Skip to main content
Log in

An accelerated extended cutting plane approach with piecewise linear approximations for signomial geometric programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents a global optimization approach for solving signomial geometric programming (SGP) problems. We employ an accelerated extended cutting plane (ECP) approach integrated with piecewise linear (PWL) approximations to solve the global optimization of SGP problems. In this approach, we separate the feasible regions determined by the constraints into convex and nonconvex ones in the logarithmic domain. In the nonconvex feasible regions, the corresponding constraint functions are converted into mixed integer linear constraints using PWL approximations, while the other constraints with convex feasible regions are handled by the ECP method. We also use pre-processed initial cuts and batched cuts to accelerate the proposed algorithm. Numerical results show that the proposed approach can solve the global optimization of SGP problems efficiently and effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abou-El-Ata, M.O., Kotb, K.A.M.: Multi-item EOQ inventory model with varying holding cost under two restrictions: a geometric programming approach. Prod. Plan. Control 8(6), 608–611 (1997)

    Article  Google Scholar 

  2. Adeli, H., Kamal, O.: Efficient optimization of space trusses. Comput. Struct. 24(3), 501–511 (1986)

    Article  MATH  Google Scholar 

  3. Andramonov, M., Rubinov, A.: Cutting angle methods in global optimization. Appl. Math. Lett. 12(3), 95–100 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Chiang, M.: Balancing transport and physical layers in wireless multihop networks: jointly optimal congestion control and power control. IEEE J. Sel. Areas Commun. 23(1), 104–116 (2005)

    Article  MathSciNet  Google Scholar 

  6. Clasen, R.J.: The solution of the chemical equilibrium programming problem with generalized benders decomposition. Oper. Res. 32(1), 70–79 (1984)

    Article  MATH  Google Scholar 

  7. Dembo, R.: A set of geometric programming test problems and their solutions. Math. Program. 10(1), 192–213 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, X., Al-Khayyal, F.: Accelerating convergence of cutting plane algorithms for disjoint bilinear programming. J. Global Optim. 38(3), 421–436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Horst, R., Vries, J., Thoai, N.V.: On finding new vertices and redundant constraints in cutting plane algorithms for global optimization. Oper. Res. Lett. 7(2), 85–90 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kandukuri, S., Boyd, S.: ptimal power control in interference-limited fading wireless channels with outage-probability specifications. IEEE Trans. Wirel. Commun. 1(1), 46–55 (2002)

    Article  Google Scholar 

  11. Kelley, J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, H.-L., Lu, H.-C.: Global optimization for generalized geometric programs with mixed free-sign variables. Oper. Res. 57(3), 701–713 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, H.-L., Tsai, J-f: Treating free variables in generalized geometric global optimization programs. J. Global Optim. 33(1), 1–13 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, M.-H., Tsai, J.-F.: Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming problems. Eur. J. Oper. Res. 216(1), 17–25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lundell, A., Westerlund, T.: Convex underestimation strategies for signomial functions. Optim. Methods Softw. 24(4–5), 505–522 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mandal, N.K., Roy, T., Maiti, M.: Inventory model of deteriorated items with a constraint: a geometric programming approach. Eur. J. Oper. Res. 173(1), 199–210 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maranas, C., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21(4), 351–369 (1997)

    Article  Google Scholar 

  18. Rosenberg, E.: Optimal module sizing in VLSI floorplanning by nonlinear programming. Z. Oper. Res. 33(2), 131–143 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Sawaya, N., Grossmann, I.E.: A cutting plane method for solving linear generalized disjunctive programming problems. Comput. Chem. Eng. 29(9), 1891–1913 (2005)

    Article  Google Scholar 

  20. Shen, P., Jiao, H.: Accelerating method of global optimization for signomial geometric programming. J. Comput. Appl. Math. 214(1), 66–77 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen, P., Zhang, K.: Global optimization of signomial geometric programming using linear relaxation. Appl. Math. Comput. 150(1), 99–114 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Tsai, J.-F., Lin, M.-H., Hu, Y.-C.: On generalized geometric programming problems with non-positive variables. Eur. J. Oper. Res. 178(1), 10–19 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tseng, C.-L., Zhan, Y., Zheng, Q., Kumar, M.: A MILP formulation for generalized geometric programming using piecewise-linear approximations. Eur. J. Oper. Res. 245(2), 360–370 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng., 19(Supplement 1), 131–136 (1995) (European Symposium on Computer Aided Process Engineering 3–5)

  25. Westerlund, T., Skrifvars, H., Pörn, R.: An extended cutting plane method for a class of non-convex MINLP problems. Comput. Chem. Eng. 22(3), 357–365 (1998)

    Article  MATH  Google Scholar 

  26. Xu, G.: Global optimization of signomial geometric programming problems. Eur. J. Oper. Res. 233(3), 500–510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, Y., Kuno, T.: A disjunctive cutting-plane-based branch-and-cut algorithm for 0–1 mixed-integer convex nonlinear programs. Ind. Eng. Chem. Res. 45(1), 187–196 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is in part supported by the AFRL Mathematical Modeling and Optimization Institute, and National Science Foundation through Grant CMMI-1355939. The authors would also like to thank the reviewers and the Editor for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qipeng P. Zheng.

Appendix: Details of the test problems and results

Appendix: Details of the test problems and results

For each test problem, we report the problem statement and the obtained optimal solutions for solving the upper bound problem \((\bar{P}_\epsilon )\) and the lower bound problem \((\underline{P}_\epsilon )\) in Tables 4, 5, 6, 7 and 8. We define the optimality gap as \((\bar{f}_0-\underline{f}_0)/\underline{f}_0\), where \(\bar{f}_0\) and \(\underline{f}_0\) are the obtained upper bound and lower bound for \(f_0\), respectively, to reflect the quality of the obtained solutions. Our obtained optimal solutions for solving the upper bound problems \((\bar{P}_\epsilon )\) are always feasible, which are used to compare with benchmarks. The violated constraints are highlighted in bold face in each table to help observe the feasibility of the solutions provided by different methods.

Example 1

Heat exchange design (Problem 5 in Dembo [7])

$$\begin{aligned} f_0(\mathbf{z})= & {} z_1+z_2+z_3 \\ f_1(\mathbf{z})= & {} 833.33252z_1^{-1}z_4z_6^{-1}+100z_6^{-1}-83{,}333.333z_1^{-1}z_6^{-1} \\ f_2(\mathbf{z})= & {} 1250z_2^{-1}z_5z_7^{-1}+z_4z_7^{-1} -1250z_2^{-1}z_4z_7^{-1} \\ f_3(\mathbf{z})= & {} 1{,}250{,}000z_3^{-1}z_8^{-1}+ z_5z_8^{-1} -2500z_3^{-1}z_5z_8^{-1} \\ f_4(\mathbf{z})= & {} 0.0025z_4+0.0025z_6 \\ f_5(\mathbf{z})= & {} 0.0025z_5+0.0025z_7-0.0025z_4 \\ f_6(\mathbf{z})= & {} 0.01z_8 -0.01z_5 \\ \mathbf{z}^L= & {} \{10^2,10^3,10^3,10,10,10,10,10\} \\ \mathbf{z}^U= & {} \{10^4, 10^4, 10^4, 10^3, 10^3, 10^3, 10^3, 10^3\} \end{aligned}$$
Table 4 Summary of test results for Example 1
Table 5 Summary of test results for Example 2
Table 6 Summary of test results for Example 3
Table 7 Summary of test results for Example 4
Table 8 Summary of test results for Example 5

Example 2

A 3-stage membrane separation process (Problem 6 in Dembo [7])

$$\begin{aligned} f_0(\mathbf{z})= & {} z_{11}+z_{12}+z_{13} \\ f_1(\mathbf{z})= & {} 1.262626z_8z_{11}^{-1}-1.231059z_1z_8z_{11}^{-1} \\ f_2(\mathbf{z})= & {} 1.262626z_9z_{12}^{-1}-1.231059z_2z_9z_{12}^{-1} \\ f_3(\mathbf{z})= & {} 1.262626z_{10}z_{13}^{-1}-1.231059z_3z_{10}z_{13}^{-1} \\ f_4(\mathbf{z})= & {} 0.03475z_2z_5^{-1}+0.975z_2-0.00975z_2^2z_5^{-1} \\ f_5(\mathbf{z})= & {} 0.03475z_3z_6^{-1}+0.975z_3-0.00975z_3^2z_6^{-1} \\ f_6(\mathbf{z})= & {} z_1z_5^{-1}z_7^{-1}z_8+z_4z_5^{-1}-z_4z_5^{-1}z_7^{-1}z_8 \\ f_7(\mathbf{z})= & {} 0.002z_2z_9 +0.002z_5z_8+z_6+z_5-0.002z_1z_8-0.002z_6z_9 \\ f_8(\mathbf{z})= & {} z_2^{-1}z_3z_9^{-1}z_{10}+z_2^{-1}z_6+500z_9^{-1}-z_9^{-1}z_{10}-500z_2^{-1}z_6z_9^{-1} \\ f_9(\mathbf{z})= & {} 0.9z_2^{-1} + 0.002z_{10}-0.002z_2^{-1}z_3z_{10} \\ f_{10}(\mathbf{z})= & {} z_2z_3^{-1} \\ f_{11}(\mathbf{z})= & {} z_1z_2^{-1} \\ f_{12}(\mathbf{z})= & {} 0.002z_7 -0.002z_8 \\ f_{13}(\mathbf{z})= & {} 0.03475z_1z_4^{-1}+0.975z_1-0.00975z_1^2z_4^{-1} \\ \mathbf{z}^L= & {} \{0.1, 0.1, 0.9, 10^{-3}, 0.1, 0.1, 0.1, 0.1, 500, 0.1,1,10^{-3},10^{-3}\} \\ \mathbf{z}^U= & {} \{1, 1, 1, 0.1, 0.9, 0.9, 10^3, 10^3, 10^3, 500, 150, 150, 150\} \end{aligned}$$

Example 3

A 5-stage membrane separation process (Problem 7 in Dembo [7])

$$\begin{aligned} f_0(\mathbf{z})= & {} 1.262626(z_{12}+z_{13}+z_{14}+z_{15}+z_{16})\\&-1.23106(z_{1}z_{12}+z_{2}z_{13}+z_{3}z_{14}+z_{4}z_{15}+z_{5}z_{16}) \\ f_1(\mathbf{z})= & {} 0.03475z_1z_{6}^{-1}+0.975z_1 -0.00975z_1^{2}z_{6}^{-1} \\ f_2(\mathbf{z})= & {} 0.03475z_2z_{7}^{-1}+0.975z_2-0.00975z_2^{2}z_{7}^{-1} \\ f_3(\mathbf{z})= & {} 0.03475z_3z_{8}^{-1}+0.975z_3-0.00975z_3^{2}z_{8}^{-1} \\ f_4(\mathbf{z})= & {} 0.03475z_4z_{9}^{-1}+0.975z_4-0.00975z_4^{2}z_{9}^{-1} \\ f_5(\mathbf{z})= & {} 0.03475z_5z_{10}^{-1}+0.975z_5-0.00975z_5^{2}z_{10}^{-1} \\ f_6(\mathbf{z})= & {} z_6z_7^{-1}+z_1z_7^{-1}z_{11}^{-1}z_{12}-z_6z_7^{-1}z_{11}^{-1}z_{12} \\ f_7(\mathbf{z})= & {} z_7z_8^{-1}+0.002z_7z_8^{-1}z_{12}+0.002z_2z_8^{-1}z_{13} -0.002z_{13}-0.002z_1z_8^{-1}z_{12}\\ f_8(\mathbf{z})= & {} z_8+0.002z_8z_{13}+0.002z_3z_{14}+z_9-0.002z_2z_{13}-0.002z_9z_{14}\\ f_9(\mathbf{z})= & {} z_3^{-1}z_9+z_3^{-1}z_4z_{14}^{-1}z_{15}+500z_3^{-1}z_{10}z_{14}^{-1} -500z_3^{-1}z_9z_{14}^{-1} \\&-z_3^{-1}z_8z_{14}^{-1}z_{15}\\ f_{10}(\mathbf{z})= & {} z_4^{-1}z_5z_{15}^{-1}z_{16}+z_4^{-1}z_{10} +500z_{15}^{-1}-z_{15}^{-1}z_{16}-500z_4^{-1}z_{10}z_{15}^{-1} \\ f_{11}(\mathbf{z})= & {} 0.9z_4^{-1}+0.002z_{16}-0.002z_4^{-1}z_5z_{16} \\ f_{12}(\mathbf{z})= & {} 0.002z_{11}-0.002z_{12} \\ f_{13}(\mathbf{z})= & {} z_{11}^{-1}z_{12}\\ f_{14}(\mathbf{z})= & {} z_{4}z_{5}^{-1}\\ f_{15}(\mathbf{z})= & {} z_{3}z_{4}^{-1}\\ f_{16}(\mathbf{z})= & {} z_{2}z_{3}^{-1}\\ f_{17}(\mathbf{z})= & {} z_{1}z_{2}^{-1}\\ f_{18}(\mathbf{z})= & {} z_{9}z_{10}^{-1}\\ f_{19}(\mathbf{z})= & {} z_{8}z_{9}^{-1} \\ \mathbf{z}^L= & {} \{0.1, 0.1, 0.1, 0.1,0.9, 10^{-4}, 0.1, 0.1, 0.1, 0.1, 1, 10^{-6},1,500,500,10^{-5}\} \\ \mathbf{z}^U= & {} \{0.9,0.9,0.9,0.9,1, 0.1, 0.9, 0.9,0.9,0.9, 10^3, 500, 500, 10^3, 10^3, 500\} \end{aligned}$$

Example 4

(Problem 5 in [23])

$$\begin{aligned} f_0(\mathbf{z})= & {} 2z_1^{0.9}z_2^{-1.5}z_3^{-3}+4.7z_6^{-1.8}z_7^{-0.5}z_8 +5z_4^{-0.3}z_5^{2.6}\\ f_1(\mathbf{z})= & {} 7.2z_1^{-3.8}z_2^{2.2}z_3^{4.3}+0.5z_4^{-0.7}z_5^{-1.6}+0.2z_6^{4.3}z_7^{-1.9}z_8^{8.5}\\&-0.3\left( z_1^{0.5}z_5^{0.5}+z_2^{0.5}z_6^{0.5}+z_3^{0.5}z_7^{0.5}+z_4^{0.5}z_8^{0.5}\right) \\ f_2(\mathbf{z})= & {} 10z_1^{2.3}z_2^{1.7}z_3^{4.5}-z_4^{-2.1}z_5^{0.4}\\ f_3(\mathbf{z})= & {} 0.6z_4^{-2.1}z_5^{0.4}-z_6^{4.5}z_7^{-2.7}z_8^{-0.6}\\ f_4(\mathbf{z})= & {} 6.2z_6^{4.5}z_7^{-2.7}z_8^{-0.6}-z_1^{2.3}z_2^{1.7}z_3^{4.5}\\ f_5(\mathbf{z})= & {} 3.1z_1^{1.6}z_2^{0.4}z_3^{-3.8}-0.3z_4^{5.4}z_5^{1.3}\\ f_6(\mathbf{z})= & {} 3.7z_4^{5.4}z_5^{1.3}-0.1z_6^{-1.1}z_7^{7.3}z_8^{-5.6}\\ f_7(\mathbf{z})= & {} 0.3z_6^{-1.1}z_7^{7.3}z_8^{-5.6}-0.3z_1^{1.6}z_2^{0.4}z_3^{-3.8} \end{aligned}$$

Example 5

Alkylation process optimization (Problem 3 in Dembo [7])

$$\begin{aligned} f_0(\mathbf{z})= & {} 1.715z_1+0.035z_1z_6+4.0565z_3+10z_2+3000-0.063z_3z_5 \\ f_1(\mathbf{z})= & {} 0.00596z_6^2+0.88393z_1^{-1}z_3-0.11756z_6 \\ f_2(\mathbf{z})= & {} 1.1088z_1z_3^{-1}+0.13035z_1z_3^{-1}z_6-0.0066z_1z_3^{-1}z_6^2 \\ f_3(\mathbf{z})= & {} 0.00066z_6^2+0.01724z_5-0.00566z_4-0.01912z_6 \\ f_4(\mathbf{z})= & {} 56.85075z_5^{-1}+1.08702z_5^{-1}z_6+0.32175z_4z_5^{-1}-0.03762z_5^{-1}z_6^2 \\ f_5(\mathbf{z})= & {} 0.0062z_7+2462.312z_2z_3^{-1}z_4^{-1}-25.1256z_2z_3^{-1} \\ f_6(\mathbf{z})= & {} 161.18996z_7^{-1}+5000z_2z_3^{-1}z_7^{-1}-489510z_2z_3^{-1}z_4^{-1}z_7^{-1} \\ f_7(\mathbf{z})= & {} 44.33333z_5^{-1}+0.33z_5^{-1}z_7 \\ f_8(\mathbf{z})= & {} 0.02256z_5-0.0076z_7 \\ f_9(\mathbf{z})= & {} 0.00061z_3-0.0005z_1 \\ f_{10}(\mathbf{z})= & {} 0.81967z_1z_3^{-1}+0.81967z_3^{-1} \\ f_{11}(\mathbf{z})= & {} 24500z_2z_3^{-1}z_4^{-1}-250z_2z_3^{-1} \\ f_{12}(\mathbf{z})= & {} 0.0102z_4+0.00001z_2^{-1}z_3z_4 \\ f_{13}(\mathbf{z})= & {} 0.00006z_1z_6+0.00006z_1 -0.00008z_3 \\ f_{14}(\mathbf{z})= & {} 1.22z_1^{-1}z_3+z_1^{-1}-z_6 \\ \mathbf{z}^L= & {} \{1,1,1,85,90,3,145\} \\ \mathbf{z}^U= & {} \{2000,120,5000,93,95,12,162\} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Zheng, Q.P., Tseng, CL. et al. An accelerated extended cutting plane approach with piecewise linear approximations for signomial geometric programming. J Glob Optim 70, 579–599 (2018). https://doi.org/10.1007/s10898-017-0563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0563-4

Keywords

Navigation