Skip to main content
Log in

An adaptive framework for costly black-box global optimization based on radial basis function interpolation

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we present a framework for the global optimization of costly black-box functions using response surface (RS) models. The main iteration steps of the framework which is referred to as the Adaptive Framework using Response Surface (ADFRS) consist of two phases. In the first phase, we implement a mixture of local searches and global searches to get a rough solution before the number of consecutive unsuccessful iterations exceeds a user-defined threshold. A procedure is embedded into this phase to check whether a small neighborhood of a global minimizer of the current RS model is fully explored or not, and then determine the search type (global search or local search) to be implemented next. Before performing a local search or a global search, the distance between the two global minimizers of the last and the current response surface models is checked, and the current global minimizer will be taken as the new evaluation point if this distance is very small. This strategy can quickly return a good evaluation point. In the second phase, we perform pure local search in the vicinity of the current best point to search for a better solution. Local searches are only implemented in the vicinities of the global minima of the RBF models in our scheme. Numerical experiments on some test problems are conducted to show the effectiveness of the present algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akhtar, T., Shoemaker, C.A.: Multi objective optimization of computationally costly multi-modal functions with RBF surrogates and multi-rule selection. J. Glob. Optim. 64, 17–32 (2016)

    Article  MATH  Google Scholar 

  2. Björkman, M., Holmström, K.: Global optimization of costly nonconvex functions using radial basis functions. Optim. Eng. 1(4), 373–397 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Box, G.E.P., Draper, N.R.: Empirical Model-Building and Response Surfaces. Wiley, New York (1987)

    MATH  Google Scholar 

  4. Conn, A.R., Scheinberg, K., Toint, PhL: Recent progress in unconstrained nonlinear optimization without derivatives. Math. Program. 79(3), 397–414 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Dixon, L.C.W., Szegö, G.: The global optimization problem: an introduction. In: Dixon, L.C.W., Szegö, G. (eds.) Towards Global Optimization 2, pp. 1–15. North-Holland, Amsterdam (1978)

    Google Scholar 

  6. Emmerich, M., Giotis, A., Özdemir, M., Bäck, T., Giannakoglou, K.: Metamodel-assisted evolution strategies. In: Parallel Problem Solving from Nature VII. Springer, pp. 361–370 (2002)

  7. Friedman, J.H., Bentely, J., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3, 209–226 (1977)

    Article  MATH  Google Scholar 

  8. Gutmann, H.-M.: A radial basis function method for global optimization. J. Glob. Optim. 19(3), 201–227 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic black-box systems via sequential kriging meta-models. J. Glob. Optim. 34(3), 441–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jones, D.R.: Global optimization with response surfaces. In: Presented at the Fifth SIAM Conference on Optimization, Victoria, Canada (1996)

  11. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khuri, A.I., Cornell, J.A.: Response Surfaces. Marcel Dekker Inc, New York (1987)

    MATH  Google Scholar 

  13. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley, New York (1995)

    MATH  Google Scholar 

  14. Powell, M.J.D.: The theory of radial basis function approximation in 1990. In: Light, W. (ed.) Advances in Numerical Analysis, Volume 2: Wavelets, Subdivision Algorithms and Radial Basis Functions, pp. 105–210. Oxford University Press, Oxford (1992)

    Google Scholar 

  15. Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.-P. (eds.) Advances in Optimization and Numerical Analysis, pp. 51–67. Kluwer, Dordrecht (1994)

    Chapter  Google Scholar 

  16. Powell, M.J.D.: UOBYQA: unconstrained optimization by quadratic approximation. Math. Program. 92, 555–582 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Powell, M.J.D.: On trust region methods for unconstrained minimization without derivatives, Technical Report. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK (2002)

  18. Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black box functions using radial basis functions. J. Glob. Optim. 31, 153–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Regis, R.G., Shoemaker, C.A.: Improved strategies for radial basis function methods for global optimization. J. Glob. Optim. 37(1), 113–135 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Regis, R., Shoemaker, C.: A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19, 497–509 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Regis, R.G., Shoemaker, C.A.: Parallel stochastic global optimization using radial basis functions. INFORMS J. Comput. 21(3), 411–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Regis, R.G., Shoemaker, C.A.: A quasi-multistart framework for global optimization of expensive functions using response surface methods. J. Glob. Optim. 56, 1719–1753 (2013)

    Article  MATH  Google Scholar 

  23. Regis, R.G., Shoemaker, C.A.: Combining radial basis function surrogates dynamic coordinate search in high dimensional expensive black-box optimization. Eng. Optim. 45(5), 529–555 (2013)

    Article  MathSciNet  Google Scholar 

  24. Schoen, F.: A wide class of test functions for global optimization. J. Glob. Optim. 3, 133–137 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Törn, A., Zilinskas, A.: Glob. Optim. Springer, Berlin (1989)

  26. Wild, S.M., Regis, R.G., Shoemaker, C.A.: ORBIT: optimization by radial basis function interpolation in trust-regions. SIAM J. Sci. Comput. 30(6), 3197–3219 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wild, S.M., Shoemaker, C.A.: Global convergence of radial basis function trust-region algorithms for derivative-free optimization. SIGEST article. SIAM Rev. 55(2), 349–371 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ye, K.Q., Li, W., Sudjianto, A.: Algorithmic construction of optimal symmetric latin hypercube designs. J. Stat. Plan. Infer. 90, 145–159 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the two anonymous referees for their very helpful comments and insightful suggestions that have helped improve the presentation of this paper greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Bai, F. An adaptive framework for costly black-box global optimization based on radial basis function interpolation. J Glob Optim 70, 757–781 (2018). https://doi.org/10.1007/s10898-017-0599-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0599-5

Keywords

Navigation