
Virtuous smoothing for global optimization

Jon Lee · Daphne Skipper

October 14, 2018

Abstract In the context of global optimization and mixed-integer non-linear pro-
gramming, generalizing a technique of D’Ambrosio, Fampa, Lee and Vigerske for
handling the square-root function, we develop a virtuous smoothing method, using
cubics, aimed at functions having some limited non-smoothness. Our results per-
tain to root functions (wp with 0 < p < 1) and their increasing concave relatives.
We provide (i) a sufficient condition (which applies to functions more general than
root functions) for our smoothing to be increasing and concave, (ii) a proof that
when p = 1/q for integers q ≥ 2, our smoothing lower bounds the root function,
(iii) substantial progress (i.e., a proof for integers 2 ≤ q ≤ 10, 000) on the conjec-
ture that our smoothing is a sharper bound on the root function than the natural
and simpler “shifted root function”, and (iv) for all root functions, a quantification
of the superiority (in an average sense) of our smoothing versus the shifted root
function near 0.

Introduction

Important models for framing and attacking hard (often non-linear) combinatorial-
optimization problems are GO (global optimization) and MINLP (mixed-integer
non-linear programming). Virtually all GO and MINLP solvers (e.g., SCIP [1],
Baron [23], Couenne [4], Antigone [18]) apply some variant of spatial branch-and-
bound (see, [21], for example), and they rely on NLP (non-linear-programming)
solvers, both to solve continuous relaxations (to generate lower bounds for mini-
mization) and often to generate good feasible solutions (to generate upper bounds).
Sometimes models are organized to have a convex relaxation, and then either outer

Jon Lee
IOE Dept., Univ. of Michigan. Ann Arbor, Michigan, USA.
E-mail: jonxlee@umich.edu

Daphne Skipper
Dept. of Mathematics, U.S. Naval Academy. Annapolis, Maryland, USA.
E-mail: skipper@usna.edu

ar
X

iv
:1

60
5.

05
22

1v
2 

 [
m

at
h.

O
C

] 
 1

5 
Ja

n 
20

17



2 Jon Lee, Daphne Skipper

approximation, NLP-based branch-and-bound, or some hybrid of the two is em-
ployed (e.g., Bonmin [5]; also see [6]). In such a case, NLP solvers are also heavily
relied upon, and for the same uses as in the non-convex case.

Convergence of most NLP solvers (e.g. Ipopt [24]) requires that functions be
twice continuously differentiable. Yet many models naturally utilize functions with
some limited non-differentiability. One approach to handle limited non-differentia-
bility is smoothing.

Of course there is a vast literature on global optimization concerning con-
vexification (see [22]). Such research aims at developing tractable lower bounds
for non-convex formulations z := min{f0(x) : x ∈ F}. Even when the only
non-convexities are integrality of some variables, improving the trivial convexifi-
cation (relaxing integrality) is crucial to the success of algorithms such as outer-
approximation (see [5], for example). But lower bounding z is not the complete
story. For example, spatial branch-and-bound (for formulations that are non-
convex after relaxing integrality) and outer-approximation (for formulations that
are convex after relaxing integrality) both require solutions of the NLPs (convex
or not) obtained by relaxing integrality. They do this in an effort to find actual
(incumbent) feasible solutions and hence upper bounds on z. The success of this
step, requires close approximation of the MINLP and tractability of the NLPs.
Our results for smoothing are aimed at getting tractable NLPs in the presence of
functions with limited non-differentiability. For univariate concave functions, we
aim for concave under-estimation which has the effect of forcing the approximation
to be near the function that we approximate. Note that convexifying a univariate
concave function via secant under-estimation can do a rather poor job of close
approximation. This idea of using one version of a function for convexification
in the context of lower bounding z and another version of a function aimed at
coming closer to the MINLP was implemented for objective functions in Bonmin,
in the context of an application; see [7,8] (a study of optimal water-network re-
furbishment via MINLP). Additionally, it is possible to simply use our smoothing
methodology as a formulation pre-processor for a spatial branch-and-bound algo-
rithm. With such a use, the smoothing inherits the convexification structure of
the MINLP; that is, our approximation, because of its concavity, allows for secant
under-estimation and tangent over-estimation, and this has been implemented in
SCIP (see §5.2). Furthermore, in the context of smoothing as a pre-processing
step, [10,11] used the under-estimation property of our smoothing to get an a
priori upper-bound on how much the optimal value of their smoothed MINLP
could be below z. Finally, also employing smooth concave under-estimators, [20]
describes a global-optimization algorithm for univariate functions; so we can see
another use of such under estimators in global optimization.

Additionally in [7,8], an ad-hoc smoothing method is used to address non-
differentiability near 0 of the Hazen-Williams (empirical) formula for the pressure
drop of turbulent water flow in a pipe as a function of the flow. Choosing a small
positive δ and fitting an odd homogeneous quintic on [−δ, δ], so as to match the
function and its first and second derivatives at ±δ and the function value at 0,
the resulting piecewise function is smooth enough for NLP solvers. However on
(−δ, δ) the quintic is neither an upper bound nor a lower bound on the function
it approximates.

In [16] (a study of the TSP with “neighborhoods”),
√
w is smoothed (near 0)

by choosing again a small positive δ and then using a linear extrapolation of
√
w



Virtuous smoothing for global optimization 3

at w = δ to approximate
√
w on [0, δ). Shortcomings of this approach are that

the resulting piecewise function is: (i) not twice differentiable at w = δ, and (ii)
over-estimates

√
w on [0, δ). Regarding (ii), in many formulations (see [10,11], for

example), we need an under-estimate of the function we are approximating to get
a valid relaxation.

To address the identified shortcomings of the methodology of [16] for smooth-
ing square roots, motivated by developing tractable mixed-integer non-linear-
optimization models for the Euclidean Steiner Problem (see [14]), [10,11] developed
a virtuous method. On the interval [0, δ], they fit a homogeneous cubic, to match
the function value of the square root at the endpoints, and matching the first and
second derivatives at w = δ. They demonstrate that the resulting smooth function,
though piecewise defined, is increasing, strictly concave, under-estimates

√
w on

(0, δ), and is a stronger under-estimate of
√
w than the more elementary “shift”√

w + λ−
√
λ, for some λ > 0. To make a fair comparison, δ is chosen as a function

of λ so that the two approximating functions have the same derivative at 0. This
makes sense because, for each approximation, we would choose the value of the
smoothing parameter (δ or λ) as small as the numerics will tolerate — that is,
we would have an upper bound for the derivative of the approximation (at zero,
where it is greatest).

For the
√
· function, we have depicted all of these smoothings in Figure 1. From

top to bottom: The “linear extrapolation” follows the dot-dashed line (· -·- ·) below
δ = 0.1. The solid curve (—–) is the true

√
·. The “smooth under-estimation”,

which we advocate, follows the dotted curve (· · · · ··) below δ = 0.1. The “shift”,
chosen to have the same derivative as our preferred smoothing at 0, follows the
weaker under-estimate (on the entire non-negative domain) given by the dashed
curve (- - -).

0.02 0.04 0.06 0.08 0.10 0.12 0.14
w

0.1

0.2

0.3

0.4

Fig. 1: Behavior of all smoothings of the square root

Most of our results are for root functions (wp with 0 < p < 1) and their in-
creasing concave relatives. Smoothing roots (not just square roots) can play an
important role in working with `q norms (q > 1) and quasi-norms (0 < q < 1):
`q(x) := (

∑
j x

q
j)

1/q. Depending on q (less than 1, or greater than 1), each inner



4 Jon Lee, Daphne Skipper

power or the outer power is a root function. Of course the use of norms is quite
common. Additionally, in sparse optimization, `q quasi-norms are used to induce
sparsity; see, for example, [17] and the references therein. So, our work can be
used to apply global-optimization techniques in this important setting. Addition-
ally, root functions are natural for fitting nearly-smooth functions to data that
follows an increasing concave trend; for example, cost functions with economies
of scale, and the well-known Cobb-Douglas production function (and generaliza-
tions), relating production to labor and capital inputs, where the exponents of
the inputs are the output elasticities (see [12] and [3]). After such a data-analysis
step, fitted functions can be incorporated into optimization models, and our re-
sults would then be applicable; also see [9] for a modern data-driven integrated
function-fitting/optimization methodology. Additionally, roots occur in other sig-
nomial functions besides the Cobb-Douglas production function (see [13]). Finally,
besides root functions, there are other simple univariate building-block functions
that our scheme applies to; for example log(1+w) and ArcSinh(

√
w) (see Examples

6 and 7).

In §1, we provide a sufficient condition (which applies to functions more general
than root functions) for our smoothing to be increasing and concave. Moreover, we
give an interesting example to illustrate that when our condition is not satisfied,
the conclusion need not hold. In §2, we establish that when p = 1/q for integers
q ≥ 2, our smoothing lower bounds the root function. Having such control over
the root function is important in the context of global optimization — in fact, this
was a key motivation of [10,11]. In §3, we present substantial progress (i.e., a proof
for integers 2 ≤ q ≤ 10, 000) on the conjecture that our smoothing is a sharper
bound on the root function than the natural and simpler “shifted root function”.
In §4 we quantify the average relative performance of our smoothing and of the
shifted root function near 0. We demonstrate that our smoothing is much better
with respect to this performance measure. Finally, in §5, we make some concluding
remarks: describing alternatives, available software, some extended use, and our
ongoing work.

1 General smoothing via a homogenous cubic

1.1 Construction of our smoothing

We are given a function f defined on [0,+∞) having the following properties:
f(0) = 0, f is increasing and concave on [0,+∞), f ′(w) and f ′′(w) are defined on
all of (0,+∞), but f ′(0) is undefined. For example, the root function f(w) := wp,
with 0 < p < 1, has these properties. Our goal is to find a function g that mimics
f well, but is differentiable everywhere (in particular at 0). In addition, because
our context is global optimization, we want g to lower bound f on [0,+∞). In this
way, we can develop smooth relaxations of certain optimization problems involving
f .

The definition of our function g depends on a parameter δ > 0. Our function
g is simply f on [δ,+∞). This parameter δ allows us to control the derivative of g
at 0. Essentially, lowering δ increases the derivative of g at 0, and so in practice,
we choose δ as low as the numerics will tolerate.



Virtuous smoothing for global optimization 5

We extend g to [0, δ], as a homogeneous cubic, so that g(0) = f(0) = 0,
g(δ) = f(δ), g′(δ) = f ′(δ) and g′′(δ) = f ′′(δ). The homogeneity immediately gives
us g(0) = 0, and such a polynomial is the lowest-degree one that allows us to match
f , f ′ and f ′′ at δ. We choose the three coefficients of g(w) := Aw3 + Bw2 + Cw
so that the remaining three conditions are satisfied.

The constants A, B and C are solutions to the system:

(g(δ) =) δ3A+ δ2B + δC = f(δ)

(g′(δ) =) 3δ2A+ 2δB + C = f ′(δ)

(g′′(δ) =) 6δA+ 2B = f ′′(δ).

We find that

A =
f(δ)

δ3
− f ′(δ)

δ2
+

f ′′(δ)

2δ
,

B = − 3f(δ)

δ2
+

3f ′(δ)

δ
− f ′′(δ) ,

C =
3f(δ)

δ
− 2f ′(δ) +

δf ′′(δ)

2
.

By construction, we have the following result.

Proposition 1 The constructed function g has g(0) = 0, g(δ) = f(δ), g′(δ) =
f ′(δ) and g′′(δ) = f ′′(δ).

1.2 Increasing and concave

Mimicking f should mean that g is increasing and concave on all of [0,+∞). Next,
we give a sufficient condition for this. The condition is a bound on the amount of
negative curvature of f at δ.

Theorem 2 Let δ > 0 be given. On [δ,+∞), let f be increasing and differentiable,
with f ′ non-increasing (decreasing). Let f(0) = 0, and let f be twice differentiable
at δ. If

f ′′(δ) ≥ 2

δ

(
f ′(δ)− f(δ)

δ

)
, (Tδ)

the associated function g is increasing and concave (strictly concave) on [0,+∞).

Proof For w ∈ [0, δ], the third derivative of g is the constant

g′′′(w) =
6

δ3

(
f(δ)− δf ′(δ) +

δ2

2
f ′′(δ)

)
.

The first factor is clearly positive. The inequality requirement on f ′′(δ) in our
hypothesis makes the second factor non-negative. We conclude that the third
derivative of g is non-negative, implying that the second derivative of g is non-
decreasing to a non-positive (negative) value, g′′(δ) = f ′′(δ), on the interval [0, δ].
Consequently, g′(w) is non-increasing (decreasing) to g′(δ) = f ′(δ) > 0.

Note that the assumptions on f imply that for w ∈ [δ,+∞), g′(w) = f ′(w)
is non-increasing (decreasing) and g′(w) = f ′(w) > 0. Therefore, g is concave
(strictly concave) and increasing on [0,+∞). ut



6 Jon Lee, Daphne Skipper

Root functions, that is power functions of the form f(w) = wp with 0 < p < 1,
fit our general framework: f(0) = 0, f is increasing and concave on [0,+∞), f ′(w)
and f ′′(w) are defined on all of (0,+∞), but f ′(0) is undefined. Indeed, our work
was inspired by the construction for p = 1/2 in [10,11]. Next, we verify that
Theorem 2 applies to root functions.

Lemma 3 For f(w) = wp, 0 < p < 1, we have that f satisfies Tδ for all δ > 0.

Proof For f(w) = wp, the inequality Tδ is

p(p− 1)δp−2 ≥ 2

δ

(
pδp−1 − δp

δ

)
,

which simplifies to (p− 1)(p− 2) ≥ 0, and which is satisfied because p < 1 ut

So, by Theorem 2, we have the following result.

Corollary 4 For f(w) = wp, 0 < p < 1, the associated g is increasing and strictly
concave on [0,+∞).

The following very useful fact is easy to see.

Lemma 5 The set of f with domain [δ,+∞) satisfying any of

– f(0) = 0,
– f is increasing,
– f is differentiable,
– f ′ is non-increasing or decreasing,
– f is twice differentiable at δ,
– Tδ

is a (blunt) cone in function space.

As a consequence of Lemma 5 and Corollary 4, adding a root function to any
f that is differentiable at 0 and satisfies all of the properties listed in Lemma
5, we get such a function that is non-differentiable at 0 and has decreasing first
derivative.

Next, we give a couple of natural examples to demonstrate that Theorem 2
applies to other functions besides root functions.

Example 6 Let f(w) := log(1 + w), which is clearly concave and increasing on
[0,+∞), and has f(0) = 0. To verify that Tδ is satisfied for δ > 0, we consider the

expression f ′′(δ)− 2
δ

(
f ′(δ)− f(δ)

δ

)
, which simplifies to

2(1 + δ)2 log(1 + δ)− 3δ2 − 2δ

δ2(1 + δ)2
.

The denominator of this expression is positive so we focus on the numerator, which
we define to be k(δ). The second derivative of the numerator, k′′(δ) = 4 log(1 + δ),
is positive for δ > 0, implying that the k′(δ) = 4(1 + δ) log(1 + δ) − 6δ increases
from k′(0) = 0. Therefore, k(δ) likewise increases from k(0) = 0. We conclude that
Tδ is satisfied for δ > 0. Note that by Lemma 5, we can add

√
w to f to get an

example that is not differentiable at 0. ♦



Virtuous smoothing for global optimization 7

Example 7 Let f(w) := ArcSinh(
√
w) = log(

√
w+
√

1 + w) on [0,+∞). Clearly
f(0) = 0. We have f ′(w) = 1/(2

√
w
√
w + 1), which is non-negative on (0,+∞),

so f is increasing, but it is not differentiable at 0. Additionally, f ′′(x) = (−2x −
1)/(4x3/2(x+1)3/2), which is clearly negative on (0,+∞), so f is strictly concave.

To verify that Tδ is satisfied for δ > 0, we consider the expression f ′′(δ) −
2
δ

(
f ′(δ)− f(δ)

δ

)
, which simplifies to

8(δ + 1)3/2ArcSinh
(√

δ
)
−
√
δ(6δ + 5)

4δ2(δ + 1)3/2
.

The denominator of this expression is positive so we focus on the numerator, which
we define to be k(δ). We have that k(0) = 0, so we will be able to conclude that
k is non-negative if we can show that it is non-decreasing. Note that this k is
not concave, so we cannot follow the method of the previous example. Rather, we
calculate

k′(δ) =
3

2
√
δ
− 5
√
δ + 12

√
δ + 1 log

(√
δ +
√
δ + 1

)
.

We will seek to demonstrate k′(δ) ≥ 0 by showing k′(δ)−3/2
√
δ ≥ 0. The derivative

of k′(δ)− 3/2
√
δ is

7

2
√
δ

+
6 ArcSinh

(√
δ
)

√
δ + 1

,

which is clearly non-negative, and so Tδ is satisfied for δ > 0. ♦

It is natural to wonder whether Tδ is really needed in Theorem 2. Next, we
give an example, where all conditions of Theorem 2 hold, except for Tδ, and the
conclusion of Theorem 2 does not hold.

Example 8 For ε > 0, let

f(w) :=

{√
w − 1−

√
ε+ 1+ε

2
√
ε
, w ≥ 1 + ε;

1
2
√
ε
w, w ≤ 1 + ε.

This function f , solid in Figure 2, has f(0) = 0, is differentiable, increasing and
concave on [0,+∞) and is twice differentiable for w > 1.

Now, let δ = 1 + ε + φ, for φ > 0. For ε = 1/10 and φ = 1/100, f ′′(δ) −
2
δ

(
f ′(δ)− f(δ)

δ

)
≈ −6.7, so our condition Tδ is not satisfied. In fact, a few cal-

culations reveal that the associated cubic g, dotted in Figure 2, is convex and
decreasing for 0 < w < ε. The issue is that f has too much negative curvature at
δ to be concave on [0, δ] and have f(0) = 0. Note that by Lemma 5, we can add a
small positive multiple of

√
w to f to get an example that is strictly concave and

not differentiable at 0. ♦



8 Jon Lee, Daphne Skipper

0.2 0.4 0.6 0.8 1.0 1.2
w

0.5

1.0

1.5

2.0

Fig. 2: g is convex and decreasing near 0

2 Lower bound for roots

For root functions, applying our general construction, direct calculation gives us
the coefficients of g(w) := Aw3 +Bw2 + Cw :

A = δp−3(p2 − 3p+ 2)/2,

B = −δp−2(p2 − 4p+ 3),

C = δp−1(p2 − 5p+ 6)/2.

For use in global optimization, we want control over the relationship between
f(w) and g(w). We believe that g(w) ≤ f(w) on [0, δ] for all root functions f . For
now, we can only establish this for f(w) := wp, with p := 1/q for integer q ≥ 2.
The case of q = 2 was established in [10,11] via a much easier argument (see the
proof of Part 5 of Theorem 1 in the Appendix of [10]).

Theorem 9 For f(w) := wp, with p = 1/q for integer q ≥ 2, we have g(w) ≤ f(w)
for all w ∈ [0,+∞)

Proof Clearly we can confine our attention to [0, δ]. Our strategy is to express f−g
as the product of positive factors. It is convenient to make several substitutions
before we factor. Starting with

(f−g)(w) = wp− δ
p−3

2
(p2−3p+2)w3+δp−2(p2−4p+3)w2− δ

p−1

2
(p2−5p+6)w,

for 0 ≤ w ≤ δ, we introduce the change the variables t := wp, q := 1/p and L := δp

to arrive at

t− 1

2L3q−1

(
1

q2
− 3

q
+ 2

)
t3q+

1

L2q−1

(
1

q2
− 4

q
+ 3

)
t2q− 1

2Lq−1

(
1

q2
− 5

q
+ 6

)
tq,

for 0 ≤ t ≤ L.
We begin factoring by removing a positive monomial,

=
t

2q2L3q−1

(
2q2L3q−1 − (6q2 − 5q + 1)L2qtq−1



Virtuous smoothing for global optimization 9

+(6q2 − 8q + 2)Lqt2q−1 − (2q2 − 3q + 1)t3q−1

)
,

so we can restrict our focus to the expression on the right, which we further simplify
by making one last series of substitutions:

a = 2q2,

b = 6q2 − 5q + 1,

c = 6q2 − 8q + 2,

d = 2q2 − 3q + 1.

We claim this last expression,

aL3q−1 − bL2qtq−1 + cLqt2q−1 − dt3q−1, (Pq)

factors into Qq(L− t)3, where Qq is a polynomial in L and t. Because 0 ≤ t ≤ L,
(L − t)3 is positive. With the Lemmas 12 and 13 in the Appendix, we show that
Qq is positive for integer q ≥ 2, implying that g(w) ≤ f(w) for w ∈ [0, δ] as
desired. ut

3 Better bound

We return, temporarily, to our general setting, where we are given a function f
defined over the interval [0,+∞) having the following properties: f(0) = 0, f is
increasing and concave on [0,+∞), f ′(w) and f ′′(w) are defined on all of (0,+∞),
but f ′(0) is undefined.

A natural and simple lower bound on f is to choose λ > 0, and define the
shifted f as h(w) := f(w + λ)− f(λ). It is easy to see that

h(w) := f(w + λ)− f(λ) ≤ f(w),

because f is concave and non-negative at 0, which implies that f is subadditive
on [0,+∞).

On the interval [0, δ], we wish to compare this h (the shifted f) to our smoothing
g. But g is defined based on a choice of δ and h is defined based on a choice of λ, a
fair comparison is achieved by making these choices so that the derivative at 0 is
the same. In this way, both smoothings of f have the same numerical properties:
they both have the same maximum derivative (maximized at zero where f ′ blows
up).

At w = 0, the first derivative of g is

g′(0) = 3f(δ)/δ − 2f ′(δ) + δf ′′(δ)/2.

We have that

h′(0) = f ′(λ).

For each δ > 0, there is a λ > 0 so that g′(0) = h′(0). Now, suppose that f ′ is
decreasing on [0,+∞). Then (f ′)−1 exists, and

λ̂ := (f ′)−1 (3f(δ)/δ − 2f ′(δ) + δf ′′(δ)/2
)



10 Jon Lee, Daphne Skipper

is the value of λ for which g′(0) = h′(0).
So, in general, we want to check that for each δ > 0,

f(w + λ̂)− f(λ̂) ≤ g(w), (∗)

for all w ∈ (0, δ). To go further, we now confine our attention, once again, to root
functions.

Already, [10,11] established this for the square-root function, though their proof
has a certain weakness (see the proof of Proposition 3 in the Appendix of [10]),
relying on some numerics, which our proof does not suffer from. Our goal is to
establish this property for all root functions. This seems to be quite difficult, and
so we set our focus now on root functions of the form f(w) := wp, with p := 1/q
for integer q ≥ 2. We have a substantial partial result, which as a by product
provides an air-tight proof of the previous result of [10,11] for q = 2.

Theorem 10 For root functions of the form f(w) := wp, with p := 1/q, (∗) holds
for integers 2 ≤ q ≤ 10, 000.

Proof The function (g − h)(w), which we wish to prove is non-negative on the
interval [0, δ], is

δp−3

2
(p2− 3p+ 2)w3− δp−2(p2− 4p+ 3)w2 +

δp−1

2
(p2− 5p+ 6)w− (w+ λ̂)p + λ̂p,

where the shift constant λ̂ for which h′(0) = g′(0) is

λ̂ = (f ′)−1(g′(0)) = δ

(
p2 − 5p+ 6

2p

) 1
p−1

.

With a few substitutions, we simplify the function and express it in polynomial
form. For the first substitution, set q := 1/p, γ := δ1/q, and t := w

γq . We obtain a

function of t over [0, 1] that has γ as a factor:

(g − h)t(t) = γ
[
2q2−3q+1

2q2 t3 + −6q2+8q−2
2q2 t2 + 6q2−5q+1

2q2 t

−
((

2q
6q2−5q+1

) q
q−1

+ t

)1/q

+
(

2q
6q2−5q+1

) 1
q−1

]
.

Next, we set Q :=
(

2q
6q2−5q+1

) 1
q−1

and u := (t + Qq)1/q (so t → uq − Qq). The

resulting polynomial in u is

(g − h)u(u) = γ
2q2

[(
2q2 − 3q + 1

)
(uq −Qq)3 +

(
−6q2 + 8q − 2

)
(uq −Qq)2

+
(
6q2 − 5q + 1

)
(uq −Qq) + 2q2Q− 2q2u

]
,

for Q ≤ u ≤ (1 + Qq)1/q. Since γ > 0, our task is reduced to proving that the
second factor,

Ku(u) := d (uq −Qq)3 − c (uq −Qq)2 + b (uq −Qq)− a(u−Q),

where

a := 2q2,



Virtuous smoothing for global optimization 11

b := 6q2 − 5q + 1,

c := 6q2 − 8q + 2, and

d := 2q2 − 3q + 1,

is non-negative for Q ≤ u ≤ (1 +Qq)1/q.
It is obvious that Ku has a root at Q. In fact, Ku has a double root at Q,

which we can verify by showing that the first derivative of Ku,

K′u(u) = 3dq (uq −Qq)2 uq−1 − 2cq (uq −Qq)uq−1 + bquq−1 − a,

also has a root at Q. This is easily accomplished by noticing that

bquq−1 = bq

((
2q

6q2 − 5q + 1

) 1
q−1

)q−1

= 2q2 = a.

By construction of g and h,

(g − h)u((1 +Qq)1/q) = (g − h)(δ) = (f − h)(δ) > 0,

which means that Ku((1 + Qq)1/q) > 0. In order to prove that Ku(u) ≥ 0 for
u ∈ (Q, (1 + Qq)1/q), it suffices to show that there are no roots in the interval
(Q, (1+Qq)1/q). In fact, we prove that the only root in the interval (0, (1+Qq)1/q)
⊇ (Q, (1 +Qq)1/q) is the double root at Q.

Using a known technique (e.g., see [19]), we apply the Möbius transformation

Ku

(
(1 +Qq)1/q

v + 1

)

to express Ku, u ∈ (0, (1 + Qq)1/q)), as a rational function in v over the interval

(0,∞). Note that when v = 0, Ku
(

(1+Qq)1/q

v+1

)
= Ku

(
(1 +Qq)1/q

)
, and as v →

∞, Ku
(

(1+Qq)1/q

v+1

)
→ Ku(0).

Next, we calculate expressions for the coefficients of the polynomial

Kv(v) := (v + 1)3qKu

(
β

v + 1

)
,

where β := (1 +Qq)1/q, and the domain is (0,∞).
Expanding the binomials in uq and Qq and multiplying by (v + 1)3q, we have

Kv(v) = (aQ− bQq − cQ2q − dQ3q)(v + 1)3q − aβ(v + 1)3q−1

+ (3dβqQ2q + 2cβqQq + bβq)(v + 1)2q − (3dβ2qQq + cβ2q)(v + 1)q + dβ3q.

Expanding binomials and collecting like terms, we find that

Kv(v) = V +W +X + Y + Z

+

q∑
i=1

[(
q

q − i

)
W +

(
2q

2q − i

)
X +

(
3q − 1

3q − 1− i

)
Y +

(
3q

3q − i

)
Z

]
vi

+

2q∑
i=q+1

[(
2q

2q − i

)
X +

(
3q − 1

3q − 1− i

)
Y +

(
3q

3q − i

)
Z

]
vi



12 Jon Lee, Daphne Skipper

+

3q−1∑
i=2q+1

[(
3q − 1

3q − 1− i

)
Y +

(
3q

3q − 1

)
Z

]
vi + Zv3q,

where

V := dβ3q,

W := −3dβ2qQq − cβ2q,

X := 3dβqQ2q + 2cβqQq + bβq,

Y := −aβ, and

Z := −dQ3q − cQ2q − bQq + aQ.

Armed with these expressions for the coefficients of the polynomials Kv(v), we
verified (with Mathematica) that for integers 2 ≤ q ≤ 10, 000, there are exactly
two sign changes in each coefficient sequence. By Descartes’ Rule of Signs, we
conclude that there are at most two positive roots of Kv(v) (for these values of
q), and therefore at most two roots of Ku(u) in the interval (0, (1 +Qq)1/q) (the
double root at Q). ut

Our proof technique can work for any fixed integer q ≥ 2. In carrying out the
technique, there is some computational burden for which we employ Mathematica.
We only carried this out for integers 2 ≤ q ≤ 10, 000, but in principle we could go
further. It is important to point out that the calculations were done exactly and
only truncated to finite precision at the end.

The remaining challenge is to make a proof for all integers q ≥ 2. But the

coefficients of Ku
(

(1+Qq)1/q

v+1

)
are rather complicated for general q, so it is difficult

to analyze their signs in general.

4 Average performance for roots

On [δ,+∞), g coincides with f by definition (we are assuming that f ′(δ) and
f ′′(δ) are defined so that g is well defined), while h strictly under-estimates f for
increasing concave functions f for which f(δ) > 0. So it becomes interesting to
examine the performance of g and h near 0, that is on the interval [0, δ]. Here, we
focus on average relative performance:

1

δ

∫ δ

0

g(w)

f(w)
dw ,

1

δ

∫ δ

0

h(w)

f(w)
dw ,

where we are further assuming that f(0) = 0 and f is increasing. In what follows,
we compare these performance measures for root functions.

Theorem 11 For f(w) = wp, 0 < p < 1, and λ chosen as a function of δ > 0 so
that g′(0) = h′(0), we have that

1

δ

∫ δ

0

g(w)

f(w)
dw =

3

4− p ,



Virtuous smoothing for global optimization 13

notably independent of δ, and also

1

δ

∫ δ

0

h(w)

f(w)
dw

is independent of the choice of δ.

Proof We apply the change of variable w → δv to rewrite each expression without
δ. For the first integral, letting a := 1

2 (p2 − 3p + 2), b := p2 − 4p + 3, and c :=
1
2 (p2 − 5p+ 6), we have

1

δ

∫ δ

0

g(w)

f(w)
dw =

1

δ

∫ δ

0

δp−3aw3 − δp−2bw2 + δp−1cw

wp
dw

=

∫ 1

0

(
av3−p − bv2−p + cv1−p

)
dv.

=
a

4− p −
b

3− p +
c

2− p =
3

4− p .

Letting P :=
(
p2−5p+6

2p

) 1
p−1

in the second integral, the change of variable produces

1

δ

∫ δ

0

h(w)

f(w)
dw =

1

δ

∫ δ

0

(w + δP )p − (δP )p

wp
dw

=

∫ 1

0

(v + P )p − P p

vp
dv,

and again δ disappears from the expression. ut

We note that 3
4−p is increasing in p, and so its infimum on (0, 1) is 3

4 at
p = 0. Additionally, we note that there is no closed-form expression for the last
integration of the proof, though it can be expressed in terms of an evaluation of a
Gaussian/ordinary hypergeometric function F2 1 (see [2]). Specifically

(
p2 − 5p+ 6

2p

) p
p−1

(
−1 + F2 1(1− p , −p ; 2− p ; −1/p)

1− p

)
.

In the key special case of p = 1/2, we do get the closed-form expression

8

15

(
−1 +

3615 + 16
√

241 ArcSinh
(
15
4

)
120
√

241

)
≈ 0.646125

(where ArcSinh(x) = ln
(
x+
√
x2 + 1

)
), which is significantly less than 3

4−p

∣∣∣
p= 1

2

=

6
7 ≈ 0.857143.

In Figure 3 we have plotted the two performance measures, varying p on (0, 1);
Theorem 11 allows us to do this without separate curves for different δ. We can
readily see that g outperforms h bigly, with the performance gap being most
extreme as p→ 0, and decreasing in p on (0, 1).



14 Jon Lee, Daphne Skipper

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

1

1

δ
∫0
δ g

f
dw

1

δ
∫0
δ h

f
dw

Fig. 3: Average relative performance on [0, δ] as a function of p
(f(w) := wp, 0 < p < 1)

5 Alternatives, software, extended use, and ongoing work

5.1 Alternatives

We do not mean to imply that our smoothing ideas are the only viable or even
preferred way to handle all instances of the functions to which our ideas apply.
For example, there is the possibility to take a function f(w) and replace it with
a new variable y and the constraint f−1(y) = w. For example, f(w) := wp, with

0 < p < 1, can be replaced with y and the constraint w = y
1
p , which is now

smooth at w = 0. But there is the computational cost of including an additional
non-linear equation in a model. In fact, this could turn an unconstrained model
into a constrained model. For other functions, we may not have a nice expression
for the inverse readily available. Even when we do, there can be other issues to
consider. Taking again f(w) := wp, with 0 < p < 1, suppose that we have ψ :
Rm → R+ and φ : Rn → R. Now suppose that we have a model with the constraint
f(ψ(y)) ≥ φ(x). Of course y and x may be involved in other constraints as well.
Now, suppose further that the range of φ on the feasible region is (−∞,+∞). There
could then be a difficulty in trying to work with ψ(y) ≥ f−1(φ(x)), which we could
repair by instead working with ψ(y) ≥ f−1(φ+(x)), where φ+(x) := max{φ(x), 0}.
But this means working now with the piecewise-defined function φ+, which can
involve a lot of pieces (e.g., consider the univariate φ(x) := sin(x)).

In the end, we do not see our technique as a panacea, but rather as a viable
method with nice properties that modelers and solvers should have in their bags.

5.2 Software

In the context of the square-root smoothing of [10,11], a new and exciting ex-
perimental (“α”) feature was developed for SCIP Version 3.2 (see [15]) to handle
univariate piecewise functions that are user-certified (through AMPL suffixes) as
being globally convex or concave. At this writing, SCIP is the only global solver



Virtuous smoothing for global optimization 15

that can accommodate such functions. Such a feature is extremely useful for tak-
ing advantage of the results that we present here, because our smoothings (like
those of [10,11]) are piecewise-defined, and so the user must identify global con-
cavity to the solver. This is accomplished through the new SCIP operator type
SCIP_EXPR_USER. A bit of detail about this feature, from [15], is enlightening:

“Currently, the following callbacks can or have to be provided: computing
the value, gradient, and Hessian of a user-function, given values (num-
bers or intervals) for all arguments of the function; indicating convex-
ity/concavity based on bounds and convexity information of the arguments;
tighten bounds on the arguments of the function when bounds on the func-
tion itself are given; estimating the function from below or above by a linear
function in the arguments; copy and free the function data. Currently, this
feature is meant for low-dimensional (few arguments) functions that are
fast to evaluate and for which bound propagation and/or convexification
methods are available that provide a performance improvement over the
existing expression framework.”

5.3 Extended use

Our techniques have broader applicability than to functions that are purely con-
cave (or symmetrically, convex). In general, given a univariate piecewise-defined
function that is concave or convex on each piece, and possibly non-differentiable at
each breakpoint, we can seek to find a smoothing that closely mimics and approx-
imates the function. It is not at all clear how to accommodate such functions in
global-optimization software like SCIP; because such functions are not, in general,
globally concave or convex, they cannot be correctly handled with the new SCIP

feature (see §5.2). Still, such functions and their smoothings can be useful within
the common paradigm of seeking (good) local optima for non-linear-optimization
formulations.

For example, for 0 < p < 1, consider the function

f(w) :=

{
wp, w ≥ 0;
−(−w)p, w ≤ 0.

This function is continuous, increasing, convex on (−∞, 0], concave on [0,+∞)
and of course not differentiable at 0. We would like to replace it with a function
that has all of these properties but is somewhat smooth at 0. If we apply our
smoothing to f separately, for w ≥ 0 and for w ≤ 0, we would arrive at a function
of the form

g(w) :=


wp, w ≥ δ;
Aw3 +Bw2 + Cw, 0 ≤ w ≤ δ;
Aw3 −Bw2 + Cw, −δ ≤ w ≤ 0;
−(−w)p, w ≤ −δ,

for appropriate A,B,C (see §1). It is easy to check that the resulting g is con-
tinuous, differentiable at 0, twice differentiable everywhere but at 0, increasing,
convex on (−∞, 0], and concave on [0,+∞). In short, g mimics f very well, but is
smoother. Moreover, for p = 1/q, with integer q ≥ 2, g upper bounds f on (−∞, 0]
and lower bounds f on [0,+∞).



16 Jon Lee, Daphne Skipper

Note that the obvious “double shift”

h(w) :=


(w + λ)p, w > 0;
?, w = 0;
−(−w + λ)p, w < 0

is not even continuous at 0.
Additionally, for p = 1/q, with integer 2 ≤ q ≤ 10, 000, in the sense of §3, g is

a better upper bound on f than h on (−∞, 0], and g is a better lower bound on
f than h on [0,+∞).

5.4 Ongoing work

To extend the applicability of our results, we are pursuing two directions:

– We would like to generalize Theorem 9 to all root functions wp with 0 < p < 1.
A strategy that we are exploring is to try to make a similar proof to what we
have, for the case in which p is rational, and then employ a continuity argument
to establish the result for all real exponents.

– We would like to generalize Theorem 10 for all root functions wp with 0 < p <
1. For now, that seems like a rather ambitious goal, and what is more in sight
is generalizing Theorem 10 for all integer q ≥ 2. To do this we are trying to
sharpen our arguments employing Descartes’ Rule of Signs, or, alternatively,
to develop a sum-of-squares argument.

Acknowledgements The authors gratefully acknowledge the anonymous referee who pro-
posed the performance measure studied in §4. J. Lee gratefully acknowledges partial support
from ONR grant N00014-14-1-0315.

References

1. Tobias Achterberg, SCIP: Solving constraint integer programs, Mathematical Program-
ming Computation 1 (2009), no. 1, 1–41.

2. George E. Andrews, Richard Askey, and Ranjan Roy, Special functions:, Cambridge Uni-
versity Press, 1999.

3. Kenneth J. Arrow, Hollis B. Chenery, Bagicha S. Minhas, and Robert M. Solow, Capital-
labor substitution and economic efficiency, The Review of Economics and Statistics 43
(1961), no. 3, 225–250.

4. Pietro Belotti, Jon Lee, Leo Liberti, François Margot, and Andreas Wächter, Branch-
ing and bounds tightening techniques for non-convex MINLP, Optimizaton Methods &
Software 24 (2009), no. 4–5, 597–634.

5. Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, Gérard Cornuéjols, Ignacio E. Gross-
mann, Carl D. Laird, Jon Lee, Andrea Lodi, François Margot, Nicolas Sawaya, and An-
dreas Wächter, An algorithmic framework for convex mixed integer nonlinear programs,
Discrete Optimization 5 (2008), no. 2, 186–204.

6. Pierre Bonami, Jon Lee, Sven Leyffer, and Andreas Wächter, On branching rules for
convex mixed-integer nonlinear optimization, ACM Journal of Experimental Algorithmics
18 (2013), Article 2.6, 31 pages.

7. Cristiana Bragalli, Claudia D’Ambrosio, Jon Lee, Andrea Lodi, and Paolo Toth, An
MINLP solution method for a water network problem, Algorithms—ESA 2006, Lecture
Notes in Computer Science, vol. 4168, Springer, Berlin, 2006, pp. 696–707.

8. , On the optimal design of water distribution networks, Optimization and Engi-
neering 13 (2012), no. 2, 219–246.



Virtuous smoothing for global optimization 17

9. Alison Cozad, Nikolaos V. Sahinidis, and David C. Miller, A combined first-principles and
data-driven approach to model building, Computers & Chemical Engineering 73 (2015),
116–127.

10. Claudia D’Ambrosio, Marcia Fampa, Jon Lee, and Stefan Vigerske, On a nonconvex
MINLP formulation of the Euclidean Steiner tree problems in n-space, Tech. report, Op-
timization Online, 2014, http://www.optimization-online.org/DB_HTML/2014/09/4528.
html.

11. , On a nonconvex MINLP formulation of the Euclidean Steiner tree problem in
n-space, Experimental Algorithms (E. Bampis, ed.), Lecture Notes in Computer Science,
vol. 9125, Springer International Publishing, 2015, pp. 122–133.

12. Paul H. Douglas, The Cobb-Douglas production function once again: Its history, its test-
ing, and some new empirical values, Journal of Political Economy 84 (1976), no. 5, 903–
915.

13. Richard J. Duffin and Elmor L. Peterson, Geometric programming with signomials, Journal
of Optimization Theory and Applications 11 (1973), no. 1, 3–35.

14. Marcia Fampa, Jon Lee, and Nelson Maculan, An overview of exact algorithms for the
Euclidean Steiner tree problem in n-space, International Transactions in Operational Re-
search 23 (2016), no. 5, 861–874.

15. Tristan Gally, Ambros M. Gleixner, Gregor Hendel, Thorsten Koch, Stephen J. Maher,
Matthias Miltenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel
Rehfeldt, Sebastian Schenker, Robert Schwarz, Felipe Serrano, Yuji Shinano, Stefan
Vigerske, Dieter Weninger, Michael Winkler, Jonas T. Witt, and Jakob Witzig, The
SCIP Optimization Suite 3.2, February 2016, ZR 15-60, Zuse Institute Berlin. http:
//www.optimization-online.org/DB_HTML/2016/03/5360.html.

16. Iacopo Gentilini, François Margot, and Kenji Shimada, The travelling salesman problem
with neighbourhoods: MINLP solution, Optimization Methods and Software 28 (2013),
no. 2, 364–378.

17. Ming-Jun Lai, Yangyang Xu, and Wotao Yin, Improved iteratively reweighted least squares
for unconstrained smoothed `q minimization., SIAM J. Numerical Analysis 51 (2013),
no. 2, 927–957.

18. Ruth Misener and Christodoulos A. Floudas, ANTIGONE: Algorithms for coNTinuous
/ Integer Global Optimization of Nonlinear Equations, Journal of Global Optimization
(2014), 503–526.

19. Michael Sagraloff, On the complexity of the Descartes method when using approximate
arithmetic, Journal of Symbolic Computation 65 (2014), 79–110.

20. Yaroslav D. Sergeyev, Global one-dimensional optimization using smooth auxiliary func-
tions, Mathematical Programming 81 (1998), no. 1, 127–146.

21. Edward M.B. Smith and Constantinos C. Pantelides, A symbolic reformulation/spatial
branch-and-bound algorithm for the global optimisation of nonconvex MINLPs, Computers
& Chemical Engineering 23 (1999), 457–478.

22. Mohit Tawarmalani and Nikolaos V. Sahinidis, Convexification and global optimization in
continuous and mixed-integer nonlinear programming, Nonconvex Optimization and its
Applications, vol. 65, Kluwer Academic Publishers, Dordrecht, 2002, Theory, algorithms,
software, and applications.

23. , Convexification and global optimization in continuous and mixed-integer nonlin-
ear programming: Theory, algorithms, software, and applications, Nonconvex Optimiza-
tion and Its Applications, Springer US, 2002.

24. Andreas Wächter and Lorenz T. Biegler, On the implementation of an interior-point
filter line-search algorithm for large-scale NLP, Mathematical Programming, Series A
106 (2006), 25–57.

http://www.optimization-online.org/DB_HTML/2014/09/4528.html
http://www.optimization-online.org/DB_HTML/2014/09/4528.html
http://www.optimization-online.org/DB_HTML/2016/03/5360.html
http://www.optimization-online.org/DB_HTML/2016/03/5360.html


18 Jon Lee, Daphne Skipper

Appendix

Lemma 12 The polynomial Pq as defined above for integer q ≥ 2 can be expressed
as Qq(L− t)3, where polynomial Qq has the following 3q − 3 terms:(

i+ 2

2

)
aL3q−4−iti, for i = 0, 1, . . . , q − 2;[(

i+ 2

2

)
a−

(
i− q + 3

2

)
b

]
L3q−4−iti, for i = q − 1, q, . . . , 2q − 2;[(

i+ 2

2

)
a−

(
i− q + 3

2

)
b+

(
i− 2q + 3

2

)
c

]
L3q−4−iti, for i = 2q − 1, 2q, . . . , 3q − 4.

Note that for q = 2, 2q − 2 = 3q − 4 = 2, so there are no terms of the third type.

Proof We expand Qq(L − t)3 to see that it is equivalent to Pq, first for specific
cases q = 2, 3 and 4, and finally for general q ≥ 5. The following are easily verified:

Qq(L− t)3 = Pq

q = 2 : (8L2 + 9Lt+ 3t2)(L− t)3 = 8L5 − 15L4t+ 10L2t3 − 3t5;

q = 3 : (18L5 + 54L4t+ 68L3t2 + 60L2t3 + 30Lt4 + 10t5)(L− t)3

= 18L8 − 40L6t2 + 32L3t5 − 10t8;

q = 4 : (32L8 + 96L7t+ 192L6t2 + 243L5t3 + 249L4t4 + 210L3t5

+126L2t6 + 63Lt7 + 21t8)(L− t)3 = 32L11 − 77L8t3 + 66L4t7 − 21t11.

Now considering general q ≥ 5, most of the terms of Qq(L− t)3 cancel out due
to the following equations:

(−3)

(
2

2

)
+

(
3

2

)
= −3 + 3 = 0;

(3)

(
2

2

)
+ (−3)

(
3

2

)
+

(
4

2

)
= 3− 9 + 6 = 0;

and for i ≥ 3,

(−1)

(
i− 1

2

)
+ (3)

(
i

2

)
+ (−3)

(
i+ 1

2

)
+

(
i+ 2

2

)
= 0.

If the expression for the coefficient of tj , 0 ≤ j ≤ 3q − 1, has more than one term
involving a, b, or c, that variable (a, b, or c) has a coefficient of one of the forms
above and cancels out. The only time the variable remains is when it has only a
single term in the expression. The terms of Qq(L−t)3 = Qq(−t3+3Lt2−3L2t+L3)
for q ≥ 5 increasing in the degree j of t are as follows:

j = 0 :
(
aL3q−4

)(
L3
)

= aL3q−1



Virtuous smoothing for global optimization 19

j = 1 :
(
aL3q−4

)(
−3L2t

)
+
(

3aL3q−5t
)(

L3
)

= (−3 + 3)aL3q−2t

= 0

j = 2 :
(
aL3q−4

)(
3Lt2

)
+
(

3aL3q−5t
)(
−3L2t

)
+
(

6aL3q−6t2
)(

L3
)

= (3− 9 + 6)aL3q−3t2

= 0

3 ≤ j ≤ q − 2 :

(
j − 1

2

)
aL3q−1−jtj−3

(
−t3

)
+

(
j

2

)
aL3q−2−jtj−2

(
3Lt2

)
+(

j + 1

2

)
aL3q−3−jtj−1

(
−3L2t

)
+

(
j + 2

2

)
aL3q−4−jtj

(
L3
)

=

[
(−1)

(
j − 1

2

)
+ (3)

(
j

2

)
+ (−3)

(
j + 1

2

)
+

(
j + 2

2

)]
aL3q−1−jtj

= 0

j = q − 1 :

(
q − 2

2

)
aL2qtq−4

(
−t3

)
+

(
q − 1

2

)
aL2q−1tq−3

(
3Lt2

)
+(

q

2

)
aL2q−2tq−2

(
−3L2t

)
+

[(
q + 1

2

)
a− b

]
L2q−3tq−1

(
L3
)

=

[
(−1)

(
q − 2

2

)
+ (3)

(
q − 1

2

)
+ (−3)

(
q

2

)
+

(
q + 1

2

)]
aL2qtq−1

−bL2qtq−1

= −bL2qtq−1

j = q :

(
q − 1

2

)
aL2q−1tq−3

(
−t3

)
+

(
q

2

)
aL2q−2tq−2

(
3Lt2

)
+[(

q + 1

2

)
a− b

]
L2q−3tq−1

(
−3L2t

)
+

[(
q + 2

2

)
a− 3b

]
L2q−4tq

(
L3
)

=

[
(−1)

(
q − 1

2

)
+ (3)

(
q

2

)
+ (−3)

(
q + 1

2

)
+

(
q + 2

2

)]
aL2q−1tq

+(3− 3)bL2q−1tq

= 0

j = q + 1 :

(
q

2

)
aL2q−2tq−2

(
−t3

)
+

[(
q + 1

2

)
a− b

]
L2q−3tq−1

(
3Lt2

)
+

[(
q + 2

2

)
a− 3b

]
L2q−4tq

(
−3L2t

)



20 Jon Lee, Daphne Skipper

+

[(
q + 3

2

)
a− 6b

]
L2q−5tq+1

(
L3
)

= 0

q + 2 ≤ j ≤ 2q − 2 :

[(
j − 1

2

)
a−

(
j − q

2

)
b

]
L3q−1−jtj−3

(
−t3

)
+

[(
j

2

)
a−

(
j − q + 1

2

)
b

]
L3q−2−jtj−2

(
3Lt2

)
+

[(
j + 1

2

)
a−

(
j − q + 2

2

)
b

]
L3q−3−jtj−1

(
−3L2t

)
+

[(
j + 2

2

)
a−

(
j − q + 3

2

)
b

]
L3q−4−jtj

(
L3
)

= 0

j = 2q − 1 :

[(
2q − 2

2

)
a−

(
q − 1

2

)
b

]
Lqt2q−4

(
−t3

)
+

[(
2q − 1

2

)
a−

(
q

2

)
b

]
Lq−1t2q−3

(
3Lt2

)
+

[(
2q

2

)
a−

(
q + 1

2

)
b

]
Lq−2t2q−2

(
−3L2t

)
+

[(
2q + 1

2

)
a−

(
q + 2

2

)
b+ c

]
Lq−3t2q−1

(
L3
)

= cLqt2q−1

j = 2q :

[(
2q − 1

2

)
a−

(
q

2

)
b

]
Lq−1t2q−3

(
−t3

)
+

[(
2q

2

)
a−

(
q + 1

2

)
b

]
Lq−2t2q−2

(
3Lt2

)
+

[(
2q + 1

2

)
a−

(
q + 2

2

)
b+ c

]
Lq−3t2q−1

(
−3L2t

)
+

[(
2q + 2

2

)
a−

(
q + 3

2

)
b+ 3c

]
Lq−4t2q

(
L3
)

= 0

j = 2q + 1 :

[(
2q

2

)
a−

(
q + 1

2

)
b

]
Lq−2t2q−2

(
−t3

)
+

[(
2q + 1

2

)
a−

(
q + 2

2

)
b+ c

]
Lq−3t2q−1

(
3Lt2

)
+

[(
2q + 2

2

)
a−

(
q + 3

2

)
b+ 3c

]
Lq−4t2q

(
−3L2t

)



Virtuous smoothing for global optimization 21

+

[(
2q + 3

2

)
a−

(
q + 4

2

)
b+ 6c

]
Lq−5t2q+1

(
L3
)

= 0

2q + 2 ≤ j ≤ 3q − 4 :

[(
j − 1

2

)
a−

(
j − q

2

)
b+

(
j − 2q

2

)
c

]
L3q−1−jtj−3

(
−t3

)
+

[(
j

2

)
a−

(
j − q + 1

2

)
b+

(
j − 2q + 1

2

)
c

]
L3q−2−jtj−2

(
3Lt2

)
+

[(
j + 1

2

)
a−

(
j − q + 2

2

)
b+

(
j − 2q + 2

2

)
c

]
L3q−3−jtj−1

(
−3L2t

)
+

[(
j + 2

2

)
a−

(
j − q + 3

2

)
b+

(
j − 2q + 3

2

)
c

]
L3q−4−jtj

(
L3
)

= 0

The cancellation pattern above fails for the last three terms. It is necessary to
replace a, b, and c with the equivalent expressions involving q to verify each of the
following.

j = 3q − 3 :

[(
3q − 4

2

)
a−

(
2q − 3

2

)
b+

(
q − 3

2

)
c

]
L2t3q−6(−t3)

+

[(
3q − 3

2

)
a−

(
2q − 2

2

)
b+

(
q − 2

2

)
c

]
Lt3q−5(3Lt2)

+

[(
3q − 2

2

)
a−

(
2q − 1

2

)
b+

(
q − 1

2

)
c

]
t3q−4(−3L2t)

= 0

j = 3q − 2 :

[(
3q − 3

2

)
a−

(
2q − 2

2

)
b+

(
q − 2

2

)
c

]
Lt3q−5(−t3)

+

[(
3q − 2

2

)
a−

(
2q − 1

2

)
b+

(
q − 1

2

)
c

]
t3q−4(3Lt2)

= 0

j = 3q − 1 :

[(
3q − 2

2

)
a−

(
2q − 1

2

)
b+

(
q − 1

2

)
c

]
t3q−4(−t3) = −dt3q−1

ut

Lemma 13 The polynomial Qq as defined in the previous lemma for integers
q ≥ 2 has all positive coefficients.

Proof We consider each of the three types of coefficients of Qq separately. The
first type of coefficients,(

i+ 1

2

)
2q2, for i = 1, 2, . . . , q − 1,



22 Jon Lee, Daphne Skipper

are obviously all positive.
Coefficients of the second type have the form(

i+ 1

2

)
a−

(
i− q + 2

2

)
b, for i = q, q + 1, . . . , 2q − 1.

The real function C2(x) = 1
2 (x+ 1)(x)a− 1

2 (x− q+ 2)(x− q)b, x ∈ [q, 2q− 1], has

second derivative C′′2 (x) = −4q2 + 5q − 1, which is negative for q > 1. Therefore,
C2 is concave on the interval [q, 2q− 1]. Evaluating C2 at the ends of the interval,
we find that C2(q) = q4 + q3− 6q2 + 5q− 1 and C2(2q− 1) = q4− 5

2q
3 + 2q2− 1

2q,
both of which are positive for q > 1. We conclude that C2 is positive over the
interval [q, 2q − 1], and all of the type-two coefficients are positive.

Finally, the third type of coefficients have the form(
i+ 1

2

)
a−

(
i− q + 2

2

)
b+

(
i− 2q + 2

2

)
c, for i = 2q, 2q + 1, . . . , 3q − 3.

As above, we consider the real extension of this function, C3(x) = 1
2 (x+ 1)(x)a−

1
2 (x − q + 2)(x − q + 1)b + 1

2 (x − 2q + 2)(x − 2q + 1)c, x ∈ [2q, 3q − 3]. The first

derivative of this function, C′3(x) = (2q2 − 3q + 1)x − (6q3 − 12q2 + 15
2 q −

3
2 ),

is linear in x and has positive slope for q > 1. Furthermore, the x intercept of
C′3(x) is x = 3q − 3

2 . This means that C′3(x) < 0 for x < 3q − 3
2 . In particular,

C3(x) is decreasing on the interval [2q, 3q − 3]. The right end of this interval is
C3(3q − 3) = 2q2 − 3q + 1, which is positive for q > 1, and all of the type-three
terms are positive. ut


	1 General smoothing via a homogenous cubic
	2 Lower bound for roots
	3 Better bound
	4 Average performance for roots
	5 Alternatives, software, extended use, and ongoing work

