Skip to main content
Log in

Kriging surrogate model with coordinate transformation based on likelihood and gradient

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The Kriging surrogate model, which is frequently employed to apply evolutionary computation to real-world problems, with a coordinate transformation of the design space is proposed to improve the approximation accuracy of objective functions with correlated design variables. The coordinate transformation is conducted to extract significant trends in the objective function and identify the suitable coordinate system based on either one of two criteria: likelihood function or estimated gradients of the objective function to each design variable. Compared with the ordinary Kriging model, the proposed methods show higher accuracy in the approximation of various test functions. The proposed method based on likelihood shows higher accuracy than that based on gradients when the number of design variables is less than six. The latter method achieves higher accuracy than the ordinary Kriging model even for high-dimensional functions and is applied to an airfoil design problem with spline curves as an example with correlated design variables. This method achieves better performances not only in the approximation accuracy but also in the capability to explore the optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Progr. Aerosp. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  2. Namura, N., Obayashi, S., Jeong, S.: Efficient global optimization of vortex generators on a super critical infinite-wing using Kriging-based surrogate models. In: 52nd AIAA Aerospace Sciences Meeting, AIAA-2014-0904. National Harbor (2014)

  3. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Progr. Aerosp. Sci. 45, 50–79 (2009)

    Article  Google Scholar 

  4. Regis, R.G., Shoemaker, A.S.: Local function approximation in evolutionary algorithms for the optimization of costly functions. IEEE Trans. Evol. Comput. 8, 490–505 (2004)

    Article  Google Scholar 

  5. Broomhead, D.S., Lowe, D.: Multivariate functional interpolation and adaptive networks. Complex Syst. 2, 321–355 (1988)

    MATH  Google Scholar 

  6. Matheron, G.: Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963)

    Article  Google Scholar 

  7. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box function. J. Global Optim. 13, 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Joseph, V.R., Hung, Y., Sudjianto, A.: Blind kriging: a new method for developing metamodels. ASME J. Mech. Des. 130, 031102-1–031102-8 (2008)

    Article  Google Scholar 

  9. Namura, N., Shimoyama, K., Jeong, S., Obayashi, S.: Kriging/RBF-hybrid response surface methodology for highly nonlinear functions. J. Comput. Sci. Technol. 6, 81–96 (2012)

    Article  Google Scholar 

  10. Matheron, G.: The Intrinsic random functions and their applications. Adv. Appl. Probab. 5, 439–468 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mullur, A.A., Messac, A.: Extended radial basis functions: more flexible and effective metamodeling. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization. Conference, AIAA-2004–4573. Albany (2004)

  12. Xiong, Y., Chen, W., Apley, D., Ding, X.: A non-stationary covariance-based Kriging method for metamodeling in engineering design. Int. J. Numer. Methods Eng. 71, 733–756 (2007)

    Article  MATH  Google Scholar 

  13. Samareh, J.A.: Aerodynamic shape optimization based on free-form deformation. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA-2004-4630, Albany (2004)

  14. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and Elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  16. Jeong, S., Yamamoto, K., Obayashi, S.: Kriging-based probabilistic method for constrained multi-objective optimization problem. In: AIAA 1st Intelligent Systems Technical Conference, AIAA-2004-6437, Chicago (2004)

  17. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. In: Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department. (2005)

  18. Karaboga, D., Akay, B.: A comparative study of artificial Bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Constantine, P.G., Dow, E., Wang, Q.: Active subspace methods in theory and practice: applications to Kriging surfaces. SIAM J. Sci. Comput. 36, A1500–A1524 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lukaczyk, T., Palacios, F., Alonso, J.J.: Active Subspaces for Shape Optimization. In: 10th AIAA Multidisciplinary Design Optimization Conference, AIAA-2014-1171. National Harbor (2014)

  21. Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3, 175–184 (1960)

    Article  MathSciNet  Google Scholar 

  22. Liu, H., Xu, S., Ma, Y., Wang, X.: Global optimization of expensive black box functions using potential Lipschitz constants and response surfaces. J. Global Optim. 63, 229–251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, J., Chowdhury, S., Messac, A.: An adaptive hybrid surrogate mode. Struct. Multidiscip. Optim. 46, 223–238 (2012)

    Article  Google Scholar 

  24. Lyu, Z., Martins, J.R.R.A.: Aerodynamic design optimization studies of a blended-wing-body aircraft. J. Aircr. 51, 1604–1617 (2014)

    Article  Google Scholar 

  25. Palacios, F., Economon, T.D., Wendorff, A.D., Alonso, J.J.: Large-scale aircraft design using SU2. In: 53rd AIAA Aerospace Sciences Meeting, AIAA-2015-1946. Kissimmee (2015)

  26. Drela, M.: XFOIL: An analysis and design system for low Reynolds number airfoils. In: Low Reynolds Number Aerodynamics, Lecture Notes in Engineering, 54, pp. 1–12. Springer-Verlag, New York (1989)

Download references

Acknowledgements

This work was supported by JSPS KAKENHI 14J07397 through JSPS Research Fellowships for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Namura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namura, N., Shimoyama, K. & Obayashi, S. Kriging surrogate model with coordinate transformation based on likelihood and gradient. J Glob Optim 68, 827–849 (2017). https://doi.org/10.1007/s10898-017-0516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0516-y

Keywords

Navigation