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1 Introduction

Let H be a real Hilbert space with the norm and inner product given by ‖ · ‖ and
〈·, ·〉, and m be a positive integer. We firstly recall the problem of minimizing an
additive component function:

minimize
∑m

i=1 fi(x)
subject to x ∈ X,

(1)

where, for all i = 1, . . . ,m, fi : H → (−∞,+∞] := R ∪ {+∞} is a proper convex
lower semicontinuous objective function andX is a nonempty closed convex subset
ofH. Due to a practical point of view, many real-world problems can be formulated
in the form of the problem (1). For instance, in large-scale machine learning (where
m is very large), each component function fi will measure the sufficiency of the
model’s output corresponding to a parameter x ∈ H and an observed data indexed
by i. In this situation, minimizing the sum of these component functions will give
a parameter x ∈ H in which it fits the observed data. A classical example is the
least squares regression

minimize
∑m

i=1 (〈ai, x〉 − bi)
2

subject to x ∈ H,

where ai ∈ H and bi ∈ R are given data, for all i = 1, . . . ,m. We refer to Bottou,
Curtis and Nocedal [8] for an attractive review and [22, 31, 33] for more contribu-
tions on large-scale machine learning.

It is well known that algorithms for approximating a solution of (1) may involve
the metric projection onto the feasible set X. However, in some situations such set
X is not simple enough so that the projection cannot be easily implemented. In or-
der to deal with this situation, Attouch et al. [3] proposed an exterior penalization
scheme involving the gradient of a corresponding constrained function instead of
computing the metric projection onto constrained sets directly. Although, some-
times the set X is simple enough so that the metric projection has a closed-form
expression, it may happen that the computation is very costly and time-consuming.
For instance, when H = R

n, it is well known that the set X := {x ∈ R
n : Ax = b},

where A is an r × n matrix (with r < n) with linearly independent rows and
b ∈ R

n, has infinitely many elements and the metric projection onto this set is
projX(x) := x−A⊤(AA⊤)−1(Ax− b), which is not easy to invert. Of course, one
can take the function g(x) = 1

2‖Ax − b‖2 so that X = argming and the gradient

is ∇g(x) = A⊤(Ax− b), which is simpler to compute than the metric projection.
It is worth noting that the consideration of particular structure by using the con-
strained function has been applied in several situations such as optimal control,
partial differential equation, signal and image processing, see [2,3,23,27] for more
insight details. These advantages naturally motivate us to consider the particular
structure of the constrained set X = argming, which leads us to consider the
following hierarchical minimization problem:

minimize
∑m

i=1 fi(x)
subject to x ∈ argming,

(2)

where, for all i = 1, . . . , m, fi : H → (−∞,+∞] is a proper convex lower semi-
continuous objective function, and argmin g is the set of minima of a convex
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(Fréchet) differentiable function g : H → R, which we will assume that it is
nonempty and min g = 0. Another approach to motivate problem (2) in the con-
text of nonautonomous multiscaled differential inclusion is due to [1]. We refer the
reader to [2, 3, 13, 14, 18, 23, 27] for a rich literature devoted to problem (2).

Assume that the solution set of the problem (2) is nonempty and some quali-
fication conditions hold, for instance,

argming ∩
m
⋂

i=1

int dom(fi) 6= ∅ (3)

(for more qualification conditions, see [7, Proposition 27.8]). Then, problem (2) is
equivalent to the following problem: find x ∈ H such that

0 ∈
m
∑

i=1

∂fi(x) +Nargmin g(x). (4)

Note that the nonempty subdifferential of a proper convex lower semicontinuous
function is a maximally monotone operator and the set of minima of such function
is the set of zeros of the subdifferential. Due to the equivalence of problems (2) and
(4), in this paper, we shall deal with the following monotone inclusion problem.

Problem 1.1 (Monotone Inclusion Problem (MIP)) Find x ∈ H such that

0 ∈
m
∑

i=1

Ai(x) +B(x) +Nzer(C)(x), (5)

where, for all i = 1, . . . ,m, Ai : H ⇒ H is a maximally monotone operator and
B,C : H → H are cocoercive operators.

Note that if Ai = ∂fi, for all i = 1, . . . ,m, B(x) = 0 for all x ∈ H and C = ∇g,
then the monotone inclusion problem (4) is a special case of MIP. Moreover, by
using some suitable qualification condition (e.g., (3)), the hierarchical minimization
problem (2) is also a particular case of MIP; see Section 4 for further details.

We let the set of all zeros of the operator C be denoted by zer(C) := {z ∈ H :
0 = C(z)}, and let the normal cone to the set zer(C) be denoted by Nzer(C). We
shall assume from now on that

zer(

m
∑

i=1

Ai +B +Nzer(C)) 6= ∅.

In order to approximate a solution of MIP, we remark that Boţ and Csetnek [10]
investigated a particular situation of MIP of the form

0 ∈ A(x) + B(x) +Nzer(C)(x), (6)

(say, A := A1). They proposed a forward-backward algorithm of penalty type
for solving problem (6). In each iteration, the algorithm performs a forward step
with the operator B together with the penalization term with respect to C and a
backward step by the resolvent of A, that is,

xk+1 := JαkA (xk − αkB(xk)− αkβkC(xk)) ∀k ≥ 1,
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where x1 ∈ H is arbitrarily chosen. To guarantee the convergence of the sequence
generated by their proposed algorithm, they introduced a condition formulated
by using the Fitzpatrick function associated with the operator C (see Assump-
tion 3.2 (H2)). In their paper, they also presented the forward-backward-forward
algorithm, which is known as Tseng’s type algorithm with penalty term, for solv-
ing (6) in the case where B and C are monotone and Lipschitz continuous. As
a continuation of these developments, in [9], the same authors focused on solv-
ing a monotone inclusion problem involving linearly composed and parallel-sum
monotone operators and the normal cone to the set of zeros of another monotone
and Lipschitz continuous operator. An application on image inpainting has been
also presented. In [12], the same authors considered the penalty type algorithm
with inertial effect of the one proposed in [10] for solving (6). In a similar fashion,
Banert and Boţ [6] proposed the backward penalty type algorithm for solving (6)
in the case where C is a maximally monotone operator.

On the other hand, Passty [26] considered a backward splitting method for
solving MIP in the case where B = C = 0. The proposed algorithm can be read
as follows: let x1 ∈ H be chosen arbitrarily. For each k ≥ 1, one sets ψ0,k := xk.
One computes

ψi,k := JαkAi
(ψi−1,k) for all i = 1, . . . ,m,

and put

xk+1 := ψm,k.

The advantage of this method is that one can evaluate the resolvents JAi
, i =

1, . . . ,m individually rather than computing the resolvent of the sum
∑m

i=1Ai,
which is quite difficult to invert in general.

Motivated by these methods, we propose a generalized forward-backward scheme
with penalization term for solving MIP. By means of the condition involving the
Fitzpatrick function, we prove weak ergodic convergence of the generated sequence
to a solution of MIP. Furthermore, assuming that one of the operators Ai is
strongly monotone, we prove strong convergence result for the generated sequence
to the unique solution of MIP. As our primary convince, convergence results for
hierarchical large-scale minimization problems will be also discussed.

This paper is organized as follows: Section 2 contains some notations and useful
tools. The main algorithm and its convergence results are presented in Section 3.
In Section 4, we propose a direction to convergence for hierarchical large-scale
minimization problems. Finally, numerical examples are illustrated in Section 5.

2 Preliminaries

For convenience we present here some notations which are used throughout this
paper, the reader may consult [7, 35] for further details. The strong convergence
and weak convergence of a sequence {xk}

∞
k=1 to x ∈ H are denoted by xk → x

and xk ⇀ x, respectively.
Let A : H ⇒ H be a set-valued operator. We denote by Gr(A) := {(x, u) ∈

H × H : u ∈ Ax} its graph, by dom(A) := {x ∈ H : Ax 6= ∅} its domain, and
by ran(A) := {u ∈ H : ∃x ∈ H, u ∈ Ax} its range. The set-valued operator A
is said to be monotone if 〈x − y, u − v〉 ≥ 0, for all (x, u), (y, v) ∈ Gr(A), and it
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is called maximally monotone if its graph is not properly contained in the graph
of any other monotone operators. Moreover, A is said to be strongly monotone
with modulus α > 0 if A − αI is monotone, i.e., 〈x − y, u − v〉 ≥ α‖x − y‖2 for
all (x, u), (y, v) ∈ Gr(A). Note that if A is maximally monotone, then zer(A) is a
convex closed set. Notice that if A is maximally monotone and strongly monotone,
then zer(A) is a nonempty set and is a singleton. Furthermore, for a maximally
monotone operator A, we have

z ∈ zer(A) if and only if 〈u− z, w〉 ≥ 0 for all (u,w) ∈ Gr(A). (7)

We denote by I : H → H the identity operator on H. For a set-valued operator
A : H ⇒ H, we define the resolvent of A, JA : H ⇒ H, by JA := (I+A)−1. It is well
known that if A is maximally monotone, then the resolvent of A is single-valued.

Given µ > 0, the operator A : H → H is said to be cocoercive (or inverse
strongly monotone) with parameter µ if 〈x − y,Ax − Ay〉 ≥ µ‖Ax− Ay‖2 for all
x, y ∈ H.

For a monotone operator A : H ⇒ H, the Fitzpatrick function [19] associated
to the monotone operator A, ϕA : H×H → (−∞,+∞], is defined by

ϕA(x, u) := sup
(y,v)∈Gr(A)

{〈x, v〉+ 〈y, u〉 − 〈y, v〉}.

Note that ϕA is a convex lower semicontinuous function. In addition, if A is max-
imally monotone, then

ϕA(x, u) ≥ 〈x, u〉 for all (x, u) ∈ H×H

and the equality holds provided that (x, u) ∈ Gr(A).
For a function f : H → (−∞,+∞] we denote by dom(f) := {x ∈ H : f(x) <

+∞} its effective domain and say that it is proper if dom(f) 6= ∅ and f(x) 6= −∞
for all x ∈ H. For a function f : H → (−∞,+∞], the conjugate function of f is
the proper convex lower semicontinuous function f∗ : H → (−∞,+∞] defined by

f∗(x) := sup
u∈H

{〈x, u〉 − f(u)}

for all x ∈ H. The subdifferential of f at x ∈ H with f(x) ∈ R is the set

∂f(x) := {x∗ ∈ H : f(y) ≥ f(x) + 〈x∗, y − x〉 for all x ∈ H},

and we have a convention that ∂f(x) := ∅ if f(x) = +∞. Note that the subdiffer-
ential of a proper convex lower semicontinuous function is a maximally monotone
operator and it holds that

ϕ∂f (x, u) ≤ f(x) + f∗(u) for all (x, u) ∈ H×H. (8)

For r > 0 and x ∈ H, we denote by proxrf (x) the proximal point of parameter
r of a proper convex lower semicontinuous function f at x, which is the unique
optimal solution of the optimization problem

min
u∈H

f(u) +
1

2r
‖u− x‖2.

Note that proxrf = Jr∂f and it is a single-valued operator.
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We say that f is strongly convex with modulus α > 0 if f−α
2 ‖·‖

2 is convex. Note
that if f is α−strongly convex, then its subdifferential is α−strongly monotone.

Given a nonempty closed convex set X ⊂ H, its indicator function is defined
as δX(x) = 0 if x ∈ X and +∞ otherwise. The support function of X at a point x
is defined by

σX(x) := sup
z∈X

〈x, z〉.

The normal cone to X at x is

NX(x) := {x∗ ∈ H : 〈x∗, z − x〉 ≤ 0 for all z ∈ X},

if x ∈ X and ∅ otherwise. Note that x∗ ∈ NX(x) if and only if σX(x∗) = 〈x∗, x〉.
Let {xk}

∞
k=1 be a sequence in H and let {αk}

∞
k=1 be a sequence of positive real

numbers such that
∑

∞

k=1 αk = +∞. We define the sequence {zk}
∞
k=1 of weighted

averages by

zk :=
1

τk

k
∑

n=1

αnxn, where τk =

k
∑

n=1

αn ∀k ≥ 1. (9)

The following lemma is a key tool for proving the convergence results.

Lemma 2.1 (Opial-Passty) Let H be a real Hilbert space, and let C ⊆ H be a
nonempty set. Let {xk}

∞
k=1 and {zk}

∞
k=1 (defined as in (9)) be sequences satisfying

the following:
(i) For every z ∈ C, limk→+∞ ‖xk − z‖ exists.
(ii) Every sequential weak cluster point of {xk}

∞
k=1 (respectively, {zk}

∞
k=1) lies

in C.
Then the sequence {xk}

∞
k=1 (respectively, {zk}

∞
k=1) converges weakly to a point in

C.

In order to show the convergence results, we also need the following fact.

Lemma 2.2 [28] Let {ak}
∞
k=1, {bk}

∞
k=1, and {ck}

∞
k=1 be real sequences. Assume

that {ak}
∞
k=1 is bounded from below, and {bk}

∞
k=1 is nonnegative. If

ak+1 − ak + bk ≤ ck, ∀k ≥ 1

and
∑

∞

k=1 ck < +∞, then limk→+∞ ak exists and
∑

∞

k=1 bk < +∞.

3 Convergence Results

In this section, we are interested in the following generalized forward-backward
method with penalty term (in short, GFBP) for solving MIP.

Algorithm 3.1 (GFBP) Initialization: Choose the positive real sequences {αk}
∞
k=1,

{βk}
∞
k=1, and take arbitrary x1 ∈ H.

Iterative Step: For a given current iterate xk ∈ H (k ≥ 1), compute

ψ0,k := xk − αkB(xk)− αkβkC(xk).

For i = 1, . . . ,m, compute

ψi,k := JαkAi
(ψi−1,k)

and define
xk+1 := ψm,k.
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Remark 3.1 (i) When m = 1, GFBP reduces to the algorithm proposed and in-
vestigated in [10] for solving (6). On the other hand, if B(x) = C(x) = 0 for all
x ∈ H, then GFBP turns out to be the m−fold backward algorithm proposed
in [26].

(ii) Recall that when C(x) = 0 for all x ∈ H, MIP turns out to be the problem
of finding x ∈ H such that

0 ∈
m
∑

i=1

Ai(x) +B(x), (10)

which was investigated by the authors in [29]. They proposed a generalized forward-
backward iterative scheme which involves the computation of the cocoercive oper-
ator in a forward step and the parallel computation of the resolvents of the Ai’s in
a subsequent backward step. They proved that the sequence generated by the al-
gorithm converges weakly in the setting of Hilbert space. The authors also showed
the applications of the proposed method to image processing problems. Some more
works related to such proposed direction are due to, e.g., [17], [32], and [30]. It is
worth mentioning that our GFBP is different from such methods. In fact, in order
to update the next iteration, those methods allow one to compute the resolvents
of Ai at the current iteration for all i = 1, . . . ,m and subsequently combine them
to obtain an update to be the next iteration, whereas our GFBP scheme offers one
to compute the resolvents of Ai incrementally (see Algorithm 3.1).

For the convergence results, we need the following assumption.

Assumption 3.1 The operators B and C are cocoercive with parameters µ and
η, respectively.

The following technical lemma will be useful in the convergence analysis of
Algorithm 3.1.

Lemma 3.1 Let (u,w) ∈ Gr(
∑m

i=1Ai + B + Nzer(C)), vi ∈ Ai(u) for all i =
1, . . . ,m and p ∈ Nzer(C)(u) be such that w =

∑m
i=1 vi +B(u) + p. If Assumption

3.1 holds, then the following inequality holds for all k ≥ 1 and ε > 0:

‖xk+1 − u‖2 − ‖xk − u‖2 +

(

1−
ε

1 + ε

) m
∑

i=1

‖ψi,k − ψi−1,k‖
2

+

(

2µ

1 + ε
−

(

2 +
ε

1 + ε

)

αkβk

)

αkβk‖C(xk)‖
2

+
ε

1 + ε
αkβk 〈xk − u,C(xk)〉

≤

((

4 +
2ε

1 + ε

)

αk − 2η

)

αk‖B(xk)−B(u)‖2

+

(

4 +
2ε

1 + ε

)

α2
k‖B(u)‖2 + 2αk 〈u− xk, w〉

+
2(m(m+ 1) + 1)(1 + ε)

ε
α2
k

m
∑

i=1

‖vi‖
2

+
ε

1 + ε
αkβk

[

sup
u∈zer(C)

ϕC

(

u,
2p
ε

1+ε
βk

)

− σzer(C)

(

2p
ε

1+ε
βk

)]

.

(11)
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Proof For all i = 1, . . . ,m and k ≥ 1, we know that ψi−1,k − ψi,k ∈ αkAi(ψi,k).
Since vi ∈ Ai(u), it follows from the monotonicity of Ai that

〈ψi−1,k − ψi,k − αkvi, ψi,k − u〉 ≥ 0. (12)

Note that for all i = 1, . . . ,m and k ≥ 1, we have

‖ψi,k − u‖2 − ‖ψi−1,k − u‖2 + ‖ψi,k − ψi−1,k‖
2 = 2〈ψi,k − ψi−1,k, ψi,k − u〉,(13)

which, together with (12), imply that

‖ψi,k − u‖2 − ‖ψi−1,k − u‖2 + ‖ψi,k − ψi−1,k‖
2 ≤ 2αk〈vi, u− ψi,k〉. (14)

Summing up inequalities (14) for all i = 1, . . . ,m, we obtain that for every k ≥ 1

‖xk+1 − u‖2 − ‖ψ0,k − u‖2 +
m
∑

i=1

‖ψi,k − ψi−1,k‖
2 ≤ 2αk

m
∑

i=1

〈vi, u− ψi,k〉. (15)

Note that

‖ψ0,k − u‖2 = ‖xk − u‖2 + α2
k‖B(xk) + βkC(xk)‖

2

−2αk 〈xk − u,B(xk) + βkC(xk)〉

≤ ‖xk − u‖2 + 2α2
k‖B(xk)‖

2 + 2α2
kβ

2
k‖C(xk)‖

2

−2αk 〈xk − u,B(xk) + βkC(xk)〉

≤ ‖xk − u‖2 + 4α2
k‖B(xk)−B(u)‖2 + 4α2

k‖B(u)‖2

+2α2
kβ

2
k‖C(xk)‖

2 − 2αk 〈xk − u,B(xk) + βkC(xk)〉 .

It then follows from the inequality (15) that

‖xk+1 − u‖2 − ‖xk − u‖2 +
m
∑

i=1

‖ψi,k − ψi−1,k‖
2

≤ 4α2
k‖B(xk)−B(u)‖2 + 4α2

k‖B(u)‖2 + 2α2
kβ

2
k‖C(xk)‖

2

−2αk 〈xk − u,B(xk) + βkC(xk)〉+ 2αk

m
∑

i=1

〈vi, u− ψi,k〉

= 4α2
k‖B(xk)−B(u)‖2 + 4α2

k‖B(u)‖2 + 2α2
kβ

2
k‖C(xk)‖

2

+2αkβk 〈u− xk, C(xk)〉+ 2αk

〈

u− xk, B(xk) +

m
∑

i=1

vi

〉

+2αk

m
∑

i=1

〈vi, xk − ψi,k〉, ∀k ≥ 1. (16)

Since C is µ-cocoercive and C(u) = 0, we have

2αkβk 〈u− xk, C(xk)〉 ≤ −2µαkβk‖C(xk)‖
2, ∀k ≥ 1,

which implies that

2αkβk 〈u− xk, C(xk)〉 ≤ −
2µ

1 + ε
αkβk‖C(xk)‖

2

−
2ε

1 + ε
αkβk 〈xk − u,C(xk)〉 , ∀k ≥ 1. (17)
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The η-cocoercivity of B also yields for all k ≥ 1

2αk

〈

u− xk, B(xk) +

m
∑

i=1

vi

〉

= 2αk 〈u− xk, B(xk)−B(u)〉

+2αk

〈

u− xk, B(u) +
m
∑

i=1

vi

〉

≤ −2ηαk‖B(xk)−B(u)‖2

+2αk

〈

u− xk, B(u) +

m
∑

i=1

vi

〉

. (18)

Let us consider the last term of (16). Note that

0 ≤
1

m(m+ 1)

(

2(1 + ε)

ε

)∥

∥

∥

∥

ε

2(1 + ε)
(xk − ψi−1,k)−m(m+ 1)αkvi

∥

∥

∥

∥

2

=
ε

2m(m+ 1)(1 + ε)
‖xk − ψi−1,k‖

2 +
2m(m+ 1)(1 + ε)

ε
α2
k‖vi‖

2

−2αk〈xk − ψi−1,k, vi〉.

Summing up this inequality for all i = 1, 2, . . . ,m gives

2αk

m
∑

i=1

〈xk − ψi−1,k, vi〉 ≤
ε

2m(m+ 1)(1 + ε)

m
∑

i=1

‖xk − ψi−1,k‖
2

+
2m(m+ 1)(1 + ε)

ε
α2
k

m
∑

i=1

‖vi‖
2, ∀k ≥ 1. (19)

For all k ≥ 1, we claim that

ε

2m(m+ 1)(1 + ε)

m
∑

i=1

‖xk − ψi−1,k‖
2 ≤

ε

2(1 + ε)
‖xk − ψ0,k‖

2

+
ε

2(1 + ε)

m
∑

i=1

‖ψi,k − ψi−1,k‖
2. (20)

In fact, for all i = 1, . . . ,m and k ≥ 1, we have

‖xk − ψi−1,k‖ ≤ ‖xk − ψ0,k‖+
i−1
∑

j=1

‖ψj,k − ψj−1,k‖

≤ ‖xk − ψ0,k‖+
m
∑

i=1

‖ψi,k − ψi−1,k‖.

By using the triangle inequality, we have

‖xk − ψi−1,k‖
2 ≤

(

‖xk − ψ0,k‖+
m
∑

i=1

‖ψi,k − ψi−1,k‖

)2

≤ (m+ 1)

(

‖xk − ψ0,k‖
2 +

m
∑

i=1

‖ψi,k − ψi−1,k‖
2

)

,
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and therefore,

m
∑

i=1

‖xk − ψi−1,k‖
2 ≤ m(m+ 1)

(

‖xk − ψ0,k‖
2 +

m
∑

i=1

‖ψi,k − ψi−1,k‖
2

)

.

Multiplying both sides of this inequality by ε
2m(m+1)(1+ε) , we obtain (20) as de-

sired.
Observe that for all k ≥ 1, we have

‖xk − ψ0,k‖
2 = ‖αkB(xk)− αkβkC(xk)‖

2

≤ 2α2
k‖B(xk)‖

2 + 2α2
kβ

2
k‖C(xk)‖

2

≤ 4α2
k‖B(xk)−B(u)‖2 + 4α2

k‖B(u)‖2 + 2α2
kβ

2
k‖C(xk)‖

2.

This together with (20) imply that (19) becomes

2αk

m
∑

i=1

〈xk − ψi−1,k, vi〉 ≤
2ε

1 + ε
α2
k‖B(xk)−B(u)‖2 +

2ε

1 + ε
α2
k‖B(u)‖2

+
ε

1 + ε
α2
kβ

2
k‖C(xk)‖

2 +
ε

2(1 + ε)

m
∑

i=1

‖ψi,k − ψi−1,k‖
2

+
2m(m+ 1)(1 + ε)

ε
α2
k

m
∑

i=1

‖vi‖
2. (21)

Furthermore, we also note that for all k ≥ 1

0 ≤
2(1 + ε)

ε

∥

∥

∥

∥

ε

2(1 + ε)
(ψi−1,k − ψi,k)− αkvi

∥

∥

∥

∥

2

=
ε

2(1 + ε)
‖ψi−1,k − ψi,k‖

2 +
2(1 + ε)α2

k

ε
‖vi‖

2 − 2αk〈ψi−1,k − ψi,k, vi〉,

which is

2αk〈ψi−1,k − ψi,k, vi〉 ≤
ε

2(1 + ε)
‖ψi−1,k − ψi,k‖

2 +
2(1 + ε)α2

k

ε
‖vi‖

2,

and so

2αk

m
∑

i=1

〈ψi−1,k − ψi,k, vi〉 ≤
ε

2(1 + ε)

m
∑

i=1

‖ψi,k − ψi−1,k‖
2

+
2(1 + ε)

ε
α2
k

m
∑

i=1

‖vi‖
2. (22)

By using (21) and (22), we have

2αk

m
∑

i=1

〈vi, xk − ψi,k〉 = 2αk

m
∑

i=1

〈vi, xk − ψi−1,k〉+ 2αk

m
∑

i=1

〈vi, ψi−1,k − ψi,k〉

≤
2ε

1 + ε
α2
k‖B(xk)−B(u)‖2 +

2ε

1 + ε
α2
k‖B(u)‖2

+
ε

1 + ε
α2
kβ

2
k‖C(xk)‖

2 +
ε

(1 + ε)

m
∑

i=1

‖ψi,k − ψi−1,k‖
2

+
2(m(m+ 1) + 1)(1 + ε)

ε
α2
k

m
∑

i=1

‖vi‖
2. (23)
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Combining (16), (17), (18), and (23) yields

‖xk+1 − u‖2 − ‖xk − u‖2 +

(

1−
ε

1 + ε

) m
∑

i=1

‖ψi,k − ψi−1,k‖
2

+

(

2µ

1 + ε
−

(

2 +
ε

1 + ε

)

αkβk

)

αkβk‖C(xk)‖
2

+
ε

1 + ε
αkβk 〈xk − u,C(xk)〉

≤

((

4 +
2ε

1 + ε

)

αk − 2η

)

αk‖B(xk)−B(u)‖2

+

(

4 +
2ε

1 + ε

)

α2
k‖B(u)‖2 +

2(m(m+ 1) + 1)(1 + ε)

ε
α2
k

m
∑

i=1

‖vi‖
2

+2αk

〈

u− xk, B(u) +

m
∑

i=1

vi

〉

+
ε

1 + ε
αkβk 〈xk − u,C(xk)〉 . (24)

Finally, using the definition of the Fitzpatrick function and the fact that

σzer(C)

(

2p
ε

1+ε
βk

)

=
〈

u, 2p
ε

1+ε
βk

〉

for all k ≥ 1, we have

2αk

〈

u− xk, B(u) +
m
∑

i=1

vi

〉

+
ε

1 + ε
αkβk 〈u,C(xk)〉 −

ε

1 + ε
αkβk 〈xk, C(xk)〉

= 2αk 〈u− xk,−p〉+ 2αk 〈u− xk, w〉+
ε

1 + ε
αkβk 〈u,C(xk)〉

−
ε

1 + ε
αkβk 〈xk, C(xk)〉

=
ε

1 + ε
αkβk

[〈

xk,
2p
ε

1+ε
βk

〉

+ 〈u,C(xk)〉 − 〈xk, C(xk)〉 −

〈

u,
2p
ε

1+ε
βk

〉]

+2αk 〈u− xk, w〉

≤
ε

1 + ε
αkβk

[

sup
u∈zer(C)

ϕC

(

u,
2p
ε

1+ε
βk

)

−

〈

u,
2p
ε

1+ε
βk

〉]

+2αk 〈u− xk, w〉

=
ε

1 + ε
αkβk

[

sup
u∈zer(C)

ϕC

(

u,
2p
ε

1+ε
βk

)

− σzer(C)

(

2p
ε

1+ε
βk

)]

+2αk 〈u− xk, w〉 ,

which together with (24) imply the required inequality.

For the convergence results of this section, the following assumption is required.

Assumption 3.2 The following statements hold:

(H1) The qualification condition

zer(C) ∩
m
⋂

i=1

int(dom(Ai)) 6= ∅

holds.
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(H2) For every p ∈ ran(Nzer(C)), we have

∞
∑

k=1

αkβk

[

sup
u∈zer(C)

ϕC

(

u,
p

βk

)

− σzer(C)

(

p

βk

)

]

< +∞.

(H3) The sequences {αk}
∞
k=1 and {βk}

∞
k=1 satisfy

0 < lim inf
k→+∞

αkβk ≤ lim sup
k→+∞

αkβk < µ,

where µ is the cocoercive parameter of the operator B.
(H4) The sequence {αk}

∞
k=1 ∈ ℓ2 \ ℓ1.

Remark 3.2 Some remarks concerning Assumption 3.2 are as follows.

(i) Condition (H1) implies that
∑m

i=1Ai+B+Nzer(C) is a maximally monotone
operator. In fact, since

⋂m
i=1 int(dom(Ai)) 6= ∅, the sum

∑m
i=1Ai is maximally

monotone (see [7, Corollary 24.4]). The maximal monotonicity of Nzer(C) (see [7,
Proposition 23.39]) and the fact that

⋂m
i=1 int(dom(Ai)) ⊂ int(dom(

∑m
i=1Ai))

give us the maximal monotonicity of
∑m

i=1Ai + Nzer(C). Moreover, since B is
maximally monotone (see [7, Example 20.28]), condition (H1) guarantees that
∑m

i=1Ai +B +Nzer(C) is also maximally monotone (see [7, Corollary 24.4]).

(ii) Hypothesis (H2) has been introduced by Boţ and Csetnek [10] in order
to show the convergence of the proposed iterative scheme (cf. [10, Hypothesis
(Hfitz)]). They also pointed out that for every p ∈ ran(Nzer(C)) and any k ≥ 1,
one has

sup
u∈zer(C)

ϕC

(

u,
p

βk

)

− σzer(C)

(

p

βk

)

≥ 0.

Some instances of the operator C satisfying hypothesis (H2) can be found in [6,
Section 5].

(iii) An example of the sequences {αk}
∞
k=1 and {βk}

∞
k=1 satisfying conditions

(H3) and (H4) is that αk = 1/k and βk = ξk for all k ≥ 1, where 0 < ξ < µ.

The following theorem is the convergence result for GFBP.

Theorem 3.1 Let {xk}
∞
k=1 be a sequence generated by GFBP and let {zk}

∞
k=1 be

a sequence of weighted averages as (9). If Assumptions 3.1 and 3.2 hold, then the
following statements are true:

(i) For all u ∈ zer(
∑m

i=1Ai + B + Nzer(C)) we have limk→+∞ ‖xk − u‖ ex-

ists, and the series
∑

∞

k=1

∑m
i=1 ‖ψi,k − ψi−1,k‖

2,
∑

∞

k=1 αkβk‖C(xk)‖
2, and

∑

∞

k=1 αkβk 〈xk − u,C(xk)〉 are convergent.
(ii) It hols that

lim
k→+∞

m
∑

i=1

‖ψi,k − ψi−1,k‖
2 = lim

k→+∞
〈xk − u,C(xk)〉 = lim

k→+∞
‖C(xk)‖ = 0.

(iii) The sequence {zk}
∞
k=1 converges weakly to an element in zer(

∑m
i=1Ai + B +

Nzer(C)).
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Proof (i) Let u ∈ zer(
∑m

i=1Ai+B+Nzer(C)). Since lim supk→+∞ αkβk < µ, there

exists k0 ≥ 1 such that αkβk < µ for all k ≥ k0. Pick ε0 ∈
(

0,
2(µ−lim supk→+∞

αkβk)

3 lim supk→+∞
αkβk

)

.

It follows that αkβk <
2µ

2+3ε0
for all k ≥ k0. This allows us to choose M > 0 such

that αkβk ≤ M < 2µ
2+3ε0

= 2µ

(1+ε0)
(

2+
ε0

1+ε0

) for all k ≥ k0. Furthermore, since

ε0 > 0 and αk → 0, there exists k1 ≥ 1 such that

(

4 +
2ε0

1 + ε0

)

αk − 2η < 0, ∀k ≥ k1.

Taking w = 0 in Lemma 3.1, for every k ≥ k := max{k0, k1}, we obtain

‖xk+1 − u‖2 − ‖xk − u‖2 +

(

1−
ε0

1 + ε0

) m
∑

i=1

‖ψi,k − ψi−1,k‖
2

+

(

2µ

1 + ε0
−

(

2 +
ε0

1 + ε0

)

M

)

αkβk‖C(xk)‖
2

+
ε0

1 + ε0
αkβk 〈xk − u,C(xk)〉

≤
2(m(m+ 1) + 1)(1 + ε0)

ε0
α2
k

m
∑

i=1

‖vi‖
2

+
ε0

1 + ε0
αkβk

[

sup
u∈zer(C)

ϕC

(

u,
2p

ε0

1+ε0
βk

)

− σzer(C)

(

2p
ε0

1+ε0
βk

)]

.

(25)

Since the right-hand side is summable and the term 〈xk − u,C(xk)〉 is nonnegative
for all k ≥ 1, the conclusion in (i) follows from Lemma 2.2 and Assumption 3.2
((H2) and (H4)).

(ii) Note that limk→+∞

∑m
i=1 ‖ψi,k−ψi−1,k‖

2 = 0. Since lim infk→+∞ αkβk >
0, we have limk→+∞ ‖C(xk)‖ = limk→+∞ 〈xk − u,C(xk)〉 = 0.

(iii) Let z be a weak cluster point of {xk}
∞
k=1 and {xkj

}∞j=1 be a subsequence
of {xk}

∞
k=1 such that xkj

⇀ z. Since
∑m

i=1Ai + B + Nzer(C) is a maximally
monotone operator, in order to show that z ∈ zer

(
∑m

i=1Ai +B +Nzer(C)

)

, we
will show that 〈u− z, w〉 ≥ 0 for all (u,w) ∈ Gr

(
∑m

i=1Ai +B +Nzer(C)

)

. Now
let (u,w) ∈ Gr

(
∑m

i=1Ai +B +Nzer(C)

)

be such that w =
∑m

i=1 vi + B(u) + p,
where vi ∈ Ai(u) for all i = 1, . . . ,m and p ∈ Nzer(C)(u). From Lemma 3.1, for

every k ≥ k, we have

‖xk+1 − u‖2 − ‖xk − u‖2 ≤ 2αk 〈u− xk, w〉+
2(m(m+ 1) + 1)(1 + ε0)

ε0
α2
k

m
∑

i=1

‖vi‖
2

+
ε0

1 + ε0
αkβk

[

sup
u∈zer(C)

ϕC

(

u,
2p

ε0

1+ε0
βk

)

− σzer(C)

(

2p
ε0

1+ε0
βk

)]

.
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Summing up this inequality for all k = k + 1, . . . , kj , we obtain

‖xkj
− u‖2 − ‖xk − u‖2 ≤ 2

〈

kj
∑

k=k

αku−

kj
∑

k=k

αkxk, w

〉

+ L1

= 2

〈

kj
∑

k=1

αku−
k
∑

k=1

αku−

kj
∑

k=1

αkxk +

k
∑

k=1

αku,w

〉

+ L1,

where

L1 :=
2(m(m+ 1) + 1)(1 + ε0)

ε0

m
∑

i=1

‖vi‖
2

kj
∑

k=k

α2
k

+
ε0

1 + ε0

kj
∑

k=k

αkβk

[

sup
u∈zer(C)

ϕC

(

u,
2p

ε0

1+ε0
βk

)

− σzer(C)

(

2p
ε0

1+ε0
βk

)]

.

Discarding the nonnegative term ‖xkj+1 − u‖2 and dividing by 2τkj
, we deduce

that

−
‖xk − u‖2

2τkj

≤
〈

u− zkj
, w
〉

+
L2

2τkj

,

where L2 := L1 + 2
〈

−
∑k

k=1 αku+
∑k

k=1 αku,w
〉

, which is a finite real number.

Hence, by passing the limit as j → +∞ (so that limj→+∞ τkj
= +∞), we have

〈u− z, w〉 ≥ 0.

Since (u,w) ∈ Gr
(
∑m

i=1Ai +B +Nzer(C)

)

is arbitrary, we obtain that

z ∈ zer(

m
∑

i=1

Ai +B +Nzer(C)).

Thanks to Lemma 2.1, we conclude that the sequence {zk}
∞
k=1 converges weakly

to an element in zer(
∑m

i=1Ai +B +Nzer(C)).

Remark 3.3 In case m = 1, Theorem 3.1 coincides with Theorem 13 in [10]. By
taking B(x) = C(x) = 0 for all x ∈ H, Theorem 3.1 coincides with Theorem 3 of
Passty [26].

If only one of the operators Ai, i = 1 . . . ,m, is strongly monotone, then we can
prove the strong convergence of the sequence {xk}

∞
k=1 to the unique zero of MIP

as we illustrate in the following theorem. In this case, we assume without loss of
generality that the mth operator is strongly monotone.

Theorem 3.2 Let {xk}
∞
k=1 be a sequence generated by GFBP. If Assumptions 3.1

and 3.2 hold and the operator Am is γ-strongly monotone with γ > 0, then the
sequence {xk}

∞
k=1 converges strongly to the unique zero of the operator

∑m
i=1Ai +

B +Nzer(C).



Generalized Forward-Backward Splitting with Penalization 15

Proof Let u be the unique element in zer
(
∑m

i=1Ai +B +Nzer(C)

)

. Then there
exist vi ∈ Ai(u) for all i = 1, . . . ,m and p ∈ Nzer(C)(u) such that 0 =

∑m
i=1 vi +

B(u) + p. Since the arguments in the proof of Lemma 3.1 (inequality (14)) hold
for all i = 1, . . . ,m− 1, we have

‖ψi,k − u‖2 − ‖ψi−1,k − u‖2 + ‖ψi,k − ψi−1,k‖
2 ≤ 2αk 〈vi, u− ψi,k〉 (26)

for all i = 1, . . . ,m − 1 and k ≥ 1. Furthermore, the strong monotonicity of the
operator Am gives

〈ψm−1,k − ψm,k − αkvm, ψm,k − u〉 ≥ αkγ‖ψm,k − u‖2,

and so

〈ψm−1,k − ψm,k, ψm,k − u〉 ≥ αkγ‖xk+1 − u‖2 + αk 〈vm, ψm,k − u〉 , ∀k ≥ 1. (27)

This together with (13) imply that for all k ≥ 1

‖ψm,k − u‖2 − ‖ψm−1,k − u‖2 + ‖ψm,k − ψm−1,k‖
2 ≤ −2αkγ‖xk+1 − u‖2

+2αk 〈vm, u− ψm,k〉 .(28)

Summing up inequality (26) for i = 1, . . . ,m−1 and the inequality (28), we obtain

2αkγ‖xk+1 − u‖2 + ‖xk+1 − u‖2 − ‖ψ0,k − u‖2 +

m
∑

i=1

‖ψi,k − ψi−1,k‖
2

≤ 2αk

m
∑

i=1

〈vi, u− ψi,k〉 . (29)

Following the lines of the proof of Lemma 3.1 (with w = 0), for all k ≥ 1 and
ε > 0, we obtain

2αkγ‖xk+1 − u‖2 + ‖xk+1 − u‖2 − ‖xk − u‖2 +

(

1−
ε

1 + ε

) m
∑

i=1

‖ψi,k − ψi−1,k‖
2

+

(

2µ

1 + ε
−

(

2 +
ε

1 + ε

)

αkβk

)

αkβk‖C(xk)‖
2

+
ε

1 + ε
αkβk 〈xk − u,C(xk)〉

≤

((

4 +
2ε

1 + ε

)

αk − 2η

)

αk‖B(xk)−B(u)‖2

+

(

4 +
2ε

1 + ε

)

α2
k‖B(u)‖2 +

2(m(m+ 1) + 1)(1 + ε)

ε
α2
k

m
∑

i=1

‖vi‖
2

+
ε

1 + ε
αkβk

[

sup
u∈zer(C)

ϕC

(

u,
2p
ε

1+ε
βk

)

− σzer(C)

(

2p
ε

1+ε
βk

)]

.
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Using the line of the proof of Theorem 3.1 (i), for every k ≥ k, we have

2αkγ‖xk+1 − u‖2 + ‖xk+1 − u‖2 − ‖xk − u‖2

≤
2(m(m+ 1) + 1)(1 + ε0)

ε0
α2
k

m
∑

i=1

‖vi‖
2

+
ε0

1 + ε0
αkβk

[

sup
u∈zer(C)

ϕC

(

u,
2p

ε0

1+ε0
βk

)

− σzer(C)

(

2p
ε0

1+ε0
βk

)]

,

(30)

and so

2γ

+∞
∑

k=k

αk‖xk+1 − u‖2 ≤ ‖xk − u‖2 +
2(m(m+ 1) + 1)(1 + ε0)

ε0

m
∑

i=1

‖vi‖
2
+∞
∑

k=k

α2
k

+
ε0

1 + ε0

+∞
∑

k=k

αkβk

[

sup
u∈zer(C)

ϕC

(

u,
2p

ε0

1+ε0
βk

)

− σzer(C)

(

2p
ε0

1+ε0
βk

)]

.

Since
∑+∞

k=1 αk = +∞ and limk→+∞ ‖xk−u‖ exists (by (30) and Lemma 2.2), we
conclude that limk→+∞ ‖xk − u‖ = 0.

4 Hierarchical Minimization Problem

In this section we show that the iterative scheme proposed in the previous sec-
tion allows for solving of hierarchical minimization problem. The problem under
investigation is of the form

minimize
∑m

i=1 fi(x) + h(x)
subject to x ∈ argming,

(31)

where, for all i = 1, . . . , m, fi : H → (−∞,+∞] is a proper convex lower semi-
continuous objective function, h : H → R is a convex (Fréchet) differentiable
objective function and argming is the set of minima of a convex (Fréchet) differ-
entiable function g : H → R which we will assume that it is nonempty. We assume
that the gradient ∇h and ∇g are Lipschitz continuous operators with constants
Lh and Lg, respectively. Furthermore, we may assume without loss of generality
that min g = 0. We denote the solution set of the problem (31) by S and assume
that it is a nonempty set.

Since the functions fi : H → (−∞,+∞], i = 1, . . . ,m are proper convex lower
semicontinuous, we know that the subdifferentials ∂fi, i = 1, . . . ,m are maxi-
mally monotone. Moreover, since the functions h and g are convex differentiable,
the Ballion-Haddad [5] theorem implies that ∇h is 1

Lh
-cocoercive and ∇g is 1

Lg
-

cocoercive. Setting Ai := ∂fi for all i = 1, . . . ,m, B := ∇h and C := ∇g, the
hierarchical minimization problem (31) is nothing else but a special case of MIP.

Hence, in order to solve problem (31) we consider the following algorithm.
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Algorithm 4.1 Initialization: Choose positive real sequences {αk}
∞
k=1, {βk}

∞
k=1

and take arbitrary x1 ∈ H.
Iterative Step: For a given current iterate xk ∈ H (k ≥ 1), compute

ψ0,k := xk − αk∇h(xk)− αkβk∇g(xk).

For i = 1, . . . ,m, compute

ψi,k := proxαkfi
(ψi−1,k)

and define
xk+1 := ψm,k.

To obtain the convergence of the sequence generated by Algorithm 4.1, we need
to assume the following assumption.

Assumption 4.1 The following statements hold:

(S1) The qualification condition

argmin g ∩
m
⋂

i=1

int(dom(∂fi)) 6= ∅

holds.
(S2) For every p ∈ ran(Nargmin g), we have

∞
∑

k=1

αkβk

[

g∗
(

p

βk

)

− σargmin g

(

p

βk

)]

< +∞.

(S3) The sequences {αk}
∞
k=1 and {βk}

∞
k=1 satisfy

0 < lim inf
k→+∞

αkβk ≤ lim sup
k→+∞

αkβk <
1

Lh

.

(S4) The sequence {αk}
∞
k=1 ∈ ℓ2 \ ℓ1.

One can see that conditions (S1)-(S4) imply hypotheses (H1)-(H4) in Assump-
tion 3.2. Note that the implications (S1)⇒(H1), (S3)⇒(H3) and (S4)⇒(H4) are
obvious and so it suffices to consider the implication (S2)⇒(H2). In fact, according
to the relation in (8), one has

ϕ∇g(u,
p

βk
) ≤ g(u) + g∗

(

p

βk

)

= g∗
(

p

βk

)

,

for all u ∈ argmin g, which implies that

sup
u∈argmin g

ϕ∇g(u,
p

βk
) ≤ g∗

(

p

βk

)

.

Thus, we obtain that (S2)⇒(H2). Therefore, the following corollary is a direct
consequence of Theorem 3.1.

Corollary 4.1 Let {xk}
∞
k=1 be a sequence generated by Algorithm 4.1 and let

{zk}
∞
k=1 be a sequence of weighted averages defined as in (9). If Assumption 4.1

holds, then the sequence {zk}
∞
k=1 converges weakly to an element in S.
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If we assume that the mth function fm is strongly convex, then its subdiffer-
ential ∂fm is strongly monotone. Using this fact, Theorem 3.2 also implies the
following corollary.

Corollary 4.2 Let {xk}
∞
k=1 be a sequence generated by Algorithm 4.1. If Assump-

tion 4.1 holds and the function fm is strongly convex, then the sequence {xk}
∞
k=1

converges strongly to the unique element in S.

Remark 4.1 In addition, there are other works related to the proposed algorithms
and convergence results in the literature. Indeed, Attouch, Czarnecki, and Pey-
pouquet [2] investigated the monotone inclusion problem of the form

0 ∈ A(x) +Nargmin g(x), (32)

where A : H ⇒ H is a maximally monotone operator and argmin g is the set of
minima of a proper convex lower semicontinuous function g : H → (−∞,+∞]. The
iterative schemes for finding a solution of the problem and some ergodic convergent
results were discussed. Note that in their paper, the authors also considered the
problem

0 ∈
m
∑

i=1

Ai(x) +Nargmin g(x), (33)

where, for all i = 1, . . . ,m, Ai : H ⇒ H is a maximally monotone operator. Of
course, the results will certainly be special cases of our main results. Furthermore,
the authors in [12] considered the modifications of the iterative schemes for solving
(32) by employing inertial effects. The main feature of this method is that the
next iterate is defined by means of the last two iterates. It is also well known that
iterative methods with inertial effects may lead to a considerable improvement of
the convergence behavior of the method. We refer the reader to [4, 11, 14–16, 24]
and the references therein for more insight into this research topic. Of course,
one way to address this research direction is to consider the inertial effects of the
proposed algorithms and to analyze their convergence results.

5 Numerical Examples

In this section, we present the behavior of the algorithm introduced in this paper
in the context of two numerical examples on constrained elastic net problems and
generalized Heron problems. All the experiments were performed under MATLAB
9.1 (R2016b) running on a MacBook Air 13-inch, Early 2015 with a 1.6GHz Intel
Core i5 processor and 4GB 1600MHz DDR3 memory.

5.1 Constrained Elastic Net

In this subsection, we consider the constrained linear elastic net problems. First
mentioned in the seminal work of Zou and Hastie [36], the elastic net has been
affirmed that it has the outperformance than the classical ridge regression [20]
related to minimizing of the residual sum of squares adding the penalty term of
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ℓ2−norm. Furthermore, it also outperforms the Lasso regression [34] related to
minimizing of the residual sum of squares imposing an ℓ1−norm penalization.

Suppose that the data set has m observations with n predictors. Let b =
(b1, . . . , bm) ∈ R

m be the response vector and A = [a1| · · · |am]⊤ ∈ R
m×n be the

design matrix of predictors ai = (a1i, . . . , ani) ∈ R
n for all i = 1 . . . ,m. The elastic

net problem is to find a solution of

minimize 1
2‖Ax− b‖22 + γ‖x‖1 + (1− γ)‖x‖22

subject to x ∈ R
n,

where γ ∈ [0, 1] is the elastic net parameter. In this case, we say that the problem
has the size (m,n). We note that in some practical situation, for instance, Huang
et al. [21] considered the protein inference problem of selecting a proper subset
of candidate proteins that best explain the observed peptides. To achieve efficient
computation, the authors formulated the considered protein inference problem as
a constrained Lasso regression problem. This brings us to the following constrained
elastic net problem:

minimize F (x) := 1
2‖Ax− b‖22 + γ‖x‖1 + (1− γ)‖x‖22

subject to x ∈ argmin 1
2 dist2(·, [0, 1]n),

(34)

where the distance function is given by

dist(x,C) := inf
c∈C

‖x− c‖2.

Note that the distance function dist(·, C) is nonnegative uniformly continuous [7,
Example 1.47] and convex [7, Coroolary 12.12] whenever C is a convex set. Fur-
thermore, if C is a nonempty closed and convex set, then the function 1

2 dist2(·, C)
is convex (Fréchet) differentiable [7, Corollary 12.30].

One can see that problem (34) is a minimization problem of the form (31)
when setting f1(x) = 1

2‖Ax − b‖22, f2(x) = γ‖x‖1, f3(x) = (1 − γ)‖x‖22, and

g(x) = 1
2 dist2(x, [0, 1]n) for all x ∈ R

n.

On the other hand, we can consider the constrained elastic net in the sense of
the splitting technique as

minimize F (x) := 1
2

∑m
i=1(a

⊤
i x− bi)

2 + γ‖x‖1 + (1− γ)‖x‖22
subject to x ∈ argmin 1

2 dist2(·, [0, 1]n).
(35)

We observe that problem (35) can be written in the form (31) when setting fi(x) =
1
2 (a

⊤
i x − bi)

2 for all i = 1, . . . ,m, fm+1(x) = γ‖x‖1, fm+2 = (1 − γ)‖x‖22, and

g(x) = 1
2 dist2(x, [0, 1]n) for all x ∈ R

n. Thanks to [6, Example 6.2], it is guaranteed
that the assumption (S2) (in general, (H2)) is satisfied.

In this experiment, the MATLAB calculations are performed by GFBP (Al-
gorithm 4.1) with the sequences αk = 1/k and βk = 0.9k for all k ≥ 1 and the
parameter γ = 0.5. We use the design matrix A in R

m×n generated by the gene
expression data set 14 Tumors from http://www.gems-system.org/. We generate
the vector b ∈ R

m corresponding to A by the linear model b = Ax0 + ε, where
ε ∼ N (0, ‖Ax0‖

2) and 50% percent of the components of vector x0 are nonzero

http://www.gems-system.org/
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Setting → Non-splitting (34) Splitting (35)

(m,n) ↓ #(Iters) Time #(Iters) Time

(20, 1000) 852 111.85 512 1.53
(50, 1000) 301 35.95 480 3.74
(100, 1000) 264 32.74 492 6.53
(200, 1000) 226 24.24 505 11.02
(300, 1000) 184 20.98 503 15.65

(20, 2000) 862 539.47 523 2.11
(50, 2000) 703 447.15 507 4.13
(100, 2000) 616 338.25 513 6.38
(200, 2000) 373 163.82 521 11.77
(300, 2000) 344 168.69 522 19.28

(20, 5000) 1446 7486.05 578 4.70
(50, 5000) 1244 5834.81 509 7.18
(100, 5000) 1216 5754.33 541 13.96
(200, 5000) 886 4200.43 558 29.22
(300, 5000) 724 3467.67 557 47.24

(20, 8000) 2697 48759.21 666 7.50
(50, 8000) 2263 45112.77 567 11.69
(100, 8000) 2109 40141.74 632 32.67
(200, 8000) 1617 31036.15 608 49.21
(300, 8000) 1553 34217.33 613 112.09

Table 1: Comparisons of number of iterations and algorithm runtime between non-
splitting and splitting schemes for different sizes of matrix A.

components with normally distributed random generation. We perform GFBP (Al-
gorithm 4.1) and obtain the number of iterations (k) and elapsed time (seconds)
by using the relative change

max

{

|F (xk)− F (xk−1)|

|F (xk−1)|
,
|g(xk)− g(xk−1)|

|g(xk−1)|

}

≤ ǫ,

where ǫ is an optimality tolerance; in this example, we use the optimality tolerance
ǫ = 10−5.

In Table 1, we compare the numerical results of GFBP for splitting and non-
splitting cases for various problem sizes. We see that the splitting case behaves
significantly better than the non-splitting counterpart for all problem sizes (m,n).
In all cases, the computational time for splitting case is 1.3-6500 times less than
that of the non-splitting case. We observe that for the splitting case with the
same number of predictors (n), the larger number of observations (m) requires
more computational time than the small one. However, the non-splitting case is
in another direction: for the same number of predictors (n), it can be seen that
the larger number of observations (m) needs less CPU time than the small one
for almost all cases. The best performance of the splitting case with respect to
the non-splitting counterpart is observed for the problem where m and n are too
different. In fact, for the case (20, 8000), we see that the CPU time for the splitting
case is 6500 times less than that of the non-splitting case.

Next, we consider the problem in the sense of splitting when m = 7, 8, 9, 10
and n = 2m. The design matrix is generated by Ai,j = 1

(i+j−1) for all i =
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m → 7 8 9 10

γ ↓ #(Iters) Time #(Iters) Time #(Iters) Time #(Iters) Time

0.1 2530 3.13 2553 9.88 2571 32.04 2585 125.46
0.3 2436 2.84 2469 10.69 2494 32.28 2514 122.38
0.5 2357 2.96 2398 9.22 2430 37.43 2455 132.17
0.7 2288 2.60 2335 8.87 2372 38.08 2402 114.45
0.9 2224 2.43 2278 9.51 2320 29.14 2354 109.55

Table 2: Comparisons of number of iterations and algorithm runtime for various
problem sizes (m, 2m) with different parameter γ.

1, . . . ,m, j = 1, . . . , n and the response vector bi is generated by bi = −
∑n

j=1 Ai,j

for all i = 1, . . . ,m. Table 2 shows the behaviors of iterations for the problems
with parameters γ = 0.1, 0.3,0.5, 0.7, and 0.9, respectively. We use the optimality
tolerance ǫ = 10−6 to obtain the number of iteration (k) and elapsed time (sec-
onds). In Table 2, we see that the parameter γ = 0.9 uses the smallest number
of iterations for all size of problem. Furthermore, we can observe that for each
parameter γ, the relation between problem sizes growths and number of iterations
seems to be linear. Table 2 also shows algorithm runtime when the optimality
tolerance ǫ = 10−6 is reached. From Table 2, we see that the elapsed time are not
almost in the same direction with the number of iterations. In fact, even if the
parameter γ = 0.9 use the smallest algorithm runtime in the cases m = 7, 9, and
10, the parameter γ = 0.7 uses the least algorithm runtime in the case m = 8.
Based on the provided data, one can say that in this example, the parameter γ
has an impact on the performance of the algorithm.

5.2 Generalized Heron Problems

The classical Heron problem was introduced by Heron of Alexandria, focuses on
finding a point on a given straight line in a plane such that the sum of distances
from it to two given points is minimal. In this experiment, we consider the gener-
alized Heron problem of finding a point that minimizes the sum of the distances to
given closed convex target sets Ci ⊂ R

n, i = 1, ...,m over a system of homogeneous
linear equations.

The generalized Heron problem in the context of distance functions is formu-
lated as follows:

minimize
∑m

i=1 dist(x,Ci)
subject to Ax = 0Rn ,

where Ci ⊂ R
n, i = 1, ...,m are nonempty closed convex subsets and A ∈ R

n×n

is a matrix. Note that if the number of target sets m is large, then it is possible
that the problem has a number of solutions and the coordinates xi may take large
values. To overcome this situation, one can have an adding term to penalize the
sum of squares of each coordinate, i.e., the square of ℓ2-norm. From this notice,
the considered problem can be read as follows:

minimize F (x) :=
∑m

i=1 dist(x,Ci) + ‖x‖22
subject to x ∈ argmin 1

2‖Ax‖
2
2.

(36)
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Dimension #(Target) #(Iters) Time

2 10 199963 28.57
50 199863 133.14
100 199732 259.07
500 198657 1268.07

3 10 199973 29.07
50 199926 135.79
100 199855 268.34
500 199367 1309.97

5 10 199985 30.55
50 199970 137.48
100 199952 268.39
500 199826 1310.53

Table 3: Behaviors of GFBP on a generalized Heron problem.

We observe that (36) fits into the framework considered in (31) when setting
fi(x) = dist(x,Ci), i = 1, ...,m, fm+1(x) = ‖x‖22, and g(x) = 1

2‖Ax‖
2
2 for all

x ∈ R
n.

In this experiment we solve a number of randomized problems where the closed
convex sets Ci ⊂ R

n, i = 1, ...,m are the unit balls with the centers are created
randomly in the interval (−n2, n2). We generate all elements of the matrix A
randomly from the interval (−10,10). The MATLAB calculations are performed
by GFBP (Algorithm 4.1) with the sequences αk = 1/k and βk = 0.9k for all
k ≥ 1. In all experiments, we terminate GFBP (Algorithm 4.1) when the relative
changes between two consecutive points becomes sufficiently small, i.e.,

max

{

|F (xk)− F (xk−1)|

|F (xk−1)|
,
|g(xk)− g(xk−1)|

|g(xk−1)|

}

≤ 10−5.

We use 10 samplings for different randomly chosen unit balls and starting point,
and the results are averaged.

Table 3 shows the number of iterations and elapsed time when GFBP (Algo-
rithm 4.1) satisfies the relative changes 10−5. As shown in Table 3, for the same
dimension, the larger number of target sets needs a longer time. However, for the
same number of target sets, the number of iterations and time seem to be not
significantly different even if the dimensions are different.

6 Conclusions

We introduce a novel splitting method, called a generalized forward-backward
method with penalty term GFBP, for finding a zero of the sum of a number of
maximally monotone operators and the normal cone to the zero of another max-
imally monotone operator. The advantage of our method is that it allows us not
only to compute the resolvent of each operator separately but also to consider a
general sense of the constrained set. We provide theorems for guaranteeing the
convergence of the method. Consequently, we apply GFBP to the minimization of
the large-scale hierarchical minimization problem that is the sum of both smooth
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and nonsmooth convex functions subject to the set of minima of another differen-
tiable convex function. Finally, we propose two numerical experiments on large-
scale convex minimization concerning elastic net and generalized Heron location
problems.
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