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Abstract

Optimizing risk measures such as Value-at-Risk (VaR) and Conditional Value-at-
Risk (CVaR) of a general loss distribution is usually difficult, because 1) the loss
function might lack structural properties such as convexity or differentiability since it
is often generated via black-box simulation of a stochastic system; 2) evaluation of risk
measures often requires rare-event simulation, which is computationally expensive. In
this paper, we study the extension of the recently proposed gradient-based adaptive
stochastic search (GASS) to the optimization of risk measures VaR and CVaR. Instead
of optimizing VaR or CVaR at the target risk level directly, we incorporate an adaptive
updating scheme on the risk level, by initializing the algorithm at a small risk level
and adaptively increasing it until the target risk level is achieved while the algorithm
converges at the same time. This enables us to adaptively reduce the number of sam-
ples required to estimate the risk measure at each iteration, and thus improving the
overall efficiency of the algorithm.

Key words: Risk measures, black-box simulation, rare-event simulation, GASS, adap-
tive risk level

1 Introduction

Risk measures such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are widely
studied in various fields, in order to quantify the extreme behaviors of the distributions of
interest. Loosely speaking, VaR characterizes a tail quantile of a distribution, and CVaR
characterizes the conditional expectation of the tail portion of the distribution. VaR, as one
of the earliest risk measures introduced in financial risk management, is easy to understand
and interpret for practitioners. CVaR, as a classic coherent risk measure (see, e.g., Artzner
et al. (1999)), exhibits nice properties such as convexity and monotonicity for optimiza-
tion. An abundant literature has dedicated to studying the estimation and optimization of
risk measures under various settings. Rockafellar and Uryasev (2000) and Rockafellar and
Uryasev (2002) derive some fundamental properties of CVaR for general loss distributions
in finance, and propose the fundamental minimization formula to facilitate the optimization
of CVaR. Ruszczyński and Shapiro (2006) develop a dual representation for optimization of
general coherent risk measures, and derive the optimality conditions via the dual representa-
tion. Ruszczyński (2010) study the optimization of risk measures under a multistage setting,
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and propose a risk-averse dynamic programming approach to risk optimization in Markov
decision processes. Alexander et al. (2006) study the optimization of VaR and CVaR for
derivatives portfolios with the addition of a cost that is proportional to the portfolio posi-
tion.

In general, optimizing risk measures over continuous decision variables is a challenging
problem, especially when the underlying loss function does not possess good structural prop-
erties such as convexity or differentiability. Traditional gradient-based optimization methods
often are not applicable, since little problem-specific knowledge is available when the loss
function is evaluated via black-box simulation of a stochastic system. In contrast, model-
based optimization methods are good alternatives as they impose minimal requirements on
problem structure. Examples of model-based methods include but are not limited to ant
colony optimization (Dorigo and Blum (2005)), annealing adaptive search (AAS) (Romeijn
and Smith (1994)), the estimation of distribution algorithms (EDA) (Larranaga and Lozano
(2002)), the cross-entropy (CE) method (Rubinstein (2001)), model reference adaptive search
(MRAS) (Hu et al. (2007) and Hu et al. (2008)), the interacting-particle algorithm (Molvali-
oglu et al. (2009), Molvalioglu et al. (2010)), and gradient-based adaptive stochastic search
(GASS) (Zhou and Hu (2014)).

The main idea of model-based methods is to introduce a sampling distribution, which
often belongs to a parameterized family of densities, over the solution space, and iteratively
update the sampling distribution (or its parameter) by drawing and evaluating candidate
solutions according to the sampling distribution. The hope is to have the sampling distri-
bution more and more concentrated on the promising region of the solution space where the
optimal solutions are located, and eventually become a degenerate distribution on one of the
global optima. Therefore, finding an optimal solution in the solution space is transformed
to finding an optimal sampling distribution parameter in the parameter space. A key dif-
ference among the aforementioned model-based methods lies in how to update the sampling
distribution. For example, in CE and MRAS, the updating rule is derived by minimizing the
Kullback-Leibler (K-L) divergences between a converging sequence of reference distributions
and a chosen exponential family of densities. For another example, in GASS, the updating
rule on the sampling distribution parameter is derived by converting the original (possibly
non-differentiable) deterministic optimization problem into a differentiable stochastic opti-
mization problem on the sampling distribution parameter, and then applying a Newton-like
scheme.

Compared with traditional gradient-based methods, model-based methods are more ro-
bust in the sense that at every iteration they exploit the promising region of the solution
space that has already been identified, while maintaining the exploration of the entire solu-
tion space. The updating rule on the sampling distribution parameter controls the balance
between exploration and exploitation.

Although all the aforementioned model-based methods are designed for deterministic
optimization problems, they can be extended to risk (VaR or CVaR) optimization problems
in which the exact risk values are replaced with (biased) sample estimates. However, a
straightforward extension usually leads to a computationally expensive algorithm, due to the
rare-event simulation required in estimating the risk values. This issue is even more severe
when the risk level of interest is close to 1, which is often the case for risk management
practitioners. It inspires us to consider the following question. For a risk optimization
problem, is it possible to initialize a model-based algorithm at a small risk level (close to
0), and then adaptively increase the risk level at every iteration such that the target risk
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level is achieved while the algorithm converges at the same time? The motivation is that
the algorithm will consume less simulation budget (since the risk level is small) during the
“warm-up” phase of the algorithm, and solve problems that are close to the original one
during the “convergence” phase of the algorithm, eventually leading to total budget saving.
The key to this question lies in finding a signal to link the updating rule on the risk level
with the updating rule on the sampling distribution parameter, where the signal is capable
of measuring empirically the algorithm’s emphasis between the exploitation of a promising
region and the exploration of the entire solution space.

In this paper, we will focus on the extension of a specific model-based methods, i.e., GASS
by Zhou and Hu (2014), to the optimization of risk measures. We choose GASS because it
could also be interpreted as a gradient-based scheme of a reformulated problem, in which
a Newton-like updating rule is applied on the sampling distribution parameter, and thus
the gradient (even the Hessian) in the updating rule of the sampling distribution parameter
can be viewed as a signal that empirically measures the algorithm’s emphasis between the
exploitation of a promising region and the exploration of the entire solution space. Therefore,
we could adjust the risk level adaptively using the information contained in the gradient (e.g.,
its norm) at every iteration. In particular, we will propose an updating rule that increases
the risk level proportionally to the decrease in the norm of the gradient. We will show that
incorporating such an updating scheme on the risk level in the algorithm guarantees that the
target risk level is achieved at the same time when the algorithm converges. Furthermore,
compared with vanilla GASS, we will show that the proposed algorithm achieves significant
total budget savings.

To the best of our knowledge, this work is among the first to apply a model-based
algorithm to risk optimization problems, and among the first to propose a risk optimization
scheme with adaptive risk levels. To ease the presentation, we will only focus on CVaR
optimization, and the extension of the proposed algorithm to VaR optimization (and possibly
other risk measures such as probability of large loss) is straightforward.

The rest of the paper is organized as follows. In Section 2, we will first describe the CVaR
optimization problem. Then we extend the algorithm GASS, which is originally developed for
deterministic non-differentiable optimization problems, to the CVaR optimization problem.
The detailed algorithms are presented in Section 3, in which Algorithm 1 (referred to as
“GASS-CVaR”) is a straightforward extension of GASS and Algorithm 2 (referred to as
“GASS-CVaR-ARL”) further incorporates an updating rule that adaptively adjusts the risk
level. Convergence analysis of both algorithms are presented in Section 4. In Section 5, we
illustrate the performance of the proposed algorithms by carrying out numerical tests on
several benchmark loss functions. We conclude the paper in Section 6.

2 General Framework

Consider a scalar loss function of the form l(x, ξx), where x ∈ X ⊆ Rdx represents the decision
variable, and ξx represents the randomness in the loss function. The distribution of l(x, ξx)
may or may not depend on x. The loss function l(x, ξx) can be evaluated either directly
or through simulation. Furthermore, to ease the presentation, we assume l(x, ξx) admits an
almost everywhere (a.e.) positive and continuous probability density function (p.d.f.) p(t;x),
and thus a continuous and strictly increasing cumulative distribution function (c.d.f.) P (t;x)
for all x ∈ X . The objective is to minimize CVaR of l(x; ξx) at a risk level of interest α∗
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(0 < α∗ < 1) with respect to (w.r.t.) x ∈ X . That is, to solve the following stochastic
optimization problem:

min
x∈X

Cα∗(x)
4
= CV aRα∗ (l(x, ξx)) , or equivalently, max

x∈X
−Cα∗(x), (2.1)

where CV aRα∗ (l(x, ξx)) is defined by

CV aRα∗ (l(x, ξx))
4
= Eξx [l(x, ξx)|l(x, ξx) ≥ Vα∗(x)]

=
1

1− α∗
Eξx [l(x, ξx)1 {l(x, ξx) ≥ Vα∗(x)}]

= Vα∗(x) +
1

1− α∗
Eξx
[
(l(x, ξx)− Vα∗(x))+] ,

where 1{A} is 1 if event A is true and 0 otherwise, (u)+ = max(u, 0), and Vα∗(x) is VaR of
l(x, ξx) at the target risk level α∗, i.e.,

Vα∗(x) = V aRα∗ (l(x, ξx))
4
= inf{t : P (t;x) ≥ α∗} = P−1(α∗;x).

Note that the inverse c.d.f. P−1(α∗;x) exists because P (t;x) is strictly increasing in t. We
also follow the standard assumption that Cα∗(x) is bounded from below and above on X ,
i.e., ∃Clb > −∞, Cub <∞ s.t. Clb < Cα∗(x) < Cub, ∀x ∈ X .

Problem (2.1) might be difficult to solve when l(x; ξx) lacks structural properties such
as convexity and differentiability. Thus, traditional gradient-based method might not be
applicable. In contrast, model-based methods are good alternatives as in general they impose
few requirements on the structure of l(x; ξx). Therefore, we will apply a model-based method
to solve problem (2.1). In principle, we could extend the algorithm GASS in Zhou and Hu
(2014), which is reviewed in next section.

2.1 Review of GASS

Similar to many other model-based methods, the main idea of GASS is to introduce a param-
eterized sampling distribution over the solution space, and update the sampling distribution
iteratively towards the promising region of the solution space. Let us illustrate the main
idea in a general framework, where one aims to maximize a deterministic function L(x) over
x ∈ X .

Introduce a parameterized family of densities {f(x; θ) : θ ∈ Θ ⊂ Rdθ} as the sampling
distribution, where θ represents the parameter that will be updated over iterations. Consider
a simple reformulation as follows:

H(θ)
4
=

∫
L(x)f(x; θ)dx.

Then H(θ) ≤ L(x∗) = L∗, where x∗ denotes the optimal solution or one of the optima, and
L∗ denotes the optimal function value on X . Note that the equality is achieved if and only if
all the probability mass of f(x; θ) concentrates on a subset of the set of global optima. Given
the existence of such a θ, one could solve the reformulated problem maxθ∈ΘH(θ) instead of
the original problem, since the optimal parameter will recover the optimal solution and the
optimal function value.
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An advantage of the reformulated problem over the original problem is that it is differ-
entiable in θ under mild regularity conditions on f(x; θ), and the gradient is easy to derive
as follows:

5θH(θ) = 5θ

∫
L(x)f(x; θ)dx =

∫
L(x)

5θf(x; θ)

f(x; θ)
f(x; θ)dx = Ef(·;θ) [L(x)5θ ln f(x; θ)] .

Note that an unbiased estimator of 5θH(θ) could be obtained by drawing independent
and identically distributed (i.i.d.) samples xi ∼ f(x; θ), i = 1, ..., N , evaluating L(xi) 5θ

ln f(xi; θ), and taking the sample average of {L(xi) 5θ ln f(xi; θ)}. Therefore, one could
solve the reformulated problem via a (stochastic) gradient-based method. Specifically, the
method iteratively carries out the following two steps:

1. Generate candidate solutions according to the sampling distribution.

2. Based on the evaluation of the candidate solutions, update the parameter of the sam-
pling distribution via gradient search.

Intuitively, it combines the relative fast convergence of gradient search with the robustness of
model-based optimization in terms of maintaining a global exploration of the solution space.

Based on the above main idea, now let us review the full-blown GASS algorithm. Intro-
duce a shape function Sθ : R→ R+, where the subscript θ signifies the possible dependence
of the shape function on the parameter θ. The shape function Sθ satisfies the following
conditions: for every θ, Sθ(y) is strictly increasing in y, and bounded below from zero and
above for finite y; moreover, for every fixed y, Sθ(y) is continuous in θ. The purpose of
introducing Sθ is to make the objective function positive, and yet preserve the order of the
solutions and in particular the optimal solution. Moreover, the dependence of Sθ on θ adds
flexibility to the algorithm by giving user the freedom to choose a weighting scheme on the
samples based on the function evaluations. For example, a good choice of Sθ(·) is

Sθ(L(x)) =
1

1 + exp(−So(L(x)− γθ))
, (2.2)

where So is a large positive constant, and γθ is the (1− ρ)-quantile

γθ
4
= sup

r

{
r : Pf(·;θ) {x ∈ X : L(x) ≥ r} ≥ ρ

}
, (2.3)

where Pf(·;θ){A} denotes the probability of event A w.r.t. f(·; θ). Notice that Sθ(·) could
be viewed as a continuous approximation of the indicator function 1{L(x) ≥ γθ} that gives
equal weights to the solutions with function values above γθ and eliminates the solutions
with function values below γθ.

For an arbitrary but fixed θ′ ∈ Θ, define

H(θ; θ′)
4
=

∫
Sθ′(L(x))f(x; θ)dx, and h(θ; θ′)

4
= lnH(θ; θ′). (2.4)

By the condition on the shape function and the fact that ln(·) is a strictly increasing function,
the original problem can be transform to maxθ∈Θ h(θ; θ′) for any fixed θ′. Following the
main idea outlined before, Zhou and Hu (2014) propose a stochastic search algorithm that
iteratively carries out the following two steps:
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1. Generate candidate solutions from f(x; θk), where θk is the sampling distribution pa-
rameter obtained at iteration k.

2. Update θk → θk+1 using a Newton-like iteration for maxθ h(θ; θk), where h(θ; θk) =
ln{
∫
Sθk(L(x))f(x; θ)dx}.

Note that the second step requires us to compute the gradient and Hessian of h(θ; θk) at
θ = θk, which, as shown by Zhou and Hu (2014), have analytical expressions as expectations
under certain probability measures. In particular, if the sampling distribution belongs to an
exponential family of densities, which is defined in the following Definition 2.1, then these
expressions can be further simplified.

Definition 2.1. A family {f(x; θ) : θ ∈ Θ} is an exponential family of densities if it satisfies

f(x; θ) = exp
{
θTΓ(x)− η(θ)

}
,

where Γ(x) = [Γ1(x), ...,Γd(x)]T is the vector of sufficient statistics,

η(θ) = ln{
∫

exp(θTΓ(x))dx}

is the normalization factor that ensures f(x; θ) to be a p.d.f.; Θ = {θ : |η(θ)| < ∞} is the
natural parameter space with a nonempty interior.

Proposition 2.1 below provides the corresponding analytical expressions of the gradient
and Hessian of h(θ; θk) at θ = θk, when an exponential family of densities is used as the
sampling distribution. We refer to Zhou and Hu (2014) for the detailed derivations.

Proposition 2.1. If {f(x; θ) : θ ∈ Θ} is an exponential family of densities, then the gradient
and Hessian of h(θ; θk) at θ = θk have closed-form expressions as follows.{

5θh(θ; θk)
∣∣
θ=θk

= Eq(·;θk) [Γ(x)]− Eθk [Γ(x)] ,

52
θh(θ; θk)

∣∣
θ=θk

= V arq(·;θk) [Γ(x)]− V arθk [Γ(x)] ,
(2.5)

where

q(x; θk) =
Sθk(L(x))f(x; θk)∫
Sθk(L(x))f(x; θk)dx

is a “re-weighted” p.d.f.; Eq(·;θk) [·] and V arq(·;θk) [·] denote the expectation and variance w.r.t.
q(·; θk), respectively; Eθk [·] and V arθk [·] denote the expectation and variance w.r.t. f(·; θk),
respectively.

Note that the Hessian 52
θh(θ; θk)

∣∣
θ=θk

might not be negative semi-definite. To ensure the

parameter updating is along the ascent direction of h(θ; θk) in a Newton-like scheme, one
could approximate 52

θh(θ; θk)
∣∣
θ=θk

by a negative-definite term −(V arθk [T (x)] + εI), which is

a slight perturbation of the second term in52
θh(θ; θk)

∣∣
θ=θk

. Here ε is a small positive number
and I is the identity matrix of proper dimension. Then, a Newton-like updating scheme of
θ for maxθ h(θ; θk) is as follows.

θk+1 = ΠΘ

{
θk + βk (V arθk [Γ(x)] + εI)−15θ h(θ; θk)

∣∣
θ=θk

}
6



= ΠΘ

{
θk + βk (V arθk [Γ(x)] + εI)−1 (Eqk [Γ(x)]− Eθk [Γ(x)])

}
, (2.6)

where βk is a positive step-size, Eqk [·] denotes the expectation w.r.t. q(·; θk), and ΠΘ{·}
denotes the projection operator that projects an iterate back onto the parameter space Θ
by choosing the closest point in Θ.

To have an implementable algorithm, the expectation and variance terms in (2.6) need
to be evaluated or estimated. Notice that the expectation term Eθk [Γ(x)] can be calculated
analytically in most cases. For example, if the chosen exponential family of densities is
the Gaussian family, then Eθk [Γ(x)] reduces to the mean and second moment of a Gaussian
distribution. The variance term V arθk [Γ(x)] might not be directly available, but it could
be estimated by the sample variance using the candidate solutions drawn from f(·; θk).
Specifically, suppose Nk i.i.d. samples {xik : i = 1, ..., Nk} are drawn from f(x; θk), then

V̂ arθk [Γ(x)]
4
=

1

Nk − 1

Nk∑
i=1

Γ(xik)Γ(xik)
T − 1

N2
k −Nk

(
Nk∑
i=1

Γ(xik)

)(
Nk∑
i=1

Γ(xik)

)T

(2.7)

is a sample estimate of V arθk [Γ(x)]. The remaining term Eqk [Γ(x)] can be estimated using
the principle of importance sampling with samples {xik}, noting that

Eqk [Γ(x)] ∝
∫
Sθk(L(x))Γ(x)f(x; θk)dx.

That is, the expectation Eqk [Γ(x)] could be estimated by

Ẽqk [Γ(x)]
4
=

Nk∑
i=1

wikΓ(xik), (2.8)

where {wik : i = 1, ..., Nk} are self-normalized weights given by

wik =
Sθk(L(xik))∑Nk
j=1 Sθk(L(xjk))

, i = 1, ..., Nk.

When Sθk(·) takes a form such as (2.2), it has to be estimated by samples as well since the
(1 − ρ)-quantile γθk defined in (2.3) needs to be estimated by a sample (1 − ρ)-quantile.

Denote the sample quantile by γ̂θk and the resulted approximate shape function by Ŝθk(·).
Then, {wik} are approximated according to

ŵik =
Ŝθk(L(xik))∑Nk
j=1 Ŝθk(L(xjk))

, i = 1, ..., Nk,

and thus Eqk [Γ(x)] is approximated by

Êqk [Γ(x)]
4
=

Nk∑
i=1

ŵikΓ(xik). (2.9)

Eventually, the gradient gk := Eqk [Γ(x)]− Eθk [Γ(x)] is approximated by

ĝk
4
= Êqk [Γ(x)]− Eθk [Γ(x)] .
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2.2 Extension of GASS to Optimization of CVaR

When CVaR of the loss function l(x, ξx), Cα∗(x), could be evaluated exactly for all x ∈ X ,
we can directly apply the scheme described above to solve the CVaR minimization prob-
lem (2.1). Since l(x, ξx) is usually evaluated via simulation, generally its p.d.f. and c.d.f.
are not available; thus, Cα∗(x) could not be evaluated analytically. Nevertheless, it could
be estimated via Monte Carlo simulation. In particular, suppose M i.i.d. loss samples
{l(x, ξ1

x), l(x, ξ
2
x), ..., l(x, ξ

M
x )} are simulated, and then sorted in ascending order as l(x, ξ

(1)
x ) ≤

l(x, ξ
(2)
x ) ≤ ... ≤ l(x, ξ

(M)
x ), which forms an empirical loss distribution. A natural estimator

of Cα∗(x) is CVaR of the empirical loss distribution, which is defined as follows.

Ĉα∗(x)
4
= V̂α∗(x) +

1

M(1− α∗)

M∑
m=1

(
l(x, ξmx )− V̂α∗(x)

)+

, (2.10)

where
V̂α∗(x)

4
= l
(
x, ξ(dα∗Me)

x

)
(2.11)

is VaR of the empirical loss distribution that plays the role of VaR estimator, and dα∗Me is
the smallest integer that is greater than or equal to α∗M .

Although the estimator Ĉα∗(x) is biased, it is strongly consistent and asymptotic normally
distributed under mild regularity assumptions (see, e.g., Zhu and Zhou (2016)). In principle,
we can use it as a replacement for Cα∗(x) and plug it into GASS algorithm.

3 Algorithms: GASS-CVaR, GASS-CVaR-ARL

Now let us formally present the following Algorithm 1, which is referred to as GASS-CVaR,
for simulation optimization of CVaR.

In the initialization step (step 1) of GASS-CVaR, the conditions on the sample size and
step size sequences are imposed to facilitate the convergence of the algorithm. They are
typical requirements for a stochastic approximation algorithm. Since in the sampling step
(step 2) the CVaR values are estimated, the convergence of the original GASS algorithm,
which is designed for deterministic optimization, does not directly apply to GASS-CVaR. We
will show the convergence of GASS-CVaR later. In the estimation step (step 3), as mentioned
before, one common choice of the shape function Sθ(·) is the one in (2.2). Moreover, the
quantile level ρ in (2.3) controls the percentile of elite samples that are used to update the
sampling distribution at the next iteration, and balances between the exploitation of the
neighborhood of current best solutions and the exploration of the entire solution space. For
example, when a smaller ρ is used, less elite samples are used in the updating of the sampling
distribution, and thus less emphasis is put on exploration. In the updating step (step 4),

the iterate is projected onto a convex and compact subset Θ̃ ⊆ Θ instead of Θ, in order to
guarantee numerical stability and fast computation of the projection. In the stopping step
(step 5), a common stopping criterion used in practice is that the norm of the gradient falls
below a pre-specified threshold.

3.1 GASS with Adaptive Risk Levels

When the risk level of interest α∗ is close to 1, implementing GASS-CVaR could be compu-
tationally expensive, since in step 2 the CVaR evaluation requires a large sample size Mk
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Algorithm 1 Gradient-based Adaptive Stochastic Search for Optimization of CVaR

1. Initialization: Choose an exponential family of densities {f(x; θ) : θ ∈ Θ}, and specify
a small positive constant ε, initial parameter θ0, sample size sequence {Nk} that satisfies
Nk →∞, simulation budget sequence {Mk} that satisfies Mk →∞, and step size sequence
{βk} that satisfies

∑∞
k=0 βk =∞,

∑∞
k=0 β

2
k <∞. Set k = 0.

2.Sampling: Draw candidate solutions {xik
i.i.d.∼ f(x; θk) : i = 1, 2, ..., Nk}. For each xik,

simulate i.i.d. loss scenarios {l(xik, ξ
i,j
k ) : j = 1, ...,Mk}, and sort them in ascending order,

denoted by

l
(
xik, ξ

i,(1)
k

)
≤ l
(
xik, ξ

i,(2)
k

)
≤ · · · ≤ l

(
xik, ξ

i,(Mk)
k

)
.

Estimate the CVaR of the loss for each candidate solution at target risk level α∗:

Ĉα∗(x
i
k) = l

(
xik, ξ

i,(dα∗Mke)
k

)
+

1

Mk(1− α∗)

Mk∑
j=1

(
l
(
xik, ξ

i,j
k

)
− l
(
xik, ξ

i,(dα∗Mke)
k

))+

.

3. Estimation: Compute the normalized weights ŵik according to

ŵik =
Ŝθk

(
−Ĉα∗(xik)

)
∑Nk

j=1 Ŝθk

(
−Ĉα∗(xjk)

) , i = 1, ..., Nk,

and then estimate Eqk [Γ(x)] and V arθk [Γ(x)] via Êqk [Γ(x)] =
∑Nk

i=1 ŵ
i
kΓ(xik),

V̂ arθk [Γ(x)] = 1
Nk−1

∑Nk
i=1 Γ(xik)Γ(xik)

T − 1
N2
k−Nk

(∑Nk
i=1 Γ(xik)

)(∑Nk
i=1 Γ(xik)

)T
.

Estimate the gradient gk by ĝk := Êqk [Γ(x)]− Eθk [Γ(x)] .
4. Updating: Update the sampling distribution parameter θ according to

θk+1 = ΠΘ̃

{
θk + βk

(
V̂ arθk [Γ(x)] + εI

)−1

ĝk

}
,

where Θ̃ ⊆ Θ is a non-empty compact and convex constraint set.
5. Stopping: Check if some stopping criterion is satisfied. If yes, stop and return the
current best sampled solution; else, set k := k + 1 and go back to step 2.
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to obtain a good CVaR estimator. This issue is more severe as α∗ gets closer to 1. For
example, for a fixed x, suppose we want to estimate Cα(x) at three different risk levels:
α1 = 0, α2 = 0.90, and α3 = 0.99, where we note that Cα1=0(x) = E[l(x, ξx)] is the ex-
pected loss. Loosely speaking, to achieve the same level of accuracy in CVaR estimation,
the corresponding sample sizes M1, M2, and M3 should result in equal “effective” sam-
ple sizes. In particular, theoretically using Mi i.i.d. samples to estimate Cαi(x) results in
(1 − αi)Mi effective samples, since the rest αiMi samples result in a value of zero. This
implies that (1− α1)M1 = (1− α2)M2 = (1− α3)M3 for equal effective sample sizes. Thus,
M2 = (1−α1)/(1−α2) ·M1 = 10 ·M1 and M3 = (1−α1)/(1−α3) ·M1 = 100 ·M1. Therefore,
the sample size required for accurate CVaR estimation could be easily up to tens of times
even hundreds of times compared with the sample size required for accurate estimation of
expectation.

To save simulation budget and improve the overall efficiency of GASS-CVaR, we propose
to initialize the algorithm at a small risk level α0 (e.g., α0 = 0), and adaptively increase the
risk level αk at every iteration until the target risk level α∗ is achieved while the algorithm
converges at the same time. Since a lower risk level implies that a smaller Mk is required to
achieve the desired accuracy for CVaR estimation, the hope is to adaptively save simulation
budget at each iteration by solving a problem that is similar to the original one but less
computationally expensive.

A good updating rule on the risk level should 1) achieve significant budget savings when
the algorithm is in the “warm-up” phase, i.e., when it puts more emphasis on the exploration
of the entire solution space; 2) solve problems that are close to the original one when the
algorithm is in the “convergence” phase, i.e., when it puts more emphasis on the exploitation
of the promising region that has been identified. The key to such an updating rule lies in
finding an empirical signal on the algorithm’s emphasis between exploration and exploitation.

Note that GASS-CVaR maintains the structure of a gradient-based optimization scheme,
and thus the gradient gk (even the Hessian) used in the updating rule of sampling distribution
parameter could be regarded as an empirical signal on the algorithm’s balance between
exploration and exploitation. Loosely speaking, when the norm of gk is relatively large, the
sampling distribution parameter at next iteration, θk+1, will differ from θk significantly. This
means the algorithm is in the “warm-up” phase, where different regions of the solution space
are being explored. When the norm of gk is small, θk+1 is expected to be close to θk. This
means the algorithm is in the “convergence” phase, where an identified promising region is
being exploited. Therefore, it is natural to design the updating rule on risk level using the
information contained in the gradient gk obtained at every iteration. For example, note that
GASS-CVaR converges when the norm of gk hits zero. Then naturally one could increase the
risk level at every iteration proportionally to the decrease in the norm of gk from previous
iteration, which ensures that the target risk level α∗ is achieved when the gradient hits zero,
i.e., when the algorithm converges.

In particular, we propose an updating scheme on the risk level as follows.

αk+1 =

{
α∗ − ‖gk‖2

‖gk−1‖2
(α∗ − αk) , if ‖gk‖2 < ‖gk−1‖2 ,

αk, o/w,
(3.1)

where ‖·‖2 is the vector Euclidean norm. Note that the updating rule (3.1) ensures that αk is
non-decreasing and bounded above by α∗, with the hope that αk will eventually converge to

α∗. Furthermore, when ‖gk‖2 < ‖gk−1‖2, we can rewrite (3.1) as α∗−αk+1

α∗−αk
=

‖gk‖2
‖gk−1‖2

. Loosely
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speaking, it implies the increase in the risk level for next iteration is proportional to the
decrease in the norm of the gradient from previous iteration. It also ensures that α∗ is
achieved when the norm of the gradient hits zero, i.e., when the algorithm converges. We
do point out that more sophisticated updating rules on the risk level could be incorporated
in the future.

Now we present the following Algorithm 2, which is referred to as GASS-CVaR-ARL, for
simulation optimization of CVaR with adaptive risk levels.

Algorithm 2 GASS-CVaR with Adaptive Risk Levels

1. Initialization: Initialize the algorithm similar to step 1 of GASS-CVaR. Set initial risk
level α0 = 0.
2. Sampling: Draw candidate solutions and simulate the loss distribution scenarios same
as step 2 of GASS-CVaR. Estimate Cαk(x

i
k), CVaR of the loss at the risk level αk, by

Ĉαk(x
i
k) = l

(
xik, ξ

i,(dαkMke)
k

)
+

1

Mk(1− αk)

Mk∑
j=1

(
l
(
xik, ξ

i,j
k

)
− l
(
xik, ξ

i,(dαkMke)
k

))+

.

Record the best candidate solution x∗k found at this iteration: x∗k = arg mini Ĉαk(x
i
k).

3. Estimation: Compute the normalized weights wik according to

wik =
Ŝθk

(
−Ĉαk(xik)

)
∑Nk

j=1 Ŝθk

(
−Ĉαk(x

j
k)
) , i = 1, ..., Nk,

and then estimate Eqk [Γ(x)] and V arθk [Γ(x)] via{
Eqk [Γ(x)] =

∑Nk
i=1w

i
kΓ(xik),

V̂ arθk [Γ(x)] = 1
Nk−1

∑Nk
i=1 Γ(xik)Γ(xik)

T − 1
N2
k−Nk

(∑Nk
i=1 Γ(xik)

)(∑Nk
i=1 Γ(xik)

)T
.

Estimate the gradient gk by gk := Eqk [Γ(x)]− Eθk [Γ(x)] .
4. Updating: Update the sampling distribution parameter θ according to

θk+1 = ΠΘ̃

{
θk + βk

(
V̂ arθk [Γ(x)] + εI

)−1

gk

}
,

where Θ̃ ⊆ Θ is a non-empty compact and convex constraint set; then update the risk level
α according to

αk+1 =

{
α∗ − ‖gk‖2

‖gk−1‖2
(α∗ − αk) , if ‖gk‖2 < ‖gk−1‖2 ,

αk, o/w.
(3.2)

5. Stopping: Check if some stopping criterion is satisfied. If yes, stop and return x∗ =
arg mink Ĉα∗(x

∗
k) and Ĉα∗(x

∗) via simulation; else, set k := k + 1 and go back to step 2.

In the sampling step (step 2) of GASS-CVaR-ARL, since the current risk level αk is
smaller than the target risk level α∗, we could use a sample size Mk smaller than the one
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used in GASS-CVaR to estimate the CVaR values at risk level αk. For example, suppose
one wants to keep the “effective” sample size (1− αk)Mk as a constant. Then, in the initial
iterations of the algorithm the budget savings can be up to tens of times even hundreds of
times (equal to (1− αk)/(1− α∗) precisely) since αk is close to α0 = 0. The best candidate
solution generated at each iteration is also recorded, where note that at kth iteration it is
identified by the minimum CVaR value at risk level αk. So it is a good solution to the CVaR
minimization problem as if the target risk level is αk.

In the estimation step (step 3), note that the estimation of {w}, Eqk [Γ(x)], and thus gk
differs from the estimation in GASS-CVaR, since αk instead of α∗ is used as the risk level
at the kth iteration. One could also view gk as an approximation of the gradient for the
reformulated problem of maxx∈X −Cαk(x). This implies that at each step GASS-CVaR-ARL
solves a CVaR optimization problem that is structurally similar to the original one but less
computationally intensive.

In the updating step (step 4), the updating rule (3.2) is an implementable version of
(3.1), with the gradient gk being replaced by gk. Note that it still ensures that αk is non-
decreasing bounded above by α∗, and α∗ is achieved when the norm of gk hits zero, i.e.,
when the algorithm converges.

In the stopping step (step 5), finding the best solution to the original CVaR optimization
problem is achieved via evaluating and comparing the CVaR values at the target risk level
α∗ for all the best candidate solutions found so far, and thus additional simulation budget
is required; however, it is insignificant compared with the overall budget consumed.

Recall that, in GASS-CVaR-ARL, the risk level used at each iteration is updated in
accordance with the decrease in the norm of the gradient. It implies that the updating rule
(3.1) keeps track of the algorithm’s balance between the exploration of the entire solution
space and the exploitation of an identified promising region, and then makes adjustments on
the risk level accordingly. Therefore, in the “warm-up” phase of the algorithm, using a small
risk level has little negative effect on the algorithm progress since the algorithm puts most
of its emphasis on exploration; in the “convergence” phase of the algorithm, the risk level
αk is close to α∗, and essentially the algorithm is solving problems that are very close to the
original one. Thus, intuitively, we expect the number of iterations that GASS-CVaR-ARL
takes to converge to be similar to the one that GASS-CVaR takes to converge, which is
also verified by the numerical tests presented in Section 5. Since GASS-CVaR-ARL saves
simulation budget at every iteration, total budget saving is achieved.

4 Convergence Analysis

Let us first analyze the convergence properties of GASS-CVaR (Algorithm 1). The analysis
will rely mainly on the convergence analysis of GASS in Zhou and Hu (2014) as well as the
classic results in stochastic approximation methods and algorithms (see, e.g., Kushner and
Yin (2003), Borkar (2008), Kushner (2010), and Kushner and Clark (2012)). The main idea
is to reformulate the updating scheme on θk in GASS-CVaR as a generalized Robbins-Monro
recursive algorithm in solving a constrained ordinary differential equation (ODE) of θ, and
then show the corresponding bias term and noise term in the reformulated updating scheme
are bounded in appropriate asymptotical sense so that the sequence {θk} generated by the
updating scheme converges to a limit set of the ODE w.p.1.

Following the above road map, let us first reformulate the parameter updating scheme in
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GASS-CVaR

θk+1 = ΠΘ̃

{
θk + βk

(
V̂ arθk [Γ(x)] + εI

)−1

ĝk

}
= ΠΘ̃

{
θk + βk

(
V̂ arθk [Γ(x)] + εI

)−1 (
Êqk [Γ(x)]− Eθk [Γ(x)]

)}
,

(4.1)

as
θk+1 = θk + βk [G(θk) + bk + ek + pk] . (4.2)

Here

G(θk)
4
= V −1

k (Eqk [Γ(x)]− Eθk [Γ(x)]) ,

bk
4
= V̂ −1

k

(
Êqk [Γ(x)]− Ẽqk [Γ(x)]

)
,

ek
4
=

(
V̂ −1
k − V −1

k

)(
Ẽqk [Γ(x)]− Eθk [Γ(x)]

)
+ V −1

k

(
Ẽqk [Γ(x)]− Eqk [Γ(x)]

)
,

and pk is the resulted projection error term, where for simplicity we denote

Vk
4
= (V arθk [Γ(x)] + εI) and V̂k

4
=
(
V̂ arθk [Γ(x)] + εI

)
.

In (4.2) the term G(θk) is the gradient vector field in a standard stochastic approximation

algorithm, the term bk represents the bias in estimating Ẽqk [Γ(x)] caused by the inexact
evaluation of the shape function, the term ek represents the simulation noise in the estimators
V̂ arθk [Γ(x)] and Ẽqk [Γ(x)], and the term pk represents the projection error after taking the

current iterate back onto the constraint set Θ̃ with minimum Euclidean norm. Note that
the bias term bk is caused by both the outer-layer sampling on the solution space and the
inner-layer simulation of the loss distribution; however, the noise term ek accounts for the
error due to the outer-layer sampling only, since both V̂ arθk [Γ(x)] and

Ẽqk [Γ(x)] =

Nk∑
i=1

wikΓ(xik), where wik =
Sθk(−Cα∗(xik))∑Nk
j=1 Sθk(−Cα∗(xik))

do not involve the inner-layer sampling of l(x; ξx).
Now let us introduce the assumptions on the algorithm and l(x; ξx) for the convergence

of the algorithm. The following set of assumptions is on the algorithm parameters and the
choice of the exponential family of densities. It largely follows from the standard assumptions
for a generalized stochastic approximation algorithm.

Assumption 1.

(i) The step size sequence {βk} satisfies that βk > 0 for all k, βk ↘ 0 as k → ∞,∑∞
k=0 βk =∞ and

∑∞
k=0 β

2
k <∞.

(ii) The outer-layer sample size sequence {Nk} satisfies Nk = N0 · kτ for some constant
τ > 0. Furthermore, the sequences {βk} and {Nk} jointly satisfies βk√

Nk
= O(k−ζ) for

some constant ζ > 1.

(iii) The inner-layer sample size sequence Mk satisfies that Mk ↗∞ as k →∞.
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(iv) The sufficient statistics Γ(x) of the chosen exponential family of densities is bounded
on X .

In the above set of assumptions, Assumption 1.(i) follows from the typical step size
assumption in a gradient-based optimization algorithm. Assumption 1.(ii) ensures that the
outer-layer sample size Nk increases to infinity no slower than certain speed given a choice
of the step size sequence, and it can be easily satisfied. For example, if βk = O(1/k), then
Nk = N0 · kτ for an arbitrary constant τ > 0 is sufficient for βk√

Nk
= O(k−ζ) to hold for some

constant ζ > 1. Assumption 1.(iii) ensures that the error of the CVaR estimators caused
by the inner-layer simulation of the loss distribution vanishes as k →∞. Assumption 1.(iv)
is to bound the expectation and variance terms of the sufficient statistics in the algorithm.
It holds for many exponential families used in practice. For example, when the solution
space X is a nonempty compact set, the continuity of the function Γ(·) will be sufficient for
Assumption 1.(iv) to hold.

The next set of assumptions is on the regularity conditions of the loss function l(x, ξx). As
noted previously, the bias term bk is caused by the inexact evaluation of the shape function
Sθk(·). When Sθk(·) takes the form of (2.2), bk is caused by the error in estimating the
(1 − ρ)-quantile γθk in (2.3) as well as the error in Monte Carlo estimation of the CVaR
values. Specifically, recall that for a fixed x,

Ŝθk

(
−Ĉα∗(x)

)
=

1

1 + exp
(
−So

(
−Ĉα∗(x)− γ̂θk

)) , (4.3)

where Ĉα∗(x) is the CVaR estimator given in (2.10), and γ̂θk is the sample (1−ρ)-quantile of

{−Ĉα∗(xik) : i = 1, ..., Nk}, i.e., γ̂θk is the (d(1 − ρ)Nke)th order statistic of {−Ĉα∗(xik) : i =
1, ..., Nk}. Since γθk could be viewed as the (1−ρ)-level Value-at-Risk (VaR) of−Cα∗(x) w.r.t.
the sampling distribution f(x; θk), then γ̂θk could be regarded as a nested risk estimator in
which the outer-layer simulation is on estimation of VaR and the inner-layer is on estimation
of CVaR. Hence, bounding the bias term bk reduces to bounding the errors of the nested
risk estimator γ̂θk as well as the one-layer CVaR estimator Ĉα∗(x). Here we will resort to
the asymptotic analysis of nested risk estimators in Gordy and Juneja (2010), and Zhu and
Zhou (2016).

To this end, let us rewrite the CVaR estimator Ĉα∗(x) in (2.10) as

Ĉα∗(x) = Cα∗(x) +
1√
Mk

· Ek(x), ∀x ∈ X ,

where Ek(x) is the standardized error of the CVaR estimator. Note that by the asymptotic

normality of Ĉα∗(x), under appropriate regularity conditions Ek(x) has a limiting distribution
as k →∞. Thus, the effect of the diminishing noise term Ek(x)/

√
Mk on the distribution of

Ĉα∗(x) will vanish as M →∞. Hence, we expect the “distance” between the distribution of

Ĉα∗(x) and the distribution of Cα∗(x) to vanish as M → ∞. That is, the p.d.f. of Ĉα∗(x)
converges to the p.d.f. of Cα∗(x). The following set of assumptions, which is referred to
Assumption 2, guarantees that the convergence of the p.d.f. is sufficiently fast. It largely
follows from Assumption 1 in Gordy and Juneja (2010) and Assumption 3.2 in Zhu and Zhou
(2016).

Assumption 2.
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(i) For all x ∈ X , the loss distribution l(x, ξx) has finite second moment; moreover, for all
θ ∈ Θ, the CVaR function Cα∗(x), which is a random variable under the distribution
f(·; θ), has finite second moment.

(ii) For all θ ∈ Θ and each k, the joint density dk(c, e) of (Cα∗(x), Ek(x)), and its partial
derivatives ∂

∂c
dk(c, e) and ∂2

∂c2
dk(c, e) exist for all pairs of (c, e).

(iii) For all θ ∈ Θ and each k, there exist nonnegative functions D0,k(·), D1,k(·) and D2,k(·)
such that dk(c, e) < D0,k(e), ∂

∂c
dk(c, e) < D1,k(e), and ∂2

∂c2
dk(c, e) < D2,k(e) for all (c, e).

Furthermore, for all θ ∈ Θ, supk
∫
|e|rDi,k(e)de <∞ for i = 0, 1, 2, and 0 ≤ r ≤ 4.

In the above assumption, Assumption 2.(i) ensures that a one-layer VaR or CVaR estima-
tor defined in (2.10) or (2.11) is strongly consistent and asymptotically normally distributed,
and thus the standardized estimation error Ek(x) has a limiting distribution as k →∞. As-

sumption 2.(ii) and 2.(iii) further ensure that the p.d.f. of Ĉα∗(x) converges to the p.d.f.
of Cα∗(x) sufficiently fast. This will imply the strong consistency of the nested risk estima-

tor γ̂θk and further the convergence of the approximate shape function Ŝθk

(
−Ĉα∗(x)

)
, as

presented in the following Lemma 4.1.

Lemma 4.1. Suppose the shape function Sθk(·) takes the form

Sθk (−Cα∗(x)) =
1

1 + exp (−So (−Cα∗(x)− γθk))
,

where So is a large positive constant, and γθk
4
= supr

{
r : Pf(·;θk) {x ∈ X : −Cα∗(x) ≥ r} ≥ ρ

}
is the (1 − ρ)-quantile of (−Cα∗(x)) w.r.t. f(·; θk). Further suppose that Sθk (−Cα∗(x)) is

approximated by Ŝθk

(
−Ĉα∗(x)

)
as in (4.3). Then under Assumption 1.(ii), 1.(iii) and

Assumption 2, we have

lim
k→∞

∣∣∣Ŝθk (−Ĉα∗(x)
)
− Sθk (−Cα∗(x))

∣∣∣ = 0, w.p.1, ∀x ∈ X . (4.4)

The main idea of the proof is to show Ĉα∗(x) → Cα∗(x) w.p.1 and γ̂θk → γθk w.p.1 as
k →∞. The detailed proof is included in the appendix. Following the road map and based
on Lemma 1, we next show that the bias term bk converges to zero w.p.1. as k → ∞, as
presented in Lemma 4.2 below.

Lemma 4.2. Under Assumption 1 and Assumption 2, we have

lim
k→∞
‖bk‖2 = 0, w.p.1, (4.5)

where recall that ‖bk‖2 is the vector Euclidean norm of bk.

The proof of Lemma 4.2 is included in the appendix. Continuing the road map, we next
show that the summed tail error goes to zero w.p.1, as presented in the following Lemma
4.3.

Lemma 4.3. Under Assumption 1, we have

lim
k→∞

{
sup

n:0≤
∑n−1
i=k βi≤T

∥∥∥∥∥
n∑
i=k

βiei

∥∥∥∥∥
2

}
= 0, w.p.1 (4.6)

for all T ≥ 0.
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Lemma 4.3 is identical to Lemma 2 in Zhou and Hu (2014), so we omit the proof here.
With the above lemmas, we now proceed to the main result on the convergence of Algorithm
1.

Given an arbitrary θ ∈ Θ̃, a set C(θ) is defined as follows. For θ that lies in the interior

of Θ̃, let C(θ) = {0}; for θ that lies on the boundary of Θ̃, let C(θ) be the infinite convex
cone generated by the outer normals at θ of the faces on which θ lies (see, e.g., Kushner
(2010) pp. 89). Then the updating scheme (4.2) in GASS-CVaR could be viewed as a noisy
discretization of a constrained ODE for {θ(t) : t ≥ 0}:

θ̇(t) = G(θ(t)) + p(t), p(t) ∈ −C(θ(t)), t ≥ 0, (4.7)

where p(t) is the minimum force to take θ(t) back to the set Θ̃. Using the ODE approach
for the convergence of the Robbins-Monro Algorithm (see, e.g., Kushner (2010)), we can
show that the sequence {θk} generated by (4.1) converges to a limit set of the ODE (4.7).
In particular, we have the following theorem.

Theorem 4.1. Convergence of GASS-CVaR. Suppose Assumption 1 and Assumption
2 hold. Then the sequence {θk} generated by (4.1) converges to a limit set of the ODE
(4.7) w.p.1. Furthermore, if the limit sets of (4.7) are isolated equilibrium points, then {θk}
converges to a unique equilibrium point w.p.1.

Theorem 4.1 is a direct consequence of Theorem 2 in Kushner (2010) with Lemma 4.2
and Lemma 4.3 above. Starting with the convergence of GASS-CVaR, we will show the
convergence of the algorithm GASS-CVaR-ARL. The intuition is as follows.

Recall that the updating scheme on θ in GASS-CVaR-ARL is

θk+1 = ΠΘ̃

{
θk + βk

(
V̂ arθk [Γ(x)] + εI

)−1

gk

}
= ΠΘ̃

{
θk + βk

(
V̂ arθk [Γ(x)] + εI

)−1 (
Eqk [Γ(x)]− Eθk [Γ(x)]

)}
.

(4.8)

Compared with the updating scheme (4.1) on θ in GASS-CVaR, we could see that the

approximate expectation term Êqk [Γ(x)] in (4.1) is replaced by Eqk [Γ(x)] in (4.8) in estimating
the gradient gk. Note that the updating scheme for the risk level αk in (3.2) guarantees that
αk is non-decreasing and bounded above by the target risk level α∗. Thus, the limit of the
risk level sequence {αk} exists. If we are able to show that the limit is α∗, then the difference

between Eqk [Γ(x)] and Êqk [Γ(x)], i.e., the difference between gk and ĝk, will vanish as k →∞.
The reason is that the normalized weights {wk} in computing Eqk [Γ(x)] will asymptotically

approach {ŵk} in computing Êqk [Γ(x)] as k →∞.
Assume by contradiction that limk→∞ αk = α∗ < α∗. On the one hand, following from

above argument, GASS-CVaR-ARL asymptotically approaches GASS-CVaR for the simu-
lation optimization of Cα∗(x) instead of Cα∗(x). Therefore, it is convergent, and thus the
gradient sequence {gk} approaches zero w.p.1. One the other hand, the sequence {‖gk‖2}
generated by (3.2) will always be above a certain positive value w.p.1 (otherwise αk will
converge to α∗). This contradicts with the fact that {gk} approaches zero w.p.1. We formal-
ize the above analysis in the following Theorem 4.2. The detailed proof is included in the
appendix.
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Theorem 4.2. Convergence of GASS-CVaR-ARL. Suppose Assumption 1 and As-
sumption 2 hold. Then the risk level sequence {αk} generated by (3.2) converges to the
target risk level α∗ w.p.1, and the sequence {θk} generated by (4.8) converges to a limit set of
the ODE (4.7) w.p.1. Furthermore, if the limit sets of (4.7) are isolated equilibrium points,
then {θk} converges to a unique equilibrium point w.p.1.

5 Numerical Experiments

We carry out numerical tests to compare the performances of GASS-CVaR and GASS-CVaR-
ARL. In particular, the loss functions tested are listed in the following, among which some
are designed by adding Gaussian noises to the continuous benchmark functions in Hu et al.
(2007). However, we point out our algorithms do not have much assumption on the structure
of the loss function or the noise. For convenience, let N (0, 1) be a standard one-dimensional
Gaussian distribution, and the loss function is in the form of

li(x, ξx) = Li(x) +


√

1 + 100
∑D

d=1(xd − 1)2 · N (0, 1), i = 0, 1, 3, 4,√
1 + 100

∑D
d=1(xd − 2)2 · N (0, 1), i = 2, 5,

(5.1)

where D is the dimension of the solution space. Specifically, L0 =
∑D

d=1 x
2
d; L1 and L2

are respectively Powell function and Rosenbrock function, which are badly scaled; L3 is
Rastrigin function, which is multimodal with a large number of local optima; L4 and L5 are
respectively Pintér function and Levy function, which are badly-scaled as well as multimodal.
The explicit expressions of Li’s are listed as follows, and we test all functions with D = 10.

(0) L0(x) =
∑D

d=1 x
2
d.

(1) Powell function L1(x).

L1(x) =
D−2∑
d=2

[
(xd−1 + 10xd)

2 + 5(xd+1 − xd+2)2 + (xd − 2xd+1)4

+10(xd−1 − xd+2)4
]
.

(2) Rosenbrock function L2(x).

L2(x) =
D−1∑
d=1

[
(xd − 1)2 + 100(x2

d − xd+1)2
]
.

(3) Rastrigin function L3(x).

L3(x) =
D∑
d=1

(x2
d − 10 cos(2πxd))− 10D − 1.

(4) Pintér function L4(x).

L4(x) =
[ D∑
d=1

dx2
d +

D∑
d=1

20d sin2(xd−1 sinxd − xd + sinxd+1)
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+
D∑
d=1

d log10(1 + d(x2
d−1 − 2xd + 3xd+1 − cosxd + 1)2)

]
.

(5) Levy function L5(x).

L5(x) = − sin2(πy1)−
D−1∑
d=1

[
(yd − 1)2(1 + 10 sin2(πyd + 1))

]
−(yD − 1)2(1 + 10 sin2(2πyD)),

where yd = 1 + (xd − 1)/4, d = 1, ..., D.

Note that we add the noise in the above form to make sure the optimal solution becomes
different when α∗ varies. If Cα∗=0(x) = Li(x) = Eξx [li(x, ξx)] is of interest, then evidently
x◦ = [0, ..., 0]d is the minimizer for i = 0, 1, 3, 4, and x◦ = [1, ..., 1]d is the minimizer for
i = 2, 5. As the risk level of interest α∗ increases, the minimizer of Cα∗(x), might be very
different from x◦. Specifically, the loss distribution of li has a relatively large variance at x◦

(note that it has the smallest variance at x = [xo1 + 1, ..., xoD + 1]). This indicates that, as the
risk level of interest α∗ increases, the minimizer of Cα∗(x) may start to deviate away from x◦

and move towards x = [xo1 + 1, ..., xoD + 1] (this is also verified by our numerical tests), where
the loss function is exposed to the lowest amount of noise. Note that when α∗ > 0, except
for l0, the minimizers of Cα∗(x) and the minimum CVaR function values are not analytically
available.

In all the implementations, we use independent multivariate normal distributionN (µk,Σk)
as the parameterized sampling distribution f(x; θk) at iteration k, where µk = (µ1

k, ..., µ
D
k )T

is the mean parameter and Σk = diag((σ1
k)

2, ..., (σDk )2) is the covariance matrix. Thus,
θk = (µ1

k, ..., µ
D
k ; (σ1

k)
2, ..., (σDk )2)T . The initial mean parameter µ0 are drawn randomly from

the uniform distribution U [−30, 30]D, and the initial covariance matrix Σ0 is set to be
Σ0 = 1000ID×D, where ID×D is the identity matrix of dimension D. From the experi-
ment results, we notice that the performance of the algorithms is insensitive to the initial
mean parameter as long as the initial covariance matrix is sufficiently large.

At iteration k, we use the shape function Sθk(·) in the form of expression (2.2) with
So = 105 and ρ = 0.1 in (2.3). The (1 − ρ)-quantile γθk is estimated by the (1 − ρ) sample
quantile of the CVaR estimates for all the candidate solutions generated at this iteration.
The risk level of interest is α∗ = 0.99, and in GASS-CVaR-ARL the initial risk level is set to
be α0 = 0. The sample size of candidate solutions drawn from the sampling distribution is
set to be Nk = 1000, and the sample size used to estimate the CVaR of the loss distribution is
set in a way such that the effective sample size is (1−αk)Mk = 50. Therefore, in GASS-CVaR
Mk = 50/(1−α∗) = 50/0.01 = 5×103 for all k, and in GASS-CVaR-ARL Mk = 50/(1−αk)
at iteration k with initial sample size M0 = 50/(1− 0) = 50. The small positive constant ε
used to ensure the positive definiteness of the Hessian is set to be ε = 10−10, and the step
size βk is set to be βk = 50/(k + 2000)0.6, which satisfies the assumptions in step 1 of both
two algorithms.

We run both algorithms 50 times independently and summarize their average performance
in Figure 1. Recall that, except for the loss function l0, the minimum CVaR value is not
readily available for any other loss function. So we implement GASS-CVaR with large
sample sizes N = 5 × 103 and M = 105 to find close approximations of the true minimum
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CVaR values, which will be served as benchmark values later when comparing algorithm
performance. Later the approximate minimum CVaR values will be used as the true CVaR
values in comparing the algorithm performance. In the upper-left plot of Figure 1 for the loss
function l0, the y-axis represents the ratio of the best CVaR values found by the algorithms
to the minimum CVaR value at the target risk level α∗; for all the rest of the plots, the
y-axis represents the same ratio, except that the minimum is replaced by the approximate
minimum CVaR values from implementing GASS-CVaR with sample sizes N and M . We
observe that both algorithms (GASS-CVaR and GASS-CVaR-ARL) perform well in finding
optimal solutions and minimum CVaR values. Moreover, GASS-CVaR-ARL converges faster
and often reduces the total number of function evaluations needed for convergence by 2-4
times, which demonstrates the advantage of using adaptive risk levels in GASS-CVaR-ARL.

Figure 2 includes two plots for the loss function l0: the left one plots the ratio of the
CVaR values evaluated at the means of the sampling distributions to the minimum CVaR
value; the right one plots the trajectory of the risk level αk. We can see that the means of the
sampling distributions in both GASS-CVaR and GASS-CVaR-ARL converge to the optimal
solution, and GASS-CVaR-ARL achieves a faster convergence speed. Moreover, the risk level
αk in GASS-CVaR-ARL increases steadily to the target risk level α∗ = 0.99, which indicates
that the norm of the gradient decreases steadily to zero and the algorithm converges.

6 Conclusion

In this paper, we study the extension of the recently proposed algorithm GASS, which is
designed for the optimization of deterministic non-differentiable objectives, to the simulation
optimization of risk measures such as VaR and CVaR. Instead of optimizing VaR or CVaR
at the risk level of interest directly, we propose to initialize the algorithm at a small risk
level, and then increase the risk level at each iteration adaptively such that the target risk
level is achieved while the algorithm converges simultaneously. It enables us to adaptively
reduce the number of samples needed to estimate VaR or CVaR at each iteration, leading to
improvement of efficiency over the original algorithm. The numerical results demonstrate the
advantage of incorporating such an adaptive updating rule on the risk level in the algorithm
by showing it results in a 2-4 times of total budget saving for the tested loss functions.
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A Proof of Theorems

Proof. Proof of Lemma 4.1. Since Sθk(·) is continuous in both Cα∗ and γθk , it suffices to
show that for all x ∈ X

lim
k→∞

Ĉα∗(x)→ Cα∗(x), w.p.1., and lim
k→∞

γ̂θk → γθk , w.p.1. (A.1)
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Figure 1: Average Performances of GASS-CVaR and GASS-CVaR-ARL.

Let us first show the left part of the above statement. Recall that by Assumption 1.(iii),
we have Mk →∞ as k →∞. Then, we only need to show that the one-layer CVaR estimator
Ĉα∗(x) is strongly consistent. By Lemma A.1 in Zhu and Zhou (2016) this holds, where note
that Assumption 3.1 in Zhu and Zhou (2016) is satisfied by Assumption 2 here.

It remains to establish the right part of (A.1). In view of Assumption 1.(ii) and 1.(iii),
we have Nk,Mk → ∞ as k → ∞. That is, Nk,Mk go to infinity simultaneously as k →.
Therefore, it suffices to show

lim
Nk,Mk→∞

γ̂θk → γθk , w.p.1. (A.2)
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Figure 2: CVaR at Mean of the Sampling Distribution and Trajectory of Risk Level.

Note that
γθk = V1−ρ(−Cα∗(x)),

i.e., the (1− ρ)-level Value-at-Risk (VaR) of (−Cα∗(x)) w.r.t. f(x; θk). Furthermore,

γ̂θk = V̂1−ρ(−Ĉα∗(x)),

i.e., the sample (1 − ρ)-quantile of {−Ĉα∗(xik) : i = 1, ..., Nk}. Therefore, γ̂θk is a nested
estimator of γθk , where Nk outer-layer samples are drawn, and for each outer-layer sample
Mk inner-layer samples are drawn.

Rewrite Ĉα∗(x) as

Ĉα∗(x) = Cα∗(x) +
1√
Mk

· Ek(x), ∀x ∈ X , (A.3)

where Ek(x) is the standardized error. By Theorem 3.3 in Zhu and Zhou (2016), we have

lim
Mk→∞

√
Mk

(
Ĉα∗(x)− Cα∗(x)

)
D⇒ N

(
0, σ2(x)

)
,

where “
D⇒” denotes the convergence in distribution, and N (0, σ2(x)) denotes a normal dis-

tribution with mean zero and variance σ2(x), where σ2(x) is the variance parameter that only
depends on x. Combined with (A.3), we can see that the standardized error Ek(x) converges
to N (0, σ2(x)) in distribution. Have establishing this, the remaining proof is identical to
the proof of Theorem 3.2 in Zhu and Zhou (2016), where note that Assumption 2 here is
parallel with Assumption 3.2 in Zhu and Zhou (2016).

Proof. Proof of Lemma 4.2. With a slight abuse of notation, we also use ‖A‖2 to denote
the spectral norm of a real square matrix A induced by the vector Euclidean norm. In par-
ticular, ‖A‖2 =

√
λmax(ATA), i.e., ‖A‖2 is the largest eigenvalue of the positive-semidefinite

matrix ATA. When the matrix A is positive-semidefinite, ‖A‖2 is just the largest eigenvalue
of A.

21



To facilitate the proof, let us also introduce the following notations:

Ỹk
4
=

1

Nk

Nk∑
i=1

Sθk
(
−Cα∗(xik)

)
Γ(xik), Z̃k

4
=

1

Nk

Nk∑
i=1

Sθk
(
−Cα∗(xik)

)
,

Ŷk
4
=

1

Nk

Nk∑
i=1

Ŝθk

(
−Ĉα∗(xik)

)
Γ(xik), Ẑk

4
=

1

Nk

Nk∑
i=1

Ŝθk

(
−Ĉα∗(xik)

)
.

Here note that Ỹk, Ŷk are vectors because Γ(·) are vector-valued functions, and Z̃k, Ẑk are
scalar-valued.

Since Cα∗(x) and Γ(x) are both bounded on X , we immediately have |Z̃k| bounded below

from zero and
‖Ŷk‖

2

|Ẑk| bounded for all k. Note that

bk = V̂ −1
k

(
Êqk [Γ(x)]− Ẽqk [Γ(x)]

)
= V̂ −1

k

(
Ŷk

Ẑk
− Ỹk

Z̃k

)

= V̂ −1
k

(
Ŷk

Ẑk
− Ŷk

Z̃k
+
Ŷk

Z̃k
− Ỹk

Z̃k

)

= V̂ −1
k Ŷk

(
Z̃k − Ẑk
ẐkZ̃k

)
+ V̂ −1

k

Ŷk − Ỹk

Z̃k
.

Therefore,

‖bk‖2 ≤

∥∥∥V̂ −1
k

∥∥∥
2∣∣∣Z̃k∣∣∣
∥∥∥Ŷk

∥∥∥
2∣∣∣Ẑk∣∣∣
∣∣∣Z̃k − Ẑk∣∣∣+

∥∥∥V̂ −1
k

∥∥∥
2∣∣∣Z̃k∣∣∣
∣∣∣Ŷk − Ỹk

∣∣∣
≤

∥∥∥V̂ −1
k

∥∥∥
2∣∣∣Z̃k∣∣∣
∥∥∥Ŷk

∥∥∥
2∣∣∣Ẑk∣∣∣

1

Nk

Nk∑
i=1

∣∣∣Sθk (−Cα∗(xik))− Ŝθk (−Ĉα∗(xik))∣∣∣
+

∥∥∥V̂ −1
k

∥∥∥
2∣∣∣Z̃k∣∣∣

1

Nk

Nk∑
i=1

∣∣∣Ŝθk (−Ĉα∗(xik))− Sθk (−Cα∗(xik))∣∣∣ ∥∥Γ(xik)
∥∥

2
.

Recall that V̂k =
(
V̂ arθk [Γ(x)] + εI

)
. Thus, it is a positive-definite matrix and its

minimum eigenvalue is at least ε. It follows that the maximum eigenvalue of V̂ −1
k is no greater

than ε−1, i.e.,
∥∥∥V̂ −1

k

∥∥∥
2
≤ ε−1. Since |Z̃k| is bounded below from zero,

‖Ŷk‖
2

|Ẑk| is bounded, and

Γ(x) is bounded on X , Lemma 4.1 implies that ‖bk‖2 → 0 w.p.1 as k →∞.

Proof. Proof of Theorem 4.2. Let us first show the following lemma.

Lemma A.1. Suppose Assumption 1 and Assumption 2 hold. Further suppose the risk
level sequence {αk} generated by (3.2) converges to the target risk level α∗ w.p.1. Then the
sequence {θk} generated by (4.8) converges to a limit set of the ODE (4.7) w.p.1.
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Proof of Lemma A.1. Similar to the proof of Theorem 4.1, we will reformulate the
updating scheme (4.8) as a noisy discretization of the constrained ODE (4.7), and show
both the bias and the noise are properly bounded. Specifically, rewrite (4.8) as

θk+1 = θk + βk
[
G(θk) + bk + ek + pk

]
, (A.4)

where G(θk) and ek are defined as previously, bk
4
= V̂ −1

k

(
Eqk [Γ(x)]− Ẽqk [Γ(x)]

)
, and pk is

the projection error term that takes the current iterate back onto the constraint set Θ̃ with
minimum Euclidean norm. In view of Theorem 2 in Kushner (2010), it suffices to show

lim
k→∞

∥∥bk∥∥2
= 0, w.p.1.

To ease the presentation, let us denote

Ẽαqk [Γ(x)]
4
=

Nk∑
i=1

Sθk (−Cα(xik))∑Nk
j=1 Sθk

(
−Cα(xjk)

)Γ(xik).

It immediately implies that Ẽqk [Γ(x)] = Ẽα∗qk [Γ(x)]. Furthermore,∥∥bk∥∥2
=

∥∥∥V̂ −1
k

(
Eqk [Γ(x)]− Ẽqk [Γ(x)]

)∥∥∥
2

=
∥∥∥V̂ −1

k

(
Eqk [Γ(x)]− Ẽαkqk [Γ(x)]

)
+ V̂ −1

k

(
Ẽαkqk [Γ(x)]− Ẽα∗qk [Γ(x)]

)∥∥∥
2

≤
∥∥∥V̂ −1

k

(
Eqk [Γ(x)]− Ẽαkqk [Γ(x)]

)∥∥∥
2

+
∥∥∥V̂ −1

k

∥∥∥
2

∥∥∥Ẽαkqk [Γ(x)]− Ẽα∗qk [Γ(x)]
∥∥∥

2
.(A.5)

Following an argument almost identical to the proof of Lemma 4.2, the first term in (A.5)
converges to 0 w.p.1 as k → ∞. Note that Sθk(·) is a continuous function and Cαk(x) is

continuous in αk. Thus, Ẽαkqk [Γ(x)] is a continuous function in αk. Therefore, the second

term in (A.5) converges to 0 w.p.1 as k →∞ since
∥∥∥V̂ −1

k

∥∥∥
2

is bounded and αk converges to

α∗ as k →∞. Proof of Lemma A.1 is now complete.
In view of Lemma A.1, it remains to show that the risk level sequence {αk} generated by

(3.2) converges to the target risk level α∗ w.p.1. Proof by contradiction. Since the sequence
{αk} is non-decreasing and bounded above by α∗, let us assume limk→∞ αk = α∗ and α∗ < α∗

w.p.1. Conditioning on this, Lemma A.1 still holds when the target risk level α∗ is replaced
by α∗. That is, the algorithm GASS-CVaR-ARL converges, and the gradient sequence {gk}
converges to 0 w.p.1. as k → ∞. Note that gk is bounded (since Γ(x) is bounded), by
bounded convergence theorem we have

lim
k→∞

E [‖gk‖2] = 0. (A.6)

Furthermore, note that

E [‖gk − gk‖2] = E
[∥∥Eqk [Γ(x)]− Eα∗qk [Γ(x)]

∥∥
2

]
≤ E

[∥∥∥Eqk [Γ(x)]− Ẽα∗qk [Γ(x)]
∥∥∥

2

]
+ E

[∥∥∥Ẽα∗qk [Γ(x)]− Eα∗qk [Γ(x)]
∥∥∥

2

]
,(A.7)

where

Eα∗qk [Γ(x)]
4
=

∫
Sθk (−Cα∗(x)) Γ(x)f(x; θk)dx∫
Sθk (−Cα∗(x)) f(x; θk)dx

.
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We have shown in the proof of Lemma A.1 that

lim
k→∞

∥∥∥Eqk [Γ(x)]− Ẽα∗qk [Γ(x)]
∥∥∥

2
= 0, w.p.1.

Since
∥∥∥Eqk [Γ(x)]− Ẽα∗qk [Γ(x)]

∥∥∥
2

is bounded, again by bounded convergence theorem

lim
k→∞

E
[∥∥∥Eqk [Γ(x)]− Ẽα∗qk [Γ(x)]

∥∥∥
2

]
= 0. (A.8)

Moreover, notice that Ẽα∗qk [Γ(x)] is a self-normalized importance sampling estimator of Eα∗qk [Γ(x)].
Applying Theorem 9.1.10 (pp. 294) in Cappé et al. (2005), we have

E
[∣∣∣Ẽα∗qk [Γj(x)]− Eα∗qk [Γj(x)]

∣∣∣2] ≤ cj
Nk

, j = 1, ..., dθ,

where Γj(x) is the jth element in the vector Γ(x), and cj’s are positive constants that depend
on the bounds of Γj(x)’s on X . Therefore, by Cauchy-Schwarz Inequality we have

E
[∥∥∥Ẽα∗qk [Γ(x)]− Eα∗qk [Γ(x)]

∥∥∥
2

]
≤
√
d ·maxj cj

Nk

.

That is,

lim
k→∞

E
[∥∥∥Ẽα∗qk [Γ(x)]− Eα∗qk [Γ(x)]

∥∥∥
2

]
= 0. (A.9)

Combining (A.7), (A.8) with (A.9), we have

lim
k→∞

E [‖gk − gk‖2] = 0.

In view of (A.6), we have
lim
k→∞

E [‖gk‖2] = 0. (A.10)

Since α∗ < α∗, the sequence {‖gk‖2} generated by (3.2) will always be above a certain
positive value w.p.1 (otherwise αk will converge to α∗), which contradicts with (A.10). Proof
is complete.
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