Skip to main content
Log in

Extensions on ellipsoid bounds for quadratic integer programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Ellipsoid bounds for strictly convex quadratic integer programs have been proposed in the literature. The idea is to underestimate the strictly convex quadratic objective function q of the problem by another convex quadratic function with the same continuous minimizer as q and for which an integer minimizer can be easily computed. We initially propose in this paper a different way of constructing the quadratic underestimator for the same problem and then extend the idea to other quadratic integer problems, where the objective function is convex (not strictly convex), and where the objective function is nonconvex and box constraints are introduced. The quality of the bounds proposed is evaluated experimentally and compared to the related existing methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://biqmac.uni-klu.ac.at/biqmaclib.html.

References

  1. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Global Optim. 43, 471–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. An, L.T.H., Tao, P.D.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons. Math. Program. 129, 129–157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113, 259–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buchheim, C., Caprara, A., Lodi, A.: An effective branch-and-bound algorithm for convex quadratic integer programming. Math. Program. (Ser. A) 135(1–2), 369–395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buchheim, C., Hübner, R., Schöbel, A.: Ellipsoid bounds for convex quadratic integer programming. SIAM J. Optim. 25(2), 741–769 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buchheim, C., De Santis, M., Palagi, L.: A fast branch-and-bound algorithm for non-convex quadratic integer optimization subject to linear constraints using ellipsoidal relaxations. Oper. Res. Lett. 43(4), 384–388 (2015)

    Article  MathSciNet  Google Scholar 

  8. Buchheim, C., De Santis, M., Palagi, L., Piacentini, M.: An exact algorithm for nonconvex quadratic integer minimization using ellipsoidal relaxations. SIAM J. Optim. 23(3), 1867–1889 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Angelis, P.L., Bomze, I.M., Toraldo, G.: Ellipsoidal approach to box-constrained quadratic problems. J. Global Optim. 28, 1–15 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fampa, M., Lee, J., Melo, W.: On global optimization with indefinite quadratics. EURO J. Comput. Optim. 5(3), 309–337 (2017)

  11. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44, 463–471 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. JACM 42, 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Horst, R., Thoai, N.V.: DC programming: overview. J. Optim. Theory Appl. 103, 1–43 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hübner, R., Schöbel, A.: When is rounding allowed in integer nonlinear optimization? Eur. J. Oper. Res. 237(2), 404–410 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kamath, A., Karmarkar, N.: A continuous method for computing bounds in integer quadratic optimization problems. J. Global Optim. 2(3), 229–241 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Le Thi Hoai, A., Pham Dinh, T.: A branch and bound method via D.C. optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems. J. Global Optim. 13, 171–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lovasz, L.: On the shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lovasz, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1, 166–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MATH  Google Scholar 

  20. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. Ser. A 121, 307–335 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. Ser. B 124, 383–411 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations. Math. Program. Ser. A 130, 359–413 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  24. Van Emde Boas, P.: Another NP-complete problem and the complexity of computing short vectors in a lattice. Technical report 81-04, University of Amsterdam, Department of Mathematics (1981)

Download references

Acknowledgements

M. Fampa was partially supported by CNPq Grant 303898/2016-0. F. Pinillos Nieto was supported by a scholarship from CNPq-Brasília-Brazil while developing this work as part of his Ph.D. thesis at the Federal University of Rio de Janeiro. The authors are grateful to Dr. C. Buchheim for valuable clarifications on his papers. The authors also thank the two anonymous referees for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Fampa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fampa, M., Nieto, F.P. Extensions on ellipsoid bounds for quadratic integer programming. J Glob Optim 71, 457–482 (2018). https://doi.org/10.1007/s10898-017-0557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0557-2

Keywords

Navigation