δ ≤ δ and δ − δ ≤ ǫT ; and if δ ∈ Ij+1, there exists δ such that
T̃ − ǫT ≤ δ ≤ δ ≤ T̃ .

This completes the proof of Lemma 3.5. ⊓⊔

Proof of Corollary 3.6

Proof For δ∗ ∈ ∆∗
Λ̃
, by Lemma 3.5, we have one of the following two statements:

1. there exist δ, δ ∈ ∆Λ̃ such that δ ≤ δ∗ ≤ δ and δ − δ ≤ ǫT ;

2. there exists δ ∈ ∆Λ̃ such that T̃ − ǫT ≤ δ ≤ δ∗ ≤ T̃ .

If the first statement is true, let δ be δ there. Since δ∗ is the optimal value of the
ISSP, we must have δ = δ∗. If the second statement is true, let δ be δ there. Then,
we immediately obtain the desired result. ⊓⊔

Proof of Lemma 3.7

Proof Since δ ∈ ∆Λ̃ ⊆ ∆Λ̃∗ , it follows that there must exist δ1 ∈ {0} ∪ ∆∗
Λ̃1

and

δ2 ∈ {0} ∪∆∗
Λ̃2

such that δ1 + δ2 = δ. Invoking Lemma 3.5 again, we have one of
the following two statements:

1. there exists δ1 ∈ ∆Λ̃1

such that T̃ − ǫT ≤ δ1 ≤ δ1 ≤ T̃ or there exists δ2 ∈ ∆Λ̃2

such that T̃ − ǫT ≤ δ2 ≤ δ2 ≤ T̃ ;
2. there exist δ1 ∈ ∆Λ̃1

, δ1 ∈ ∆Λ̃1

, δ2 ∈ ∆Λ̃2

, δ2 ∈ ∆Λ̃2

such that δ1 ≤ δ1 ≤ δ1,

δ2 ≤ δ2 ≤ δ2, 0 ≤ δ1 − δ1 ≤ ǫT , and 0 ≤ δ2 − δ2 ≤ ǫT.

If the first statement is true, then let (u1, u2) = (δ1, 0) or (u1, u2) = (0, δ2).

Obviously, u1 and u2 defined in the above satisfy T̃−ǫT ≤ u1+u2 ≤ T̃ . It remains
to show the lemma if the second statement is true. We consider the following three
cases separately.

Case A: δ1 + δ2 ≥ T̃ − ǫT. In this case, let (u1, u2) = (δ1, δ2). Then, combining

the facts δ1 + δ2 = δ, δ1 ≤ δ1, δ2 ≤ δ2 and δ ≤ T̃ , we immediately obtain

T̃ − ǫT ≤ u1 + u2 = δ1 + δ2 ≤ δ1 + δ2 = δ ≤ T̃ .

Case B: δ1 + δ2 ≤ T̃ . In this case, let (u1, u2) = (δ1, δ2). We can use essentially
the same argument as in the above Case A to show T̃ − ǫT ≤ u1 + u2 ≤ T̃ .

Case C: δ1 + δ2 < T̃ − ǫT and δ1 + δ2 > T̃ . In this case, let (u1, u2) = (δ1, δ2).
Combining the conditions assumed in this case, δ1 − δ1 ≤ ǫT, and δ2 − δ2 ≤ ǫT,
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we immediately obtain u1 + u2 = δ1 + δ2 = (δ1 + δ2) − (δ2 − δ2) > T̃ − ǫT and

u1 + u2 = δ1 + δ2 = (δ1 + δ2) + (δ1 − δ1) < T̃ .
From the above analysis, we conclude that there exist u1 ∈ {0} ∪ ∆Λ̃1

and

u2 ∈ {0} ∪∆Λ̃2

such that T̃ − ǫT ≤ u1 + u2 ≤ T̃ . The proof is completed. ⊓⊔

Proof of Lemma 3.8

Proof By the assumption, the largest number in ∆∗
Λ̃
associated with the target T̃

must be in the interval [T̃ − ǫT, T̃ ]. Then, it follows from Corollary 3.6 that the
largest number in ∆Λ̃ associated with the target T̃ must also lie in the interval

[T̃ − ǫT, T̃ ]. Recall the procedure backtracking, we know the following facts:
when the procedure starts, the largest number in ∆Λ̃ associated with the target

T̃ (i.e., u = max{δ+(j), δ−(j) | δ+(j) ≤ T̃ , δ−(j) ≤ T̃}) is found in line 1; the
recent intervals which contribute to generate u are backtracked in lines 4 – 18;
and when the procedure terminates, y + u is in the interval [T̃ − ǫT, T̃ ]. Since u
is generated by the procedure relaxed dynamic programming, it follows that
u ∈ {0}∪∆Λ̃\ΛE . This further implies that there exists δ ∈ {0}∪∆∗

Λ̃\ΛE
such that

T̃ − ǫT ≤ y + δ ≤ T̃ . This completes the proof of Lemma 3.8. ⊓⊔

Proof of Lemma 3.9

Proof First, as argued in the proof of Lemma 3.8, we know that the largest number
in ∆Λ̃ associated with the target T̃ must also lie in the interval [T̃ − ǫT, T̃ ]. By

Lemma 3.7, we can split Λ̃ into Λ̃1 and Λ̃2 as in lines 2 and 3 of the procedure
divide and conquer, and find u1 ∈ {0} ∪ ∆Λ̃1

and u2 ∈ {0} ∪ ∆Λ̃2

such that

T̃ − ǫT ≤ u1 + u2 ≤ T̃ . Without loss of generality, assume both u1 and u2 are
positive. Otherwise, if u1 = 0 (u2 = 0), then we can remove the intervals in Λ̃1

(Λ̃2) and split Λ̃2 (Λ̃1) again. This implies that there exists positive u1 ∈ ∆∗
Λ̃1

satisfying u1 ∈ [T̃ −u2− ǫT, T̃ −u2]. Moreover, by Lemma 3.8, we know that there
exists δ ∈ {0} ∪ ∆∗

Λ̃1\ΛE
such that δ ∈ [T̃ − u2 − yB1 − ǫT, T̃ − u2 − yB1 ], where

yB1 ≥ 1 is the output of line 7 of the procedure divide and conquer. This in
turn shows that the assumption of Lemma 3.9 is satisfied for the procedure divide
and conquer in line 10. Since at least one interval is removed after each recursive
call, the recursive calls of the procedure divide and conquer will eventually end.
Consequently, we get yDC

1 ∈ [T̃ − u2 − yB1 − ǫT, T̃ − u2 − yB1 ], which is equivalent
to u2 ∈ [T̃ − yB1 − yDC

1 − ǫT, T̃ − yB1 − yDC
1 ]. Similar analysis applies to lines 13,

14, and 17 of the procedure divide and conquer. This completes the proof of
Lemma 3.9. ⊓⊔

Proof of Theorem 3.10

Proof By enumerating all intervals {[ai,1, ai,2]}
n
i=1

, Algorithm 3.3 can successfully

find the (possible) midrange interval [am,1, am,2] and the largest number δ̂ in
∆Λ\ΛE associated with the target T −am,1. Suppose that δ

∗ is the largest number
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in ∆∗
Λ\ΛE associated with the target T − am,1. Then, by Lemma 3.5, we have

either δ̂ = δ∗ or T − am,1 − ǫT ≤ δ̂ ≤ δ∗ ≤ T − am,1. We consider the following
four cases.

Case A: δ̂ + ǫT < T − am,1 and δ̂ = δ∗. In this case, we have δ̂ ≤ δ∗ ≤ δ̂ + ǫT.
Using Lemma 3.9, we immediately obtain δ̂ ≤ T̂A ≤ δ̂+ǫT, where T̂A is the output

the procedure divide and conquer
(

Λ \ ΛE , δ̂ + ǫT
)

in line 27 of Algorithm 3.3.

Since δ̂ = δ∗ is the largest number in ∆∗
Λ\ΛE associated with the target T − am,1,

it follows that T̂A = δ̂ = δ∗. Hence,

TA = T̂A +min
{

am,2, T − T̂A
}

= δ∗ +min
{

am,2, T − δ∗
}

is the optimal value of the ISSP.

Case B: δ̂+ ǫT < T − am,1 and T − am,1 − ǫT ≤ δ̂ ≤ δ∗ ≤ T − am,1. This case
will not happen, since the two conditions contradict with each other.

Case C: δ̂ + ǫT ≥ T − am,1 and δ̂ = δ∗. From these two conditions and the
fact that δ∗ is the largest number in ∆∗

Λ\ΛE associated with the target T − am,1,
we obtain δ∗ ∈ [T − am,1 − ǫT, T − am,1]. Then, by Lemma 3.9, we know that the
returned approximate value of T̂A satisfies T − am,1 ≥ T̂A ≥ T − am,1 − ǫT, and

TA = T̂A +min
{

am,2, T − T̂A
}

≥ T̂A + am,1 ≥ T − ǫT.

Case D: δ̂+ ǫT ≥ T − am,1 and T − am,1 − ǫT ≤ δ̂ ≤ δ∗ ≤ T − am,1. The same
argument as in the above Case C shows that T − am,1 ≥ T̂A ≥ T − am,1 − ǫT and
TA ≥ T − ǫT.

From the above analysis, we can conclude that Algorithm 3.3 either returns an
optimal solution, or an approximate solution with the objective value being great
than or equal to T − ǫT . The proof is completed. ⊓⊔

Proof of Theorem 3.11

Proof We analyze the time and space complexities of Algorithm 3.3 separately. We
first consider the time complexity of Algorithm 3.3. The time complexity of sorting
n intervals by length (line 1 of Algorithm 3.3) isO(n logn). The procedure relaxed
dynamic programming is called many times in Algorithm 3.3 and performing
the procedure relaxed dynamic programming is the dominated computational
cost in the recursive framework of the procedure divide and conquer. It is simple
to see that the time complexity of performing the procedure relaxed dynamic

programming with inputs (Λ̃, T̃ ) is O
(

ñl̃
)

, where ñ = |Λ̃| and l̃ =

⌈

T̃
ǫT

⌉

.

Now, we bound the times that the procedure divide and conquer is per-
formed. To do so, let us denote the root node of the recursive tree as level 0.
Then, there are at most 2l ≤ n nodes in the l-th level of the recursive tree. For
ease of presentation, we assume that there are 2l nodes in the l-th level of the
recursive tree and denote the targets of these 2l nodes by T̃l,1, T̃l,2, . . . , T̃l,2l and

item sets of these 2l nodes by Λ̃l,1, Λ̃l,2, . . . , Λ̃l,2l for all l = 1, 2, . . . , ⌈logn⌉. Then,

we must have
2l

∑

i=1

T̃l,i ≤ T for all l = 1, 2, . . . , ⌈logn⌉ and
∣

∣

∣
Λ̃l,i

∣

∣

∣
= O

(

n
2l

)

for all
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i = 1, 2, . . . , 2l and l = 1, 2, . . . , ⌈logn⌉. Therefore, the total time complexity of
calling the procedure divide and conquer in Algorithm 3.3 is

⌈logn⌉
∑

l=0

2l

∑

i=1

O

(⌈

T̃l,i

ǫT

⌉

|Λl,i|

)

≤ O(n/ǫ),

and the total time complexity of Algorithm 3.3 is O (nmax {1/ǫ, logn}) .
Next, we consider the space complexity of Algorithm 3.3. It takes O(n) space

complexity to store the interval set {[ai,1, ai,2]}
n
i=1

. The space complexity required
to store the relaxed dynamic programming arrays δ−1 (·), δ+1 (·), δ−2 (·), δ+2 (·), d1,1(·),
d1,2(·) d2,1(·), d2,2(·) is O(1/ǫ). Since the memory space can be reused in the
recursive calls of the procedure divide and conquer, we conclude that the total
space complexity of Algorithm 3.3 is O(n+ 1/ǫ). ⊓⊔

Appendix B: An Illustration of Algorithm 3.2 and Algorithm 3.3

To make Algorithm 3.2 and Algorithm 3.3 clear, an illustration of applying
them to solve the following ISSP instance is given:

T = 100, n = 4,

[a1,1, a1,2] = [10, 20], [a2,1, a2,2] = [10, 25],

[a3,1, a3,2] = [60, 85], [a4,1, a4,2] = [20, 50].

If Algorithm 3.2 is applied to solve the above instance: when i = 1, executing
lines 4–12 gives

δ∗ = 0, T ∗ = 20, m = 1, ∆∗
1 = {10, 20} ;

then i = 2 and executing lines 4–12 gives

δ∗ = 20, T ∗ = 45, m = 2, ∆∗
2 = {10, 20, 25, 30, 35, 45} ;

then i = 3 and executing lines 4–12 gives δ∗ = 35, T ∗ = 100, and m = 3.
Since T ∗ = T = 100 when i = 3, Algorithm 3.2 goes to line 14 directly without
computing

∆∗
3 = {10, 20, 25, 30, 35, 45, 60, 70, 80, 85, 90, 95} .

Then, executing lines 14–17 gives δ∗ = 35 and returns the optimal solution

x∗
1 = 10, x∗

2 = 25, x∗
3 = 65, x∗

4 = 0.

It can be seen that [a1,1, a1,2] is a left anchored interval, [a2,1, a2,2] is a right an-
chored interval, [a3,1, a3,2] is the only midrange interval, and there is no left/right
anchored intervals following the midrange interval. Therefore, the returned solu-
tion by Algorithm 3.2 satisfies the property in Lemma 3.4.

If Algorithm 3.3 with ǫ = 0.2 (and thus l = 5) is applied to solve the above
instance: when i = 1, executing lines 5–23 gives

δ̄ = 0, T̂ = 20, δ̂ = 0, m = 1, ∆̃ = {10, 20} , δ−(1) = 10, δ+(1) = 20,
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and

δ−(2) = δ+(2) = δ−(3) = δ+(3) = δ−(4) = δ+(4) = δ−(5) = δ+(5) = 0;

then i = 2 and executing lines 5–23 gives

δ̄ = 20, T̂ = 45, δ̂ = 20, m = 2, ∆̃ = {10, 20, 25, 30, 35, 45} , δ−(1) = 10, δ+(1) = 20,

and

δ−(2) = 25, δ+(2) = 35, δ−(3) = δ+(3) = 45, δ−(4) = δ+(4) = δ−(5) = δ+(5) = 0;

then i = 3 and executing lines 5–23 gives

δ̄ = 35, T̂ = 100, δ̂ = 35, m = 3.

Since T ∗ = T̂ = 100 when i = 3, Algorithm 3.3 goes to line 25 directly without
computing

∆̃ = {60, 70, 80, 85, 95} , δ−(1) = 10, δ+(1) = 20, δ−(2) = 25, δ+(2) = 35,

δ−(3) = 45, δ+(3) = 60, δ−(4) = 70, δ+(4) = 80, δ−(5) = 85, δ+(5) = 95.

Then, executing line 25 gives ΛE = {[60,85], [20,50]} and Algorithm 3.3 calls the

procedure divide and conquer
(

Λ \ ΛE , min
{

δ̂ + ǫT, T − am,1

})

, where

Λ \ ΛE = {[10,20], [10, 25]}

and
min

{

δ̂ + ǫT, T − am,1

}

= min {35 + 0.2 ∗ 100,100− 60} = 40.

With these inputs, line 1 of the procedure divide and conquer gives Λ̃1 =
{[10,20]} and Λ̃2 = {[10, 25]} ; line 2 of the procedure divide and conquer gives

δ−1 (1) = 10, δ+1 (1) = 20, δ−1 (2) = δ+1 (2) = 0,

d1,1(δ
−
1 (1)) = d1,2(δ

−
1 (1)) = d1,1(δ

+
1 (1)) = 1, d1,2(δ

+
1 (1)) = 2;

line 3 of the procedure divide and conquer gives

δ−2 (1) = δ+2 (1) = 10, δ−2 (2) = δ+2 (2) = 25,

d2,1(δ
−
2 (1)) = d2,1(δ

+
2 (1)) = 2, d2,2(δ

−
2 (1)) = d2,2(δ

+
2 (1)) = 1,

d2,1(δ
−
2 (2)) = d2,2(δ

−
2 (2)) = d2,1(δ

+
2 (2)) = d2,2(δ

+
2 (2)) = 2;

line 4 of the procedure divide and conquer finds (u1, u2) = (0, 25) satisfying
u1 ∈ {0, 10, 20} , u2 ∈ {0, 10, 25} , and 20 = T̃ − ǫT ≤ u1 + u2 ≤ T̃ = 40.
Since both Λ̃1 and Λ̃2 contain only one interval, the procedure backtracking
can successfully return the approximate solution. More specifically, the procedure
divide and conquer skips lines 7 and 10; executes line 14 and gives yB2 = 25
and ΛE = {[a2,1, a2,2]} ; and skips line 17. Then, line 27 of Algorithm 3.3 returns
xA
1 = 0, xA

2 = 25, and T̂A = 25; line 28 of Algorithm 3.3 returns xA
3 = 75;

line 29 of Algorithm 3.3 returns xA
4 = 0; and line 30 of Algorithm 3.3 returns

TA = 100. Again, the returned (1 − ǫ)-optimal solution (actually the optimal
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solution) by Algorithm 3.3 satisfies the property in Lemma 3.4, i.e, [a2,1, a2,2] is
a right anchored interval, [a3,1, a3,2] is the only midrange interval, and there is no
left/right anchored intervals following the midrange interval.

Two remarks on Algorithm 3.2 and Algorithm 3.3 are in order.
First, although Algorithm 3.3 finds an optimal solution for the above ISSP

instance, it cannot be guaranteed to do so for the general ISSP. The reason is that
Algorithm 3.3 partitions the interval (0, T ] into ⌈1/ǫ⌉ subintervals and stores only
the smallest and largest values lying in the subintervals at each iteration. This is
sharply different from Algorithm 3.2, where all values in ∆∗

i are stored. For the
above instance, when i = 2, we have

{

δ−(k), δ+(k)
}5

k=1
= {10, 20, 25, 35, 45} ⊂ ∆∗

2;

and when i = 3, we have

{

δ−(k), δ+(k)
}5

k=1
= {10, 20, 25, 35, 45, 60, 70, 80, 85, 95} ⊂ ∆∗

3.

Second, as mentioned below Lemma 3.7, the pair (u1, u2) satisfying the in-
equality T̃ − ǫT ≤ u1 +u2 ≤ T̃ is generally not unique and different choices of the
pair (u1, u2) might lead to different approximate solutions. For example, (u1, u2) in
the above instance can also be (10, 10), which results in the approximate solution

xA
1 = 10, xA

2 = 10, xA
3 = 80, xA

4 = 0;

or can also be (10,25), which results in the approximate solution

xA
1 = 10, xA

2 = 25, xA
3 = 65, xA

4 = 0;

or can also be (20,0), which results in the approximate solution

xA
1 = 20, xA

2 = 0, xA
3 = 80, xA

4 = 0.

Acknowledgements We thank Prof. Nelson Maculan and Prof. Sergiy Butenko for the useful
discussions on this paper.

References

1. Brickell, E.F.: Solving low density knapsacks. In: Advances in Cryptology, pp. 25–37.
Springer (1984)

2. Carrión, M., Arroyo, J.M.: A computationally efficient mixed-integer linear formulation
for the thermal unit commitment problem. IEEE Transactions on Power Systems 21(3),
1371–1378 (2006)
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