
Approximate solutions of vector optimization

problems via improvement sets in real linear

spaces*

C. Gutiérrez� L. Huerga� B. Jiménez� V. Novo�
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We deal with a constrained vector optimization problem between real linear

spaces without assuming any topology and by considering an ordering defined

through an improvement set E. We study E-optimal and weak E-optimal solu-

tions and also proper E-optimal solutions in the senses of Benson and Henig.

We relate these types of solutions and we characterize them through approximate

solutions of scalar optimization problems via linear scalarizations and nearly E-

subconvexlikeness assumptions. Moreover, in the particular case when the feasible
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grange multiplier rules. The use of improvement sets allows us to unify and to

extend several notions and results of the literature. Illustrative examples are also

given.
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1 Introduction

Roughly speaking, Adán and Novo [1, 2, 3, 4] introduced a new research line in vector
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these papers, the initial and final spaces of the optimization problems are not endowed

with any topology. To overcome this fact, some algebraic counterparts of the main

topological tools are introduced, which exploit their geometrical nature. Between them,

let us underline the concept of vector closure (see [2]).

On the other hand, Chicco et al. [6], in the finite dimensional setting and via an

improvement set E ⊂ Rp (i.e., 0 /∈ E and E +Rp+ = E, where Rp+ denotes the nonneg-

ative orthant), defined the notion of E-optimal point –a kind of nondominated point

with respect to the ordering set E– that encompasses the concepts of Pareto efficiency

and weak Pareto efficiency. By definition, an improvement set can be considered as an

approximation of the ordering cone that does not contain the point 0, and because of

that this type of sets are useful to deal with approximate Pareto efficient points.

Later, this concept was studied by Gutiérrez et al. [11] in the framework of real

locally convex Hausdorff topological linear spaces to unify several notions and results

on exact and approximate efficient solutions of vector optimization problems. In [20],

Xia et al. provided several characterizations of improvement sets via quasi interior, and

in [17] Lalitha and Chatterjee established stability and scalarization results in vector

optimization by using improvement sets. Notice that the nondominated solutions with

respect to an improvement set are global solutions of the problem. In particular, under

convexity assumptions, they can be characterized by ε-subgradients (see [8, 9]) –recall

that the ε-subdiferential of a convex function is a global concept provided that ε > 0

(see [13])–.

Essentially, an improvement set E in an arbitrary ordered linear space is a free

disposal set (i.e., it coincides with its cone expansion E +K, where K is the ordering

cone). This kind of sets was introduced by Debreu [7] and they have been frequently

used in mathematical economics and optimization. So, one can find in the literature

several previous concepts very close to the notion of improvement set.

During the last years and motivated by the quoted contributions by Adán and Novo

[1, 2, 3, 4] and Chicco et al. [6], approximate solutions of vector optimization problems

have been studied in the setting of linear spaces and via optimality concepts based

on improvement sets (see, for instance, [15, 23, 24, 25]). In particular, by considering

the so-called algebraic interior, the vector closure and different generalized convexity

assumptions, several characterizations for weak and proper approximate solutions have

been obtained through linear scalarizations and Lagrangian type optimality conditions.

This work is a new contribution in the same direction. It is structured as follows:

in Section 2, the framework of the paper and some basic algebraic and geometric tools

are recalled or stated. In Section 3, two new concepts of proper approximate efficient

solution in the senses of Benson and Henig are introduced. They are based on certain

classes of improvement sets, and it is proved that they encompass the more impor-

tant exact and approximate Benson and Henig efficiency concepts of the literature.
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The relationships between them and also with respect to weak E-optimal solutions

are derived. In Sections 4 and 5, some characterizations of these three notions are

provided by linear scalarizations in problems with abstract constraints, and by scalar

Lagrangian optimality conditions in cone-constrained problems. At the end of Section

5 two illustrative examples show in detail the main results. Finally, in Section 6, the

highlights of the paper are collected.

The obtained results extend and improve other results published in the last years,

since they are obtained through very general concepts of efficient solution –recall that

they are based on arbitrary improvement sets– and by assuming new and weaker gen-

eralized convexity hypotheses. These assumptions, called E-subconvexlikeness, rela-

tively solid E-subconvexlikeness, generalized E-subconvexlikeness and relatively solid

generalized E-subconvexlikeness, are suitable “approximate” extensions of well-known

notions of cone subconvexlikeness and generalized cone subconvexlikeness (see [2] and

the references therein). Moreover, let us underline that the Lagrangian optimality con-

ditions are obtained as particular cases of the previous linear scalarizations. To the

best of our knowledge, this approach is new in the setting of approximate efficiency.

2 Notations and preliminaries

Let Y be a real linear space and K ⊂ Y be a nonempty proper ({0} 6= K 6= Y ) convex

cone (we consider that 0 ∈ K). In the sequel, Y is assumed to be ordered through the

following quasi order:

y1, y2 ∈ Y, y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K. (2.1)

We denote K0 := K\{0}. Moreover, we write Rp+ to refer the nonnegative orthant

of Rp and R+ := R1
+.

Given a nonempty set A ⊂ Y , we denote by coneA, coA and spanA the generated

cone, the convex hull and the linear hull of A, respectively. A cone D ⊂ Y is said to be

pointed iff D ∩ (−D) = {0}. The segment of extreme points a, b ∈ Y is denoted [a, b]

(i.e., [a, b] := co{a, b}).
In order to avoid topological concepts we use algebraic counterparts. In particular,

the so-called algebraic interior (or core), relative algebraic interior and vector closure

of the set A (see [2]) are denoted, respectively, by corA, icrA and vclA, i.e.,

corA := {a ∈ A : ∀v ∈ Y, ∃t0 > 0 such that a+ tv ∈ A, ∀t ∈ [0, t0]},

icrA := {a ∈ A : ∀v ∈ span(A−A), ∃t0 > 0 such that a+ tv ∈ A, ∀t ∈ [0, t0]},

vclA := {y ∈ Y : ∃v ∈ Y,∀t0 > 0, ∃t ∈ (0, t0] such that y + tv ∈ A}

= {y ∈ Y : ∃v ∈ Y, ∃(tn) ⊂ R+\{0}, tn ↓ 0 such that y + tnv ∈ A, ∀n ∈ N}.

When corA 6= ∅ (respectively, icrA 6= ∅) we say that A is solid (respectively, relatively

solid). Clearly, if corA 6= ∅ then corA = icrA since span(A − A) = Y . Moreover, for
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each nonempty set B ⊂ Y , the set A + B is solid whenever A is solid. The set A is

called vectorially closed if A = vclA.

Let us observe that vclA ⊂ clA (see [2, Proposition 1]), where clA denotes the

topological closure of A, whenever Y is endowed with a topology. Although the vector

closure is an algebraic counterpart of the topological closure, they do not have the same

properties. For example, in general vcl vclA 6= vclA (see [2, Example 2]) even if A is

convex (see [5, Example I.2.4]). In particular, this last example shows that, in general,

it is not possible to endow an arbitrary linear space with a locally convex topology in

such a way that the vector closure of any convex set coincides with the topological one.

For the convenience of the reader, we provide the following three lemmas that will

be used in this work. In the first one, we gather several basic properties related to the

vector closure and the core of a set. The second lemma was stated in [2, Propositions

5 and 6] and the third one is directly deduced from the results given in [2, Sections 2

and 3]. Both of them show properties of the cone extension A+D.

Lemma 2.1. Let A ⊂ Y be convex. Then vclA and corA are convex and cor corA =

corA. Moreover, for each nonempty set M ⊂ Y it follows that vclA+M ⊂ vcl(A+M)

and if A is solid, then corA+M ⊂ cor(A+M).

Proof. For the first part, see [14, Lemma 1.9]. On the other hand, the inclusion vclA+

M ⊂ vcl(A+M) is obvious. Then, let us only prove corA+M ⊂ cor(A+M).

Indeed, if a ∈ corA and y ∈ M , then for each v ∈ Y there exists t0 > 0 such that

[a, a+ t0v] ⊂ A. Therefore,

[a+ y, a+ y + t0v] = [a, a+ t0v] + y ⊂ A+M

and a+ y ∈ cor(A+M).

Lemma 2.2. Let ∅ 6= A ⊂ Y and let D ⊂ Y be a convex cone.

(i) If D is solid, then vcl(A+D) = vcl(A+ corD).

(ii) If D is solid, then

cor(A+D) = cor(A+ corD) = cor vcl(A+D) = vclA+ corD = A+ corD.

(iii) vcl(coneA+D) = vcl cone(A+D).

Lemma 2.3. Let ∅ 6= A ⊂ Y and let D ⊂ Y be a solid convex cone. If vcl(A + D) is

convex, then vcl cone(A+D) is convex.

Observe that if D is a solid convex cone, then from Lemma 2.1 and Lemma 2.2(ii),

we deduce that corD ∪ {0} is a convex cone, corD + D = corD and cor corD =

cor(corD ∪ {0}) = corD.

The following lemma will be needed along the work.
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Lemma 2.4. Let ∅ 6= A,B ⊂ Y and suppose that B is solid and convex. Then,

A ∩ corB = ∅ ⇐⇒ vclA ∩ corB = ∅.

Proof. Since A ⊂ vclA, implication ⇐= is obvious. Reciprocally, suppose by contra-

diction that there exists y ∈ vclA ∩ corB. Since y ∈ vclA, there exist (tn) ⊂ R+\{0},
tn ↓ 0, and v ∈ Y such that y + tnv ∈ A, for all n ∈ N.

On the other hand, by Lemma 2.1 we have that y ∈ corB = cor(corB), and then

there exists n0 ∈ N such that y+tnv ∈ corB, for all n ≥ n0. Hence, y+tnv ∈ A∩corB,

for all n ≥ n0, obtaining a contradiction, and the proof is complete.

The algebraic dual of Y is denoted by Y ′. Moreover, the positive dual, and the

strict positive dual of a nonempty set A ⊂ Y are defined, respectively, by

A+ = {λ ∈ Y ′ : λ(a) ≥ 0, ∀a ∈ A},

A+s = {λ ∈ Y ′ : λ(a) > 0, ∀a ∈ A\{0}}.

It is known that A+ is a vectorially closed convex cone and

(coneA)+ = (coA)+ = (vclA)+ = A+.

The following separation theorem for vectorially closed convex cones is due to Adán

and Novo [3, Theorem 2.2]. Let us observe that the hypothesis on the relative solidness

of D assumed in [3, Theorem 2.2] can be removed as a consequence of [3, Proposition

2.3].

Theorem 2.5. Let M , D be two vectorially closed convex cones in Y such that M is

relatively solid and D+ is solid. If M ∩D = {0}, then there exists a linear functional

λ ∈ Y ′\{0} such that ∀d ∈ D, m ∈ M , λ(d) ≥ 0 ≥ λ(m) and furthermore ∀d ∈ D0,

λ(d) > 0, i.e., λ ∈ D+s.

Note that assumption cor(D+) 6= ∅ in Theorem 2.5 implies that D is pointed

whenever Y ′ separates points in Y (see [14, Lemmas 1.25 and 1.27]).

In this paper, we consider the following vector optimization problem:

Min{f(x) : x ∈ S}, (2.2)

where f : X → Y (recall that Y is ordered by the relation ≤K , see (2.1)), X is an

arbitrary decision space and the feasible set S ⊂ X is nonempty. We say that (2.2) is

a Pareto problem when Y = Rp and K = Rp+.

In many situations, the feasible set S is defined in terms of a cone-constraint as

follows:

S = {x ∈ X : g(x) ∈ −M}, (2.3)
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where g : X → Z, Z is a real linear space and M ⊂ Z is a solid vectorially closed

convex cone. In this case we say that g satisfies the Slater constraint qualification if

there exists a point x̂ ∈ X such that g(x̂) ∈ − corM .

The aim of this work is to introduce and study concepts of approximate optimal

solution for problem (2.2), where the approximation error is stated by an improvement

set E ⊂ Y with respect to K. Next we recall the definition of this kind of sets.

We say that a nonempty set E ⊂ Y is free disposal with respect to K (free disposal

for short, see [7]) if E +K = E.

Definition 2.6. A nonempty set E ⊂ Y is said to be an improvement set with respect

to K (improvement set for short) if 0 /∈ E and E is free disposal.

The class of improvement sets is very wide (see [11, Example 2.3]), and it will be

denoted by IK . See [6, 11] for more details on these sets.

Proposition 2.7. Suppose that E ∈ IK . Then

(i) vclE is free disposal.

(ii) If E is solid, then corE ∈ IK .

Proof. (i) We have just to check that vclE+K ⊂ vclE, because the reciprocal inclusion

is clear. Let y ∈ vclE and k ∈ K. Then there exist v ∈ Y and a sequence (tn) ⊂
R+\{0}, tn ↓ 0, such that y + tnv ∈ E for all n ∈ N, and consequently

y + k + tnv = (y + tnv) + k ∈ E +K = E, ∀n ∈ N,

which proves that y + k ∈ vclE.

(ii) As a consequence of Lemma 2.1 one has

corE +K ⊂ cor(E +K) = corE ⊂ corE +K,

and hence corE +K = corE.

The following lemma is also necessary.

Lemma 2.8. Let ∅ 6= A ⊂ Y and K ′ ⊂ Y be a proper, solid and convex cone such that

K0 ⊂ corK ′. Then,

(i) K0 + corK ′ = K + corK ′ = corK ′.

(ii) corK ′ ⊂ cone(A+ corK ′)0.

(iii) 0 /∈ A+ corK ′ ⇐⇒ (A+ corK ′) ∩ (−K ′) = ∅ ⇐⇒ (A+ corK ′) ∩ (−K) = ∅.
(iv) If 0 /∈ A+ corK ′, then A+ corK ′ ∈ IK ∩ IK′ ∩ I(corK′)∪{0}.

Proof. (i) For each cone D ⊂ Y , D 6= {0}, and for each solid convex cone M ⊂ Y we

have that

D + corM = D0 + corM. (2.4)
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Indeed, by Lemma 2.1 and Lemma 2.2(ii) it follows that

D0 + corM ⊂ D + corM ⊂ vclD0 + corM = cor(vclD0 +M) ⊂ cor vcl(D0 +M)

= D0 + corM.

Then,

corK ′ ⊂ K + corK ′ = K0 + corK ′ ⊂ corK ′ + corK ′ = corK ′

and the proof of part (i) finishes.

(ii) Let us suppose that A 6= {0}, since the result is obvious otherwise. By (2.4) we

have that

corK ′ ⊂ coneA+ corK ′ = (coneA)0 + corK ′ ⊂ cone(A+ corK ′)

and the result follows since 0 /∈ corK ′.

(iii) Since corK ′ +K ′ = corK ′, it follows that

0 /∈ A+ corK ′ ⇐⇒ 0 /∈ (A+ corK ′) +K ′ ⇐⇒ (A+ corK ′) ∩ (−K ′) = ∅.

In the same way, as by part (i) we have that corK ′ +K = corK ′, we deduce that

0 /∈ A+ corK ′ ⇐⇒ 0 /∈ (A+ corK ′) +K ⇐⇒ (A+ corK ′) ∩ (−K) = ∅.

(iv) It follows directly by part (i).

Let D ⊂ Y be a proper convex cone and N ⊂ X be a nonempty set. We recall that

a mapping f : X → Y is said to be D-convex on N iff N is convex and

f(αx1 + (1− α)x2) ≤D αf(x1) + (1− α)f(x2), ∀x1, x2 ∈ N, ∀α ∈ (0, 1),

(here X is a real linear space), and it is D-convexlike (respectively, D-subconvexlike,

with D relatively solid) on N iff f(N)+D (respectively, f(N)+icrD) is convex. More-

over, we say that f is v -closely D-convexlike (respectively, v -nearly D-subconvexlike)

on N iff vcl(f(N) +D) (respectively, vcl cone(f(N) +D)) is convex.

In the following proposition we gather several relations between these generalized

convexity notions.

Proposition 2.9. The following implications hold:

(i) f D-convex on N ⇒ f D-convexlike on N ⇒ f v-closely D-convexlike on N .

(ii) f D-convexlike on N ⇒ f v-nearly D-subconvexlike on N .

(iii) If D is solid, f D-convexlike on N ⇒ f D-subconvexlike on N ⇔ f v-closely

D-convexlike on N ⇒ f v-nearly D-subconvexlike on N .
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Proof. Parts (i) and (ii) are easy to check. We prove part (iii). The first implication is

clear. For the second necessary condition, if f is D-subconvexlike on N , then f(N) +

corD is convex and by Lemma 2.1 the set vcl(f(N) + corD) is convex too. Moreover,

observe that by Lemma 2.2(i) one has vcl(f(N) + D) = vcl(f(N) + corD), and the

conclusion follows.

Reciprocally, by Lemma 2.2(ii) we know that f(N) + corD = cor vcl(f(N) + D),

and since vcl(f(N) + D) is convex, by Lemma 2.1 we deduce that f(N) + corD is

convex too. Finally, suppose that vcl(f(N) + D) is convex. Then, by Lemma 2.3 we

deduce that vcl cone(f(N) +D) is convex, and the last implication is proved.

For a more complete study of these generalized convexity notions see, for instance,

[2, Section 3].

Additionally, we consider the next notions of generalized convexity. The first one is

an immediate translation of the nearly E-subconvexlikeness, introduced by Gutiérrez

et al. [10, Definition 2.3] in the framework of topological linear spaces. The second

and third concepts are new and they extend, respectively, the above concept of cone

subconvexlikeness and the so-called generalized cone subconvexlikeness (see [2] and the

references therein). Recall that if icrK 6= ∅, then the mapping f : X → Y is said to be

generalized K-subconvexlike on a nonempty set N ⊂ X if the set cone f(N) + icrK is

convex.

Definition 2.10. Let ∅ 6= E ⊂ Y . The mapping f : X → Y is said to be v -nearly

E-subconvexlike on a nonempty set N ⊂ X if vcl cone(f(N) + E) is a convex set.

Definition 2.11. Let ∅ 6= E ⊂ Y and suppose that K is relatively solid. The mapping

f : X → Y is said to be E-subconvexlike (respectively, generalized E-subconvexlike)

on a nonempty set N ⊂ X (with respect to K) if f(N) + E + icrK (respectively,

cone(f(N) + E) + icrK) is a convex set.

Remark 2.12. Consider that K is relatively solid. Since K + icrK = icrK (see [2]),

then for all nonempty set A ⊂ Y it is easy to check that

cone(A+ icrK) + icrK = cone(A+K) + icrK = coneA+ icrK. (2.5)

Moreover, it is clear that icrK + icrK = icrK. Therefore, the notions of E-

subconvexlikeness and generalized E-subconvexlikeness reduce to the concepts of K-

subconvexlikeness and generalized K-subconvexlikeness by taking E = K or E = icrK.

Proposition 2.13. Let E ⊂ Y and N ⊂ X be two nonempty sets. We have the

following implications:

(i) f E-subconvexlike on N ⇒ f generalized E-subconvexlike on N .

(ii) If E ∈ IK , f generalized E-subconvexlike on N ⇒ f v-nearly E-subconvexlike

on N .
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(iii) If K is solid and E ∈ IK , f is generalized E-subconvexlike on N ⇔ f is

v-nearly E-subconvexlike on N .

Proof. For part (i) see [2], and part (ii) is a direct consequence of Lemma 2.1 and [2,

Propositions 5(iii) and 6(i)].

On the other hand, by [2, Propositions 5(iii) and 6(i),(iv)] we see that

cor vcl cone(f(N) + E) = cor vcl(cone(f(N) + E) + corK) = cone(f(N) + E) + corK

(2.6)

and the sufficient condition of part (iii) follows by (2.6) and Lemma 2.1.

By Remark 2.12 we see that Proposition 2.13(iii) extends [23, Proposition 3.1].

In the following result we give sufficient conditions for the v -nearly E-

subconvexlikeness of the mapping f . For each y ∈ Y , f − y : X → Y denotes the

mapping (f − y)(x) = f(x)− y, for all x ∈ X.

Theorem 2.14. Let ∅ 6= E ⊂ Y be a convex free disposal set and N ⊂ X be a

nonempty set.

(i) If f is K-convexlike on N , then f − y is v-nearly E-subconvexlike on N , for all

y ∈ Y .

(ii) If K is solid and f is v-closely K-convexlike on N , then f − y is v-nearly

E-subconvexlike on N , for all y ∈ Y .

Proof. (i) As f(N) + K and E are convex, one has f(N) + K + E = f(N) + E is

convex. Hence, vcl cone(f(N)− y + E) is convex for all y ∈ Y .

(ii) By assumptions it is clear that f(N)− y+ corK+E is convex, and by Lemma

2.1 and Lemma 2.2(i) it follows that vcl(f(N)− y+E+K) is convex. Thus, applying

Lemma 2.3 the proof finishes.

Finally, given a scalar function h : X → R and ∅ 6= S ⊂ X, the set of ε-optimal

(respectively, sharp ε-optimal) solutions with error ε ≥ 0 of the scalar optimization

problem

Min{h(x) : x ∈ S}

is denoted by argminS(h, ε) (respectively, argmin<S (h, ε)), i.e.,

argminS(h, ε) = {x0 ∈ S : h(x0)− ε ≤ h(x), ∀x ∈ S}

(respectively, argmin<S (h, ε) = {x0 ∈ S : h(x0)− ε < h(x), ∀x ∈ S\{x0}}).

We denote argminS h := argminS(h, 0), i.e., the set of exact minima of h on S.

Remark 2.15. It is clear that argminS(h, ε1) ⊂ argminS(h, ε2) whenever 0 ≤ ε1 ≤ ε2.

For λ ∈ Y ′ and ∅ 6= E ⊂ Y , we denote τE(λ) = infe∈E λ(e). Let us observe that

λ ∈ E+ if and only if τE(λ) ≥ 0.
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3 Optimality notions with improvement sets

From now on we assume that K is vectorially closed and E ∈ IK . The E-optimality

notion due to Chicco et al. (see [6, Definition 3.1]) was introduced for Pareto problems,

and it was translated in [11] to problem (2.2) when Y is a topological linear space.

Next we reformulate this approximate optimality notion when Y is a real linear space.

Definition 3.1. A point x0 ∈ S is said to be an E-optimal (respectively, weak E-

optimal) solution of problem (2.2), denoted by x0 ∈ Op(f, S;E) (respectively, x0 ∈
WOp(f, S;E)), if

(f(S)− f(x0)) ∩ (−E) = ∅ (respectively, (f(S)− f(x0)) ∩ (− corE) = ∅).

Remark 3.2. (a) If corE = ∅ then WOp(f, S;E) = S. Thus, in order to deal with

nontrivial sets of weak E-optimal solutions, we assume that E is solid whenever this

kind of solutions are considered.

On the other hand, observe that WOp(f, S;E) = Op(f, S; corE). Moreover, if K

is pointed, then K0 ∈ IK and it is clear that Op(f, S;K0) is the set of (exact) minimal

solutions of problem (2.2). In this case we denote Op(f, S) := Op(f, S;K0).

(b) Since E ∈ IK , it follows that

x0 ∈ Op(f, S;E)⇐⇒ (f(S) +K − f(x0)) ∩ (−E) = ∅

⇐⇒ (f(S) + E − f(x0)) ∩ (−K) = ∅.

Moreover, since corE ∈ IK (see Proposition 2.7(ii)) we have that

x0 ∈WOp(f, S;E)⇐⇒ (f(S) +K − f(x0)) ∩ (− corE) = ∅. (3.1)

If additionally K is solid, then by Lemma 2.2(ii) we have corE = E + corK and

x0 ∈WOp(f, S;E)⇐⇒ (f(S) + E − f(x0)) ∩ (− corK) = ∅. (3.2)

(c) By taking different sets E ∈ IK , the notion of E-optimal solution reduces to

well-known concepts of exact and approximate solution of problem (2.2), as it was

shown in [11, Remark 4.2] in the setting of topological linear spaces. For example, we

can take as E the sets Y \(−K), K ∩ (Y \(−K)) and corK, and then we obtain the set

of ideal solutions, minimal solutions and weak efficient solutions, respectively.

Moreover, if K is pointed and we consider E = q+K0, with q /∈ −K0, then E ∈ IK
and the notion of E-optimality given in Definition 3.1 reduces to the first part of

[15, Definition 3.1]. Analogously, if K is solid and we consider q ∈ Y \(− corK), then

E = q + corK ∈ IK and x0 ∈ S is a weak E-optimal solution of (2.2) if and only if

(f(S)−f(x0))∩(−q−corK) = ∅, which is equivalent to (f(S)−f(x0)+q)∩(− corK) =

∅. This is the second part of [15, Definition 3.1] and also the concept of q-weakly efficient

point given in [23, Definition 2.4].
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On the other hand, approximate proper efficiency notions for vector optimization

problems defined on real linear spaces have been studied, for instance, by Zhou and

Peng [23], Kiyani and Soleimani-damaneh [15] and Zhou, Yang and Peng [24, 25]. In

these papers, the authors focus overall on approximate proper efficiency concepts in

the senses of Hurwicz, Benson and Henig.

Let us define

H := {E ∈ IK : vcl coneE ∩ (−K0) = ∅}

and for each E ∈ H,

G(E) :=

{
K ′ ⊂ Y : K ′ proper, solid and convex cone,

K0 ⊂ corK ′, E ∩ (− corK ′) = ∅

}
.

Motivated by the works cited above and [9], we introduce the following two defini-

tions.

Definition 3.3. Let E ∈ H. A point x0 ∈ S is said to be a Benson E-proper optimal

solution of problem (2.2) if

vcl cone(f(S) + E − f(x0)) ∩ (−K) = {0}. (3.3)

We denote the set of all Benson E-proper optimal solutions of problem (2.2) by

Be(f, S;E).

Definition 3.4. Let E ∈ H. A point x0 ∈ S is said to be a Henig E-proper optimal

solution of problem (2.2) if there exists K ′ ∈ G(E) such that x0 ∈ Op(f, S;E+corK ′).

The set of all Henig E-proper optimal solutions of problem (2.2) will be denoted

by He(f, S;E).

Remark 3.5. (a) In Definition 3.4, observe that E+corK ′ ∈ IK (see Lemma 2.8(iv))

and Op(f, S;E+ corK ′) = WOp(f, S;E+ corK ′), since cor(E+ corK ′) = E+ corK ′

by Lemma 2.2(ii).

(b) From statement (3.3) we deduce that

vcl coneE ∩ (−K0) = ∅.

Analogously, by Lemma 2.4 we know that E∩(− corK ′) = ∅ =⇒ vcl coneE∩(−K0) =

∅. Because of that, we consider E ∈ H in Definitions 3.3 and 3.4.

(c) If K is not pointed, then H = ∅. Indeed, take k ∈ K ∩ (−K0), and assume that

there exists E ∈ H. Choose a sequence (rn) ⊂ R+ such that rn ↑ +∞ and a fixed point

e ∈ E. Then e + rnk ∈ E + K = E, and therefore r−1n (e + rnk) = k + r−1n e ∈ coneE.

As r−1n ↓ 0 it follows that k ∈ vcl coneE. As k ∈ −K0, we achieve a contradiction to

the fact that vcl coneE ∩ (−K0) = ∅.
Thus, when we consider Benson or Henig E-proper optimal solutions, we assume

that K is pointed. In this case it is clear that K0 ∈ H. Other sets belonging to the class
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H are corK (respectively, icrK) whenever K is solid (respectively, relatively solid),

q + K0, for all q ∈ K, and q + K, for all q ∈ Y \(−K) whenever K+ is solid. Let us

check this last statement (in a similar way one can prove that q + K0 ∈ H, for all

q ∈ Y \(−K0) whenever K+ is solid). It is easy to prove that E = q+K ∈ IK . On the

other hand, by applying Theorem 2.5 to M = cone({q}) and D = −K we deduce that

there exists λ ∈ K+s such that

λ(αq) ≥ 0 ≥ λ(z), ∀ z ∈ −K, ∀α ≥ 0. (3.4)

Suppose that vcl cone(q+K)∩(−K0) 6= ∅ and consider z′ ∈ vcl cone(q+K)∩(−K0). As

λ ∈ K+s then λ(z′) < 0. Moreover, there exist v ∈ Y and sequences (tn), (αn) ⊂ R+,

tn ↓ 0, and (kn) ⊂ K such that z′ + tnv = αn(q + kn), for all n. Therefore, by (3.4) we

have that

λ(z′) = lim
n→+∞

λ(z′ + tnv) = lim
n→+∞

αn(λ(q) + λ(kn)) ≥ 0, (3.5)

that is a contradiction. Thus, vcl cone(q +K) ∩ (−K0) = ∅ and q +K ∈ H.

(d) It is not hard to check that for all nonempty set A ⊂ Y ,

vcl cone(A+K0) = vcl cone(A+K). (3.6)

Thus, when we choose E = K0, Definition 3.3 reduces to the concept of (exact)

Benson proper efficiency considered by Adán and Novo [3, Definition 3.1]. Analo-

gously, by Lemma 2.8(i) we deduce that Definition 3.4 encompasses the notion of

(exact) proper efficiency in the sense of Henig via the set E = K0 (see [23, Defini-

tion 2.6 and Remark 2.3]). As a consequence we denote Be(f, S) := Be(f, S;K0) and

He(f ;S) := He(f, S;K0).

(e) By considering E = q +K0 and q ∈ K it follows that Definition 3.3 reduces to

[15, Definition 3.2] and [23, Definition 2.5], and Definition 3.4 reduces to [23, Definition

2.6]. Moreover, if K+ is solid, then [15, Definition 3.2] and [23, Definition 2.5] can be

generalized to vectors q ∈ Y \(−K0) by Definition 3.3 and the set E = q +K0.

In the following theorem we relate Benson E-proper optimal solutions to weak

E-optimal solutions of problem (2.2).

Theorem 3.6. Let E ∈ H. It follows that Be(f, S;E) ⊂WOp(f, S;E).

Proof. Let x0 ∈ Be(f, S;E). Then, vcl cone(f(S) + E − f(x0)) ∩ (−K0) = ∅, which in

particular implies that

(f(S) + E − f(x0)) ∩ (−K0) = ∅. (3.7)

Suppose, reasoning by contradiction, that x0 /∈WOp(f, S;E). Then (f(S)− f(x0)) ∩
(− corE) 6= ∅. Hence, there exist x ∈ S and e ∈ corE such that f(x)−f(x0) = −e. Fix

an arbitrary point k ∈ K0. Since e ∈ corE there exists t > 0 such that e−tk =: e′ ∈ E.

Thus, f(x)− f(x0) = −e′− tk, i.e., f(x) + e′− f(x0) = −tk ∈ −K0, which contradicts

(3.7).
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Remark 3.7. If x0 ∈ Be(f, S;E), we have in particular that (f(S)− f(x0)) ∩ (−E −
K0) = ∅. Thus, Be(f, S;E) ⊂ Op(f, S;E +K0) (note that E +K0 ∈ IK).

However, the inclusion Be(f, S;E) ⊂ Op(f, S;E) does not hold, in general, as it is

shown in Example 3.15.

By taking into account Remark 3.7, it is clear that we can improve the conclusion

of Theorem 3.6 if

E ⊂ E +K0, (3.8)

which is equivalent to E = E + K0, since E ∈ IK . Indeed, we obtain the following

result.

Theorem 3.8. Let E ∈ H. If (3.8) holds, then Be(f, S;E) ⊂ Op(f, S;E).

Remark 3.9. Many usual sets E ∈ H satisfy property (3.8), for instance:

(a) E := K0, since K0 +K0 = K0.

(b) E := corK, whenever K is solid, since K is proper and by Lemma 2.2(ii) we

know that

corK = corK0 = cor(K0 +K) = K0 + corK.

(c) Let ∅ 6= H ⊂ Y such that H +K0 ∈ H. Then E := H +K0 satisfies (3.8) since

(H +K0) +K0 = H +K0.

From part (a) and Theorem 3.8 we obtain the well-known inclusion Be(f, S) ⊂
Op(f, S) (exact case).

Finally, taking into account Remarks 3.5(c) and 3.9(c), observe that Theorem 3.8

reduces to [15, Proposition 3.3] when E = q +K0 and q ∈ K0.

With respect to the Henig E-proper optimal solutions of problem (2.2), from Def-

inition 3.4 and Remark 3.5(a) we deduce that

He(f, S;E) =
⋃

K′∈G(E)

Op(f, S;E + corK ′) =
⋃

K′∈G(E)

WOp(f, S;E + corK ′).

In the following result, we establish equivalent formulations for this type of solu-

tions. Let us define O(E) := {K ′ ∈ G(E) : corK ′ = K ′0}.

Theorem 3.10. Let E ∈ H and x0 ∈ S. The following statements are equivalent:

(i) x0 ∈ He(f, S;E).

(ii) There exists K ′ ∈ O(E) such that x0 ∈WOp(f, S;E + corK ′).

(iii) There exists K ′ ∈ O(E) such that

vcl cone(f(S) + E − f(x0)) ∩ (−K ′) = {0}. (3.9)

Proof. (i)=⇒(ii). Since x0 ∈ He(f, S;E), there exists K ∈ G(E) such that x0 ∈
Op(f, S;E+ corK). Then, the cone K ′ := corK ∪{0} satisfies the conditions given in

part (ii).
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(ii)=⇒(iii). Suppose that there exists K ′ ∈ O(E) such that (f(S)−f(x0))∩(−E−
corK ′) = ∅. This is equivalent to (f(S) + E − f(x0)) ∩ (− corK ′) = ∅, which implies

that

cone(f(S) + E − f(x0)) ∩ (− corK ′) = ∅.

Thus, by Lemma 2.4 applied to the sets cone(f(S) + E − f(x0)) and cor(−K ′) =

− corK ′, we deduce that

vcl cone(f(S) + E − f(x0)) ∩ (− corK ′) = ∅,

which is equivalent to (3.9), since K ′0 = corK ′.

(iii)=⇒(i). If there exists K ′ ∈ O(E) such that (3.9) holds, we deduce in particular

that (f(S) +E−f(x0))∩ (− corK ′) = ∅, since K ′0 = corK ′, which clearly implies that

x0 ∈ Op(f, S;E + corK ′), and then, x0 ∈ He(f, S;E), concluding the proof.

Remark 3.11. (a) Observe that G(E) = ∅ ⇔ O(E) = ∅. The first implication is

clear, since O(E) ⊂ G(E). Reciprocally, suppose by contradiction that there exists

K ∈ G(E). Then, the cone K ′ := corK ∪ {0} ∈ O(E) (see the proof of implication

(i)=⇒(ii) in Theorem 3.10), and we reach the contradiction.

(b) The cones K ′ ∈ O(E) are, in addition, pointed since K ′0 = corK ′ and K ′ is

proper.

(c) Theorem 3.10 is the algebraic counterpart of [9, Theorem 3.3(a)-(c)], where

similar equivalent statements are proved in the setting of topological linear spaces,

by replacing the algebraic concepts with their topological counterparts (observe that

condition E ∈ IK is not required in the proof of Theorem 3.10).

In the next theorem, we show that the set of Henig E-proper optimal solutions is

included in the set of Benson E-proper optimal solutions. However, in general, the sets

of Benson and Henig E-proper optimal solutions are different (see Example 5.16).

Theorem 3.12. Let E ∈ H. It follows that He(f, S;E) ⊂ Be(f, S;E).

Proof. Let x0 ∈ He(f, S;E). By Theorem 3.10(iii) there exists K ′ ∈ O(E) such

that vcl cone(f(S) + E − f(x0)) ∩ (−K ′) = {0}, which in particular implies that

vcl cone(f(S) + E − f(x0)) ∩ (−K) = {0}, since K ⊂ corK ′ ∪ {0} = K ′. Hence,

x0 ∈ Be(f, S;E), and the proof is finished.

Remark 3.13. Theorem 3.12 reduces to [23, Proposition 2.1] by considering E =

q + K0, q ∈ K. Moreover, it encompasses [9, Theorem 4.7], which was stated in the

topological framework.

From the results stated above, we obtain the following corollary.
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Corollary 3.14. Let E ∈ H. It follows that

He(f, S;E) ⊂ Be(f, S;E) ⊂WOp(f, S;E).

Moreover, if E satisfies property (3.8), then

He(f, S;E) ⊂ Be(f, S;E) ⊂ Op(f, S;E).

In the next example, we show that, in general, the set of Henig E-proper optimal

solutions and, consequently, the set of Benson E-proper optimal solutions of problem

(2.2) are not included in the set of E-optimal solutions.

Example 3.15. Consider the following data: X = Y = R2, f = Id, K = R2
+, E =

{(x, y) ∈ R2
+ : x + y ≥ 1}, S = R2

+ and x0 = (1, 0). One has x0 ∈ He(f, S;E) ⊂
Be(f, S;E) but x0 /∈ Op(f, S;E).

4 Weak E-optimality and linear scalarization

In this section we give necessary and sufficient conditions for weak E-optimal solu-

tions of problem (2.2), with E ∈ IK , through linear scalarization, i.e., in terms of

approximate solutions of scalar optimization problems associated to (2.2), and under

generalized convexity assumptions. Moreover, when the feasible set is given by a cone-

constraint (see (2.3)), we also derive Lagrangian optimality conditions for this type of

solutions.

In the following result we state necessary conditions for weak E-optimal solutions

of problem (2.2) through linear scalarization.

Theorem 4.1. Let x0 ∈ S. Assume that one of the following conditions holds:

(A1) f is v-closely K-convexlike on S and E is a solid convex set.

(A2) f − f(x0) is v-nearly E-subconvexlike on S and K is solid.

If x0 ∈ WOp(f, S;E), then there exists λ ∈ E+\{0} such that x0 ∈ argminS(λ ◦
f, τE(λ)).

Proof. As x0 ∈WOp(f, S;E), then by statements (3.1) and (3.2) it follows that

(f(S) +K − f(x0)) ∩ (− corE) = ∅, (4.1)

(f(S) + E − f(x0)) ∩ (− corK) = ∅, (4.2)

whenever K is solid for statement (4.2).

From assumption (A1), statement (4.1) and by applying Lemma 2.4 we derive that

vcl(f(S) +K − f(x0)) ∩ (− corE) = ∅.
As vcl(f(S) + K − f(x0)) is a convex set since f is v -closely K-convexlike on S,

by the standard separation theorem (see, for instance, [14, Theorem 3.14]) there exist

λ ∈ Y ′\{0} and α ∈ R such that

λ(f(x) + k − f(x0)) ≥ α ≥ −λ(e), ∀x ∈ S, k ∈ K, e ∈ E. (4.3)
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By taking x = x0 and k = 0 it results 0 ≥ −λ(e) for all e ∈ E, and so λ ∈ E+\{0}.
From (4.3), by taking k = 0, it follows that λ(e) ≥ λ(f(x0)) − λ(f(x)) for every

e ∈ E, x ∈ S, and so τE(λ) ≥ λ(f(x0)) − λ(f(x)) for every x ∈ S. In consequence,

λ(f(x)) ≥ λ(f(x0))− τE(λ) for every x ∈ S, i.e., x0 ∈ argminS(λ ◦ f, τE(λ)).

On the other hand, if (A2) holds, we proceed in a similar way. From (4.2), by

taking into account that corK ∪ {0} is a cone and by Lemma 2.4 we derive that

[vcl cone(f(S) +E− f(x0))]∩ (− corK) = ∅. As f − f(x0) is v -nearly E-subconvexlike

on S, the set vcl cone(f(S) + E − f(x0)) is convex and we can apply the separation

theorem, from which we see that there exists λ ∈ K+\{0} such that

λ(f(x))− λ(f(x0)) + λ(e) ≥ 0, ∀x ∈ S, e ∈ E. (4.4)

In particular, if x = x0 we obtain λ(e) ≥ 0 for all e ∈ E, and so λ ∈ E+. From (4.4)

the conclusion follows.

Remark 4.2. (a) Conditions (A1) and (A2) are independent. By Theorem 2.14(ii)

and Proposition 2.9(iii), if K is solid, E is convex and f is v -closely K-convexlike

on S, then f − f(x0) is v -nearly E-subconvexlike on S for each x0 ∈ S. However, in

general, corK may be empty and corE be nonempty. In the case that corK 6= ∅, (A2)

is weaker than (A1).

(b) If K is solid and we choose E = q + corK with q ∈ K, then E ∈ IK and

Theorem 4.1, under assumption (A2), reduces to [23, Theorem 5.1]. Let us observe

that the authors use as generalized convexity condition that cone(f(S)− f(x0) + q) +

corK is convex, which is equivalent to (A2). Indeed, let A := f(S) − f(x0) + q. If

cone(A) + corK is convex, then by Lemma 2.1 and parts (i) and (iii) of Lemma 2.2

we see that assumption (A2) is satisfied.

Reciprocally, by applying parts (i) and (iii) of Lemma 2.2 to D = corK ∪ {0} and

by (3.6) we see that

vcl(coneA+ corK) = vcl(coneA+ (corK ∪ {0}))

= vcl cone(A+ (corK ∪ {0}))

= vcl cone(A+ corK).

Therefore, by parts (i) and (ii) of Lemma 2.2 we deduce that

cor vcl cone(A+ corK) = cor vcl(coneA+ corK) = coneA+ corK,

and so coneA+ corK is convex whenever assumption (A2) is fulfilled.

Moreover, observe that, in this case, corE 6= ∅ if and only if corK 6= ∅.
On the other hand, for the same set E and also under (A2), Theorem 4.1 reduces

to [15, Theorem 4.3], where it is assumed that cone(f(S)− f(x0) + q +K) is convex,

which is a stronger condition than the v-nearly E-subconvexlikeness of f − f(x0).
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Next lemma is well-known and easy to prove.

Lemma 4.3. If λ ∈ Y ′, a ∈ corA and miny∈A λ(y) = λ(a), then λ = 0.

In the next theorem we give sufficient conditions through linear scalarization for

E-optimal and weak E-optimal solutions of problem (2.2).

Theorem 4.4. Let λ ∈ E+\{0}. Then,

(i) argminS(λ ◦ f, τE(λ)) ⊂WOp(f, S;E).

(ii) argmin<S (λ ◦ f, τE(λ)) ⊂ Op(f, S;E).

Proof. (i) Let x0 ∈ argminS(λ ◦ f, τE(λ)). Then,

λ(f(x)) ≥ λ(f(x0))− τE(λ), ∀x ∈ S. (4.5)

Suppose that x0 /∈ WOp(f, S;E). Then there exist x̂ ∈ S and ê ∈ corE such that

f(x̂)− f(x0) = −ê. By applying (4.5) to x = x̂ it results

−λ(ê) = λ(f(x̂)− f(x0)) ≥ −τE(λ),

i.e., infe∈E λ(e) ≥ λ(ê), and so mine∈E λ(e) = λ(ê). This implies by Lemma 4.3 that

λ = 0, a contradiction.

(ii) Let x0 ∈ argmin<S (λ ◦ f, τE(λ)). Then,

λ(f(x)) > λ(f(x0))− τE(λ), ∀x ∈ S\{x0}. (4.6)

Suppose that x0 /∈ Op(f, S;E). Then there exist x̂ ∈ S\{x0} and ê ∈ E such that

f(x̂)− f(x0) = −ê. By applying (4.6) to x = x̂ it follows that

−λ(ê) = λ(f(x̂)− f(x0)) > −τE(λ),

i.e., infe∈E λ(e) > λ(ê), which is a contradiction.

Remark 4.5. Theorem 4.4 reduces to [15, Theorem 4.2]. Indeed, in this last theorem

it is assumed that λ ∈ K+\{0}, q ∈ K\{0} and λ(q) > 0. Thus, q /∈ −K and so

Theorem 4.4 encompasses this result via the improvement set E = q +K.

As a consequence of Theorems 4.1 and 4.4, we obtain the following characterization

for weak E-optimal solutions of problem (2.2) through linear scalarization and by

assuming generalized convexity assumptions.

Corollary 4.6. If either (A1) holds, or (A2) is fulfilled for all x0 ∈ S, then

WOp(f, S;E) =
⋃

λ∈E+\{0}

argminS(λ ◦ f, τE(λ)).
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Remark 4.7. (a) In the topological framework, Corollary 4.6 under assumption (A2)

reduces to the vector-valued version of [22, Theorem 4.1], where additionally it is

assumed that K is pointed. Analogously, under assumption (A1) Corollary 4.6 reduces

to [11, Corollary 5.4].

(b) In particular, if K is solid and we choose E = corK, this corollary encompasses

the following well-known result (see, for instance, [1, Theorem 2.3] or [2, Theorem 2]):

Op(f, S; corK) =
⋃

λ∈K+\{0}

argminS(λ ◦ f).

Now, we are going to derive Lagrangian optimality conditions for weak E-optimal

solutions of problem (2.2) and S defined by a cone-constraint (see (2.3)). The mapping

(f, g) : X → Y × Z is defined by (f, g)(x) = (f(x), g(x)). On the other hand, let us

observe that E × (M + z) ∈ IK×M for all z ∈ Z whenever E ∈ IK .

Lemma 4.8. The following implication holds:

x0 ∈WOp(f, S;E)⇒ x0 ∈WOp((f, g), X;E × (M + g(x0))).

Proof. Suppose by contradiction that there exists x ∈ X such that (f, g)(x) −
(f, g)(x0) ∈ − cor(E × (M + g(x0))). It is clear that

cor(E × (M + g(x0))) = corE × (corM + g(x0))

and so f(x) − f(x0) ∈ − corE and g(x) ∈ − corM . Therefore, x ∈ S and we deduce

that x0 /∈WOp(f, S;E), which is a contradiction.

Theorem 4.9. Let x0 ∈ S. Suppose that g satisfies the Slater constraint qualification

and assume that one of the following conditions holds:

(B1) (f, g) is v-closely (K ×M)-convexlike on X and E is a solid convex set.

(B2) (f, g)− (f(x0), 0) is v-nearly (E ×M)-subconvexlike on X and K is solid.

If x0 ∈WOp(f, S;E), then there exist λ ∈ E+\{0} and µ ∈M+, such that

− τE(λ) ≤ µ(g(x0)) ≤ 0, (4.7)

x0 ∈ argminX(λ ◦ f + µ ◦ g, τE(λ) + µ(g(x0))). (4.8)

Proof. Let x0 ∈WOp(f, S;E). By Lemma 4.8 we have that x0 ∈WOp((f, g), X;E ×
(M + g(x0))).

It is easy to check that E × (M + g(x0)) is a solid convex set whenever E is a

solid convex set, since M is assumed to be solid and convex, and (f, g)− (f, g)(x0) is

v-nearly E × (M + g(x0))-subconvexlike on X whenever (f, g)− (f(x0), 0) is v-nearly

(E ×M)-subconvexlike on X.

Therefore, Theorem 4.1 can be applied under assumption (A1) (respectively, (A2))

if hypothesis (B1) (respectively, (B2)) holds, and we deduce that there exists ξ ∈
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(E × (M + g(x0)))
+\{0} such that x0 ∈ argminX(ξ ◦ (f, g), τE×(M+g(x0))(ξ)). Let us

define λ ∈ Y ′ and µ ∈ Z ′ as follows: λ(y) := ξ(y, 0), for all y ∈ Y , and µ(z) := ξ(0, z),

for all z ∈ Z. Then ξ(y, z) = λ(y) + µ(z), for all y ∈ Y and z ∈ Z and so

λ(y) + µ(z) + µ(g(x0)) ≥ 0, ∀ y ∈ E,∀ z ∈M. (4.9)

As M is a cone, it follows that µ ∈ M+. In particular we have µ(g(x0)) ≤ 0, since

x0 ∈ S. By taking z = 0 in (4.9) we deduce that λ(y) ≥ −µ(g(x0)) ≥ 0, ∀ y ∈ E, and

so λ ∈ E+ and τE(λ) ≥ −µ(g(x0)).

On the other hand, ξ ◦ (f, g) = λ◦f+µ◦g and τE×(M+g(x0))(ξ) = τE(λ)+µ(g(x0)).

Thus,

x0 ∈ argminX(λ ◦ f + µ ◦ g, τE(λ) + µ(g(x0))). (4.10)

Finally it follows that λ 6= 0. Indeed, if λ = 0 then µ ∈ M+\{0} and by (4.10) we

see that µ(g(x)) ≥ 0, for all x ∈ X. By the Slater constraint qualification there exists

x̂ ∈ X such that g(x̂) ∈ − corM and so µ(g(x̂)) < 0, which is a contradiction.

Remark 4.10. (a) Analogously as it was shown in Remark 4.2(a), assumptions (B1)

and (B2) are independent. However, if K is solid, then (B1)=⇒(B2).

(b) Theorem 4.9 encompasses the vector-valued version of [19, Theorem 5.1], which

was stated in the setting of Banach spaces and by assuming that K is pointed. For it,

consider assumption (B1) and E = q + K0, q ∈ K. Let us observe that the approxi-

mation error in [19, Theorem 5.1] is τE(λ) = 〈λ, q〉, which is bigger than the precision

〈λ, q〉+ µ(g(x0)) obtained via Theorem 4.9.

In the following result we state a sufficient condition for E-optimal and weak E-

optimal solutions of problem (2.2) with the feasible set S given by (2.3).

Theorem 4.11. Let x0 ∈ S. If there exist λ ∈ E+\{0} and µ ∈M+ such that

− τE(λ) ≤ µ(g(x0)) ≤ 0,

x0 ∈ argminX(λ ◦ f + µ ◦ g, τE(λ) + µ(g(x0)))

(respectively, x0 ∈ argmin<X(λ ◦ f + µ ◦ g, τE(λ) + µ(g(x0)))),

then x0 ∈WOp(f, S;E) (respectively, x0 ∈ Op(f, S;E)).

Proof. First, assume that x0 ∈ argminX(λ ◦ f + µ ◦ g, τE(λ) + µ(g(x0))). Then,

λ(f(x)− f(x0)) + µ(g(x)− g(x0)) + τE(λ) + µ(g(x0)) ≥ 0, ∀x ∈ X.

Therefore, for all x ∈ S,

λ(f(x))− λ(f(x0)) + τE(λ) ≥ −µ(g(x)) ≥ 0,

since −g(x) ∈ M and µ ∈ M+. From here it follows that x0 ∈ argminS(λ ◦ f, τE(λ)),

and by Theorem 4.4(i) the conclusion is obtained.

The proof of the other part is similar by applying Theorem 4.4(ii).
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From Theorems 4.9 and 4.11 we deduce the following characterization of weak

E-optimal solutions of problem (2.2) through linear scalarization.

Corollary 4.12. Let x0 ∈ S. Suppose that g satisfies the Slater constraint qualification

and that either (B1) or (B2) is satisfied. Then, x0 ∈WOp(f, S;E) if and only if there

exist λ ∈ E+\{0} and µ ∈M+ such that (4.7) and (4.8) are satisfied.

Remark 4.13. Given λ ∈ E+\{0} and µ ∈ M+, we denote by LEλ,µ : X → R the

well-known scalar Lagrangian λ ◦ f + µ ◦ g, i.e.,

LEλ,µ(x) := λ(f(x)) + µ(g(x)), ∀x ∈ X,

and we define

ΓEλ,µ :=
{
x0 ∈ S : −τE(λ) ≤ µ(g(x0)) ≤ 0, λ(f(x0)) ≤ LEλ,µ(x) + τE(λ), ∀x ∈ X

}
.

Suppose that g satisfies the Slater constraint qualification and that either (B1)

holds, or (B2) is satisfied for all x0 ∈ S. Then, by Corollary 4.12 it is easy to check

that

WOp(f, S;E) =
⋃

λ∈E+\{0}
µ∈M+

ΓEλ,µ.

In the precision τE(λ) + µ(g(x0)) obtained in Theorem 4.9, both the improvement

set and the constraint mapping take part. It is worth to note that this precision has

allowed us to derive the characterization of weak E-optimal solutions of problem (2.2)

given in Corollary 4.12.

In Example 5.17 we apply this characterization to obtain the weak E-optimal so-

lutions of a particular vector optimization problem.

5 E-proper optimality and linear scalarization

In this section we are going to derive necessary and sufficient conditions through linear

scalarization for Henig and Benson E-proper optimal solutions of problem (2.2) un-

der generalized convexity hypotheses. We also study the particular case in which the

feasible set is given by a cone-constraint (see (2.3)), obtaining in this case Lagrangian

optimality conditions. Recall that K is assumed to be vectorially closed and pointed

(see Remark 3.5(c)).

The necessary conditions are based on the next new generalized convexity concepts.

Definition 5.1. Let ∅ 6= E ⊂ Y and assume that K is relatively solid. The mapping

f : X → Y is said to be relatively solid E-subconvexlike (respectively, relatively solid

generalized E-subconvexlike) on a nonempty set N ⊂ X (with respect to K) if f is

E-subconvexlike (respectively, generalized E-subconvexlike) on N (with respect to K)

and f(N) + E + icrK (respectively, cone(f(N) + E) + icrK) is relatively solid.
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Proposition 5.2. If f is relatively solid E-subconvexlike on N , then f is relatively

solid generalized E-subconvexlike on N .

Proof. By Proposition 2.13(i) we have that f is generalized E-subconvexlike on N

whenever f is E-subconvexlike on N . Then the result follows since for all nonempty

set A ⊂ Y such that A+ icrK is convex, the next statement is true:

icr(A+ icrK) 6= ∅ ⇒ icr(coneA+ icrK) 6= ∅.

Indeed, it is easy to check that D := (coneA + icrK) ∪ {0} is a convex cone and

coneA + icrK is relatively solid whenever D is relatively solid. Then the result is

proved if D is relatively solid.

By [3, Proposition 2.3] we have that an arbitrary convex cone H ⊂ Y is relatively

solid if and only if H+ is relatively solid. Therefore, we have to prove that D+ is

relatively solid.

As A+icrK is convex and relatively solid, by [12, Lemma 5.3] we see that cone(A+

icrK) is a relatively solid convex cone, and so cone(A+ icrK)+ is relatively solid. Let

us check that D+ = cone(A+ icrK)+, which finishes the proof.

Indeed, it is obvious that D+ ⊂ cone(A + icrK)+. Reciprocally, let ξ ∈ cone(A +

icrK)+ and consider two arbitrary points y ∈ coneA and d ∈ icrK. If y 6= 0, then

there exists α > 0 and a ∈ A such that y = αa and it follows that

ξ(y + d) = ξ(α(a+ (1/α)d)) ≥ 0,

since ξ ∈ cone(A + icrK)+ and α(a + (1/α)d) ∈ cone(A + icrK). Now suppose that

y = 0 and consider an arbitrary point ā ∈ A. Then,

ξ(d) = lim
n→∞

ξ((1/n)(ā+ nd)) ≥ 0,

since ξ ∈ cone(A+icrK)+ and (1/n)(ā+nd) ∈ cone(A+icrK), for all n. Thus, ξ ∈ D+

and the proof finishes.

Remark 5.3. (a) If K is solid and E ∈ IK , then f is relatively solid generalized E-

subconvexlike on N if and only if f is v -nearly E-subconvexlike on N (see Proposition

2.13(iii)).

(b) The concept of relatively solid E-subconvexlike mapping is more general than

the vector-valued version of the notion of relatively solid K-subconvexlike mapping

introduced in [12, Definition 3.5]. To be precise, the first one reduces to the second one

by taking E = icrK, since icrK + icrK = icrK.

Moreover, let us observe that icrK ∈ IK (in particular, 0 /∈ icrK since K is

assumed to be pointed).

In the following two results, we give necessary conditions for Benson and Henig

E-proper optimal solutions of problem (2.2) by means of linear scalarization.
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Theorem 5.4. Let x0 ∈ S and E ∈ H. Suppose that K+ is solid, f − f(x0) is

relatively solid generalized E-subconvexlike on S. If x0 ∈ Be(f, S;E), then there exists

λ ∈ K+s ∩ E+ such that x0 ∈ argminS(λ ◦ f, τE(λ)).

Proof. As x0 ∈ Be(f, S;E) it follows that

vcl cone(f(S)− f(x0) + E) ∩ (−K) = {0}. (5.1)

As K+ is solid, by [3, Proposition 2.3] we deduce that K is relatively solid. Since

f−f(x0) is relatively solid generalized E-subconvexlike on S, we have that cone(f(S)−
f(x0)+E)+icrK is relatively solid and convex. Then, by [2, Propositions 3(iii),(iv) and

4(i)] we deduce that vcl(cone(f(S)− f(x0) +E) + icrK) is relatively solid, vectorially

closed and convex. Moreover, by [2, Proposition 6(i)] and Lemma 2.2(iii) it follows

that

vcl(cone(f(S)− f(x0) + E) + icrK) = vcl cone(f(S)− f(x0) + E)

and this set is a cone. Then, by applying Theorem 2.5 to statement (5.1) we deduce

that there exists a linear functional λ ∈ K+s such that

λ(y) ≥ 0, ∀ y ∈ vcl cone(f(S)− f(x0) + E).

Hence, it is clear that

λ(f(x))− λ(f(x0)) + λ(e) ≥ 0, ∀x ∈ S, ∀ e ∈ E. (5.2)

From here, we deduce that λ ∈ E+ (by choosing x = x0). Moreover, (5.2) is

equivalent to

τE(λ) ≥ λ(f(x0))− λ(f(x)), ∀x ∈ S,

which means that x0 ∈ argminS(λ ◦ f, τE(λ)), concluding the proof.

Remark 5.5. (a) By considering E = icrK we see that Theorem 5.4 encompasses

the vector-valued version of [12, Theorem 5.4]. This conclusion follows by Remark

5.3(b), Proposition 5.2 and by observing that Be(f, S) = Be(f, S; icrK), since for all

nonempty set A ⊂ Y we have that (see [2, Proposition 6(i)], Lemma 2.2(iii) and (3.6))

vcl cone(A+K) = vcl(coneA+K) = vcl(coneA+icrK) = vcl cone(A+ icrK). (5.3)

Moreover, note that Theorem 5.4 is based on a convexity assumption more general

than the convexity assumption used in [12, Theorem 5.4].

Analogously, Theorem 5.4 extends [3, Theorem 4.2] (see also [4]), where the v -nearly

K-subconvexlikeness of f − f(x0) is assumed.

(b) Let us suppose that K+ is solid and consider E = q+ icrK with q ∈ Y \(−K0).

By (5.3) and Remark 3.5(c) it is clear that E ∈ H. Then, by applying Theorem 5.4

to this improvement set we obtain [15, Theorem 4.6]. In this case, the relatively solid
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generalized E-subconvexlikeness assumption states that the set cone(f(S) − f(x0) +

q) + icrK (see (2.5)) is relatively solid and convex.

Let us underline that the assumptions in [15, Theorem 4.6] are stronger than the

ones of Theorem 5.4. In particular, observe that K is assumed to be solid and so the

generalized convexity hypotheses of both results are equivalent (see Remark 5.3(a) and

(5.3)).

(c) Theorem 5.4 is the algebraic counterpart of [10, Theorem 3.2] and [8, Theorem

2.9], which were stated in the topological setting.

Theorem 5.6. Let x0 ∈ S and E ∈ H. Suppose that f − f(x0) is v-nearly E-

subconvexlike on S. If x0 ∈ He(f, S;E), then there exists λ ∈ K+s ∩ E+ such that

x0 ∈ argminS(λ ◦ f, τE(λ)).

Proof. By Theorem 3.10(iii) there exists K ′ ∈ O(E) such that

vcl cone(f(S) + E − f(x0)) ∩ (− corK ′) = ∅.

Then, since f − f(x0) is v -nearly E-subconvexlike on S, the set vcl cone(f(S) + E −
f(x0)) is convex and by [14, Theorem 3.14] there exists λ ∈ K ′+\{0} ∩ E+ such that

(5.2) holds, which is equivalent to say that x0 ∈ argminS(λ ◦ f, τE(λ)).

On the other hand, as λ ∈ K ′+\{0} and K0 ⊂ corK ′, we deduce that λ ∈ K+s,

and the proof is complete.

Remark 5.7. Theorem 5.6 is the algebraic counterpart of [9, Theorem 4.5], which was

stated in the topological setting.

The next result provides a sufficient condition for Henig E-proper optimal solutions

of problem (2.2) through linear scalarization.

Theorem 5.8. Let E ∈ H. If there exists λ ∈ K+s ∩ E+ such that x0 ∈ argminS(λ ◦
f, τE(λ)), then x0 ∈ He(f, S;E).

Proof. Consider the cone

K ′ := {y ∈ Y : λ(y) > 0} ∪ {0}.

It is easy to see that K ′ is proper, convex and solid, with corK ′ = K ′\{0} and K0 ⊂
corK ′. Moreover, since λ ∈ E+ it also follows that E ∩ (−K ′\{0}) = ∅, so K ′ ∈ O(E).

We have that x0 ∈ Op(f, S;E+corK ′). Indeed, suppose on the contrary that there

exist x̄ ∈ S and ē ∈ E such that

f(x̄) + ē− f(x0) ∈ − corK ′.

From here, we have

λ(f(x̄)) + τE(λ)− λ(f(x0)) ≤ λ(f(x̄)) + λ(ē)− λ(f(x0)) = λ(f(x̄) + ē− f(x0)) < 0,
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which contradicts the hypothesis. Thus, x0 ∈ Op(f, S;E + corK ′), which implies by

definition that x0 ∈ He(f, S;E), as we want to prove.

Remark 5.9. Theorem 5.8 reduces to [23, Theorem 5.2] by taking E = q+K0, q ∈ K
(see Remark 3.5(e)), and it is the algebraic counterpart of [9, Theorem 4.4].

As a direct consequence of Theorems 3.12, 5.4, 5.6 and 5.8 we obtain the next corol-

lary. Part (iii) reduces to the vector-valued version of [12, Corollary 5.5] by considering

E = icrK (see Remark 5.3(b)). Observe that the generalized convexity assumption of

Corollary 5.10 with E = icrK is more general than the one considered in [12, Corollary

5.5].

Corollary 5.10. The following statements hold:

(i) ⋃
λ∈K+s∩E+

argminS(λ ◦ f, τE(λ)) ⊂ He(f, S;E) ⊂ Be(f, S;E).

(ii) Suppose that f − f(x0) is v-nearly E-subconvexlike on S, for all x0 ∈ S. Then,⋃
λ∈K+s∩E+

argminS(λ ◦ f, τE(λ)) = He(f, S;E).

(iii) Suppose that K+ is solid and f − f(x0) is relatively solid generalized E-

subconvexlike on S, for all x0 ∈ S. Then,⋃
λ∈K+s∩E+

argminS(λ ◦ f, τE(λ)) = He(f, S;E) = Be(f, S;E).

Next, we study problem (2.2) with the feasible set given in (2.3) and we obtain the

following Lagrangian results.

Theorem 5.11. Let x0 ∈ S and E ∈ H. Suppose that (f, g) − (f(x0), 0) is v-nearly

(E ×M)-subconvexlike on X and g satisfies the Slater constraint qualification. If x0 ∈
He(f, S;E), then there exist λ ∈ K+s ∩ E+ and µ ∈M+ such that

− τE(λ) ≤ µ(g(x0)) ≤ 0, (5.4)

x0 ∈ argminX(λ ◦ f + µ ◦ g, τE(λ) + µ(g(x0))). (5.5)

Proof. Let x0 ∈ He(f, S;E). By Theorem 3.10 we deduce that there exists K ′ ∈ O(E)

such that x0 ∈ WOp(f, S;E + corK ′). By Lemma 2.8(iv) we see that E′ :=

E + corK ′ ∈ IK′ . Let us check that (f, g) − (f(x0), 0) is v -nearly (E′ × M)-

subconvexlike on X. Indeed, by the generalized convexity assumption we have that

the cone vcl cone((f, g)(X)− (f(x0), 0) + E ×M) is convex, and so

Q := vcl cone((f, g)(X)− (f(x0), 0) + E ×M) + (corK ′ × corM)
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is also convex, since K ′ and M are solid convex cones. By Lemma 2.2(ii) it is clear

that

Q = cone((f, g)(X)− (f(x0), 0) + E ×M) + (corK ′ × corM)

= cone((f, g)(X)− (f(x0), 0) + E′ ×M) + (corK ′ × corM).

Therefore, (f, g)− (f(x0), 0) is relatively solid generalized (E′ ×M)-subconvexlike on

X (with respect to the cone K ′ ×M in Y × Z) and by Remark 5.3(a) it follows that

(f, g)− (f(x0), 0) is v -nearly (E′ ×M)-subconvexlike on X.

By applying Theorem 4.9, we deduce that there exist λ ∈ E′+\{0} and µ ∈ M+,

such that

− τE′(λ) ≤ µ(g(x0)) ≤ 0,

x0 ∈ argminX(λ ◦ f + µ ◦ g, τE′(λ) + µ(g(x0))).

Let us check that λ ∈ K+s ∩E+ and τE′(λ) = τE(λ), which finishes the proof. Indeed,

as λ ∈ E′+\{0} it is clear that λ ∈ K ′+\{0}, since corK ′∪{0} is a cone and (corK ′)+ =

K ′+. Thus, λ ∈ K+s, since K0 ⊂ corK ′, and so τE(λ) = τE′(λ) and λ ∈ E+, since

τE′(λ) ≥ 0.

Theorem 5.12. Let x0 ∈ S and E ∈ H. Assume that K+ is solid, f − f(x0)

is relatively solid generalized E-subconvexlike on S, (f, g) − (f(x0), 0) is v-nearly

(E × M)-subconvexlike on X and g satisfies the Slater constraint qualification. If

x0 ∈ Be(f, S;E), then there exist λ ∈ K+s ∩ E+ and µ ∈ M+ such that (5.4) and

(5.5) hold.

Proof. By applying successively Theorem 5.4 and Corollary 5.10(i) we have that x0 ∈
He(f, S;E), and then the result follows by applying Theorem 5.11.

Theorem 5.13. Let x0 ∈ S and E ∈ H. If there exist λ ∈ K+s ∩ E+ and µ ∈ M+

such that (5.4) and (5.5) hold, then x0 ∈ He(f, S;E).

Proof. By hypothesis, λ(f(x)) + µ(g(x)) + τE(λ) + µ(g(x0)) ≥ λ(f(x0)) + µ(g(x0)) for

all x ∈ X. Hence, for all x ∈ S,

λ(f(x))− λ(f(x0)) + τE(λ) ≥ −µ(g(x)) ≥ 0,

since g(x) ∈ −M and µ ∈M+. From here, x0 ∈ argminS(λ◦f, τE(λ)), and by Theorem

5.8 the conclusion is obtained.

Remark 5.14. In [10, Theorem 3.8] the authors obtained, in the topological setting

and for a kind of approximate proper solutions in the sense of Benson, Lagrangian

optimality conditions similar to these in Theorem 5.12. It is worth to note that the

precision τE(λ) + µ(g(x0)) attained in Theorem 5.12 is better than the approximation
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error given in [10, Theorems 3.8], and this improvement let us just derive a charac-

terization of Benson and Henig E-proper optimal solutions of problem (2.2) through

scalar Lagrangian conditions (see Corollary 5.15 below).

From Theorems 3.12, 5.11, 5.12 and 5.13 we deduce the next corollary.

Corollary 5.15. Let E ∈ H. The following holds:

(i) ⋃
λ∈K+s∩E+

µ∈M+

ΓEλ,µ ⊂ He(f, S;E) ⊂ Be(f, S;E).

Suppose that (f, g) − (f(x0), 0) is v-nearly (E × M)-subconvexlike on X, for all

x0 ∈ S, and g satisfies the Slater constraint qualification.

(ii) We have that ⋃
λ∈K+s∩E+

µ∈M+

ΓEλ,µ = He(f, S;E).

(iii) If additionally K+ is solid and f − f(x0) is relatively solid generalized E-

subconvexlike on S, for all x0 ∈ S, then⋃
λ∈K+s∩E+

µ∈M+

ΓEλ,µ = He(f, S;E) = Be(f, S;E).

Next we illustrate the above results with an example in the setting of an infinite

dimensional space, which furthermore shows that the sets Be(f, S;E) and He(f, S;E)

are, in general, different.

Example 5.16. Let Y = RN = {(ai)i∈N} be the linear space of all sequences of real

numbers and K the v -closed convex cone of nonnegative sequences, i.e.,

K = {(yi)i∈N ∈ Y : yi ≥ 0 ∀i}.

Consider the family en ∈ Y , n ∈ N, defined by en = (δin)i∈N, where δin = 1 if i = n

and δin = 0 if i 6= n.

(i) First, we prove that

K+ = {(bi)i∈N ∈ K : ∃i0 such that bi = 0 ∀i > i0}.

Indeed, let λ ∈ K+, βi := λ(ei) ≥ 0, a = (ai)i∈N ∈ K and L = λ(a) ∈ R+. One has

a =
∑n

i=1 aie
i + ān, for all n, where ān := a−

∑n
i=1 aie

i ∈ K. Then

λ(a) =

n∑
i=1

aiβi + λ(ān) = L,

and since λ(ān) ≥ 0, it follows that
∑n

i=1 aiβi ≤ L ∀n, i.e., it is bounded. Therefore,

the series of positive numbers
∑∞

i=1 aiβi is convergent and consequently

aiβi → 0 ∀(ai) ∈ K. (5.6)
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This property implies that there exists i0 such that βi = 0 ∀i > i0. Indeed, if for each

n ∈ N there exists in > i0 such that βin > 0, then we select ain = β−1in and ai = i

for i 6= in. For this sequence, the subsequence (ain)n∈N satisfies ainβin = 1 and this

contradicts (5.6).

In consequence, we identify λ = (βi)i∈N.

(ii) Second, we prove that

Y ′ = P := {(bi)i∈N : bi ∈ R and ∃i0 such that bi = 0 ∀i > i0}.

Let λ ∈ Y ′ and define I+ := {i ∈ N : λ(ei) > 0} and I− := {i ∈ N : λ(ei) < 0}.
The sets I+ and I− are finite. Suppose that I+ is an infinite set. Then we consider the

linear space Y1 = RI+ and its natural ordering cone K1 and we restrict λ to Y1 and so

λ ∈ K+
1 . Reasoning as above we conclude that only a finite numbers of λ(ei), i ∈ I+,

are non null, which is a contradiction. Similarly if we assume that I− is an infinite set

(we consider −λ instead of λ).

Let us observe that the map λ ∈ Y ′ 7→ (λ(ei)) ∈ P is an isomorphism of linear

spaces.

(iii) K+s = ∅. Indeed, if λ ∈ K+s then λ = (λi)i∈N and there exists i0 such that

λi = 0 for all i > i0. Choosing ei0+1 ∈ K\{0} we have λ(ei0+1) = 0, which is a

contradiction.

(iv) Now we consider X = Y , S = K, f = Id and x0 = 0 ∈ S. It is easy to check

that 0 ∈ Be(f, S) since S = K is a pointed v -closed convex cone. However, 0 /∈ He(f, S).

Indeed, it is clear that f − f(x0) is v -nearly K-subconvexlike on S. If we assume that

0 ∈ He(f, S), by Theorem 5.6 there exists λ ∈ K+s such that 0 ∈ argminS(λ ◦ f). But

this is a contradiction since K+s = ∅.
Moreover, in this case,

G(K0) = ∅ ⇔ He(f, S) = ∅ ⇔ 0 /∈ He(f, S).

The first left to right implication is clear by the definition of (exact) Henig proper

optimal solution, and the second one is obvious. Moreover, if 0 /∈ He(f, S), by Theorem

3.10 there does not exist K ′ ∈ O(K0) such that K ∩ (−K ′) = {0}. If O(K0) 6= ∅ then

there is K ′ ∈ O(K0) and by Remark 3.11(b) we know in particular that K ′ is pointed.

Hence, K ′0 ∩ (−K ′) = ∅, which implies that K0 ∩ (−K ′) = ∅, since K0 ⊂ corK ′ = K ′0,

a contradiction. Finally, by Remark 3.11(a) we deduce that G(K0) = ∅.
(v) It holds that cor(K+) = ∅. Indeed, suppose that b ∈ cor(K+). Then for each

v ∈ Y ′ there exists t0 > 0 such that b + tv ∈ K+ for all t ∈ [0, t0]. As b ∈ Y ′ there

exists i0 such that bi = 0 for all i > i0. Choose v = −ei0+1. Then b+ tv /∈ K+ ∀t > 0

because the (i0 + 1)-th component is negative.

As a consequence, Theorem 5.4 is not applicable.

(vi) corK = ∅. Indeed, let a ∈ corK. If ai = 0 for some i, then we choose v = −ei

and we have a + tv /∈ K ∀t > 0. Hence we can assume that ai > 0 for all i. Then we
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choose v = (−iai)i∈N and there does not exist t0 > 0 such that a + t0v ∈ K, since it

should verify ai + t0(−iai) ≥ 0 for all i, or equivalently, t0 ≤ 1/i for all i, which is

impossible.

(vii) Now we consider the space P and its natural ordering cone D := {(yi)i∈N ∈
P : yi ≥ 0 ∀i}. One has P ′ = Y (that is, the bidual of Y is itself), D+ = K but now

D+s = {(ai)i∈N ∈ Y : ai > 0 ∀i}. Let problem (2.2) be with f = Id : P → P, S1 = D

and x0 = 0 ∈ S1. One has 0 ∈ He(f, S1). Indeed, if we select λ = (1, 1, 1, . . . ) ∈ D+s it

result that λ(y) ≥ 0 ∀y ∈ S1 and by Theorem 5.8 the result follows.

As a consequence, 0 ∈ Be(f, S1) by Theorem 3.12.

Next, we provide an illustrative example in which we calculate the E-optimal, weak

E-optimal and the Benson and Henig E-proper optimal solutions of a given problem.

Example 5.17. Consider problem (2.2) with the following data: X = Y = R2, Z = R,

f : R2 → R2 is given by f(x, y) = (x, y), g : R2 → R is given by g(x, y) = ϕ(x) − y,

where ϕ(x) = x2 if x ≤ 0 and ϕ(x) = 0 if x > 0, E = {(x, y) ∈ R2 : y ≥ 0, x+ y ≥ 1},
K = R2

+, M = R+. We wish to obtain the weak E-optimal solutions, and the Benson

and Henig E-proper optimal solutions.

It is clear that E is a convex improvement set with respect to R2
+, E+ = {(λ1, λ2) ∈

R2
+ : λ2 ≥ λ1}, (f, g) is (R2

+ × R+)-convex on R2, f is R2
+-convex on R2 and g

satisfies the Slater constraint qualification. Clearly, by Proposition 2.9, Theorem 2.14

and Remark 5.3(a), (f, g) − (f(x0), 0) is v -nearly E × M -subconvexlike on R2 and

f − f(x0) is relatively solid v -nearly E-subconvexlike on S for all x0 ∈ S.

Let (a, b) ∈ S be a feasible point and suppose that (a, b) ∈WOp(f, S;E) or (a, b) ∈
Be(f, S;E). We are going to apply Theorems 4.9 and 5.12. We have to find multipliers

λ = (λ1, λ2) ∈ E+\{0} and µ ≥ 0 satisfying the conclusions of the above theorems.

Condition (4.8) becomes

λ1x+ (λ2 − µ)y + µϕ(x)− λ1a− λ2b+ τE(λ) ≥ 0, ∀(x, y) ∈ R2.

From here, it follows that µ = λ2. Therefore, the above expression is equivalent to

λ1x+ λ2ϕ(x)− λ1a− λ2b+ τE(λ) ≥ 0, ∀x ∈ R. (5.7)

We have that λ2 6= 0, because in the other case, since λ2 ≥ λ1 ≥ 0 it would be λ1 = 0

and then λ = 0, which is a contradiction. For λ ∈ E+ one has τE(λ) = infe∈E λ(e) = λ1

(since the minimum is attained at (1, 0) ∈ E). In consequence, by dividing by λ2 in

(5.7) we can assume that λ2 = 1 and 0 ≤ λ1 ≤ 1. Thus, (5.7) is written as

λ1x+ ϕ(x)− λ1a− b+ λ1 ≥ 0 ∀x ∈ R,

and this expression can be divided into two parts:

x2 + λ1x+ (1− a)λ1 − b ≥ 0, ∀x ≤ 0, (5.8)

λ1x+ (1− a)λ1 − b ≥ 0, ∀x > 0. (5.9)
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As λ1 ≥ 0, equation (5.9) is equivalent to (1 − a)λ1 − b ≥ 0, and this condition is

deduced from (5.8) by choosing x = 0.

On the other hand, condition (5.4), i.e. µg(a, b) + τE(λ) ≥ 0, reduces to λ2(ϕ(a)−
b) + λ1 ≥ 0, which (taking into account that we can assume λ2 = 1) can be expressed

in the following way

a2 − b+ λ1 ≥ 0 if a ≤ 0, (5.10)

−b+ λ1 ≥ 0 if a > 0. (5.11)

Inequality (5.11) is also a consequence of (5.9) by choosing x = a, and inequality (5.10)

is a consequence of (5.8) by choosing x = a. The quadratic function

h(x) = x2 + λ1x+ (1− a)λ1 − b, ∀x ≤ 0,

has the (global) minimum at the point x = −λ1/2 ≤ 0, and the minimum is

h

(
−λ1

2

)
=
λ21
4

+ λ1
−λ1

2
+ (1− a)λ1 − b = −λ

2
1

4
+ (1− a)λ1 − b.

So, condition (5.8) is satisfied if and only if −λ21
4 + (1− a)λ1 − b ≥ 0, i.e., if

λ21
4

+ (a− 1)λ1 + b ≤ 0. (5.12)

The quadratic function ψ(λ1) :=
λ21
4 + (a − 1)λ1 + b has the (global) minimum at the

point qa := 2(1− a).

Case (i): qa ≥ 1, that is, 2(1− a) ≥ 1, or equivalently a ≤ 1/2.

As ψ is strictly decreasing on [0, 1], there is a solution λ1 ∈ [0, 1] satisfying (5.12) if

ψ(1) ≤ 0 ⇔ 1

4
+ a− 1 + b ≤ 0 ⇔ b ≤ 3

4
− a.

Hence if a ≤ 1/2, b ≤ 3
4 − a and (a, b) ∈ S, we can take λ1 = 1, λ2 = 1.

Case (ii): 0 < qa < 1, i.e., 0 < 2(1− a) < 1, or equivalently 1/2 < a < 1.

The minimum of ψ is ψ(qa) = 4(1−a)2
4 + (a − 1) · 2(1 − a) + b = b − (a − 1)2, and

so (5.12) is satisfied if and only if b − (a − 1)2 ≤ 0, that is, b ≤ (a − 1)2. In this

case, we can choose λ1 = qa and λ2 = 1. Let us observe that 0 < λ1 < 1, and so

λ = (λ1, λ2) ∈ K+s ∩ E+.

Case (iii): qa ≤ 0, i.e., a ≥ 1.

There is a solution of (5.12) with λ1 ∈ [0, 1] and b ≥ 0 (remember that (a, b) ∈ S)

if and only if b = 0 and λ1 = 0, since ψ is strictly increasing on [0, 1] and ψ(0) = b.

Hence λ = (0, 1) ∈ E+\K+s satisfies (5.12).

Taking into account that the line b = 3/4 − a, with a ≤ 1/2, and the parabola

b = a2 meet at (−3/2, 9/4), the above can be summarized as follows: for the points

(a, b) that satisfy

(i)

{
a2 ≤ b ≤ 3

4 − a
−3

2 ≤ a < 0
or

{
0 ≤ b ≤ 3

4 − a
0 ≤ a ≤ 1

2

or (ii)

{
0 ≤ b ≤ (a− 1)2

1
2 < a < 1

(5.13)
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there exist λ ∈ K+s ∩ E+ and µ = 1 ∈ M+ satisfying the necessary conditions of

Theorem 5.12. Moreover, it is easy to check that all these points (a, b) also satisfy

the sufficient conditions of Corollary 5.15(iii) (the inequality above can be reverted).

Therefore, Be(f, S;E) is the set of all points (a, b) satisfying (5.13). We know that they

are also weak E-optimal points by Theorem 3.6. In addition, for the points

(iii) (a, 0), ∀ a ≥ 1, (5.14)

there exist λ = (0, 1) ∈ E+ and µ = 1 ∈ M+ satisfying the necessary conditions of

Theorem 4.9. Moreover, it is easy to check that the points of (5.14) also satisfy the

sufficient conditions of Theorem 4.11, and so they are weak E-optimal points too, and

all of them (5.13)-(5.14) make the set WOp(f, S;E) up.

Finally, for the points (a, b) satisfying

(i)

{
a2 ≤ b < 3

4 − a
−3

2 < a < 0
or

{
0 ≤ b < 3

4 − a
0 ≤ a ≤ 1

2

or (ii)

{
0 ≤ b < (a− 1)2

1
2 < a < 1

(5.15)

there exists λ1 ≥ 0 such that ψ(λ1) < 0, and so there exist λ ∈ E+ and

µ ∈ M+ satisfying the assumptions of Theorem 4.11 with strict inequality, i.e.,

(a, b) ∈ argmin<X(λ ◦ f + µ ◦ g, τE(λ) + µ(g(x0))), and therefore (a, b) ∈ Op(f, S;E).

Let us note that the points (a, b) such that

b =
3

4
− a with − 3

2
≤ a ≤ 1

2
or b = (a− 1)2 with

1

2
< a < 1 or b = 0 with a ≥ 1

are not E-optimal (this is proved by checking the definition), and so the set Op(f, S;E)

is just defined by (5.15).

In the next figure, we have drawn the sets Be(f, S;E), WOp(f, S;E) and

Op(f, S;E).

ApproxFig1b.png

WOp(f, S;E)

ApproxFig2b.png

Be(f, S;E) = He(f, S;E)

ApproxFig3b.png

Op(f, S;E)

According to Corollary 5.15(iii), we have He(f, S;E) = Be(f, S;E).

Moreover, note that if we change E by E1 = {(x, y) ∈ R2 : y ≥ 0, x + y > 1},
then Op(f, S;E1) = WOp(f, S;E), WOp(f, S;E1) = WOp(f, S;E) and Be(f, S;E1) =

He(f, S;E1) = Be(f, S;E).
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Remark 5.18. In several recent papers, constrained set-valued vector optimization

problems as (2.3) are considered, i.e., f and g are assumed to be set-valued mappings

and the feasible set S is given by S = {x ∈ X : g(x)∩ (−M) 6= ∅}. In this framework,

different optimality conditions for approximate solutions are established under the

assumption 0 ∈ g(x0), see for example [21, Theorems 4.1 and 4.2], [22, Theorem 5.1],

[24, Theorem 5.1] and [25, Theorem 3.1].

This assumption is very restrictive for dealing with approximate solutions. For in-

stance, in Example 5.17, one can see that only the points in the boundary of the feasible

set satisfy such condition. However, we have proved that there are many approximate

solutions that do not satisfy it (see the figure above). For these points such results are

not applicable even if E = q +K or E = K0.

6 Conclusions

In this paper, we study notions of approximate solution for optimization problems

defined on real linear spaces without considering any topology, that is, just by using

algebraic structures.

Specifically, we study approximate weak solutions and approximate proper solutions

in the sense of Benson and Henig, where the error is determined by an improvement

set E. This kind of sets frequently appears in the literature, because they are very used

in economics and optimization.

We establish the relationships between these three types of solutions and we char-

acterize them in terms of approximate solutions of associated scalar optimization prob-

lems, under generalized convexity assumptions.

Moreover, when the feasible set is given by a cone-constraint, we also characterize

these solutions by means of scalar Lagrangian optimality conditions.

The results presented in this work extend to the algebraic setting several well-known

results obtained in topological frameworks. On the other hand, in the literature the

most usual notions of approximate efficiency and proper efficiency are defined in the

Kutateladze sense (see [16]), i.e., by means of a vector. These concepts are particular

cases of the corresponding notions introduced in this paper. Moreover, it is worth to

underline that the use of a unique vector for measuring the error can cause in practice

sets of approximate solutions that contains points too far from the efficient set. This

fact was shown in [8, 9].

In a forthcoming paper, we study conditions on the set E in the algebraic setting in

order to avoid the above problem and we derive saddle point results for the solutions

stated in this paper.

Finally, let us notice that there exist in the literature other approaches to ob-

tain optimality conditions for approximate solutions of different kinds of optimization
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problems. In particular, let us underline the one due to Mordukhovich [18, Chapter 5].

Then, it would be interesting to compare their main results.
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[8] Gutiérrez, C.; Huerga, L.; Jiménez, B.; Novo, V.: Proper approximate

solutions and ε-subdifferentials in vector optimization: Basic properties and limit

behaviour. Nonlinear Anal. 79 (2013), 52-67.

[9] Gutiérrez, C.; Huerga, L.; Jiménez, B.; Novo, V.: Henig approximate
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