Skip to main content
Log in

Surrogate-based feasibility analysis for black-box stochastic simulations with heteroscedastic noise

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Feasibility analysis has been developed to evaluate and quantify the capability that a process can remain feasible under uncertainty of model inputs and parameters. It can be conducted during the design stage when the objective is to get a robust design which can tolerate a certain amount of variations in the process conditions. Also, it can be used after a design is fixed when the objective is to characterize its feasible region. In this work, we have extended the usage of feasibility analysis to the cases in which inherent stochasticity is existent in the model outputs. With a surrogate-based adaptive sampling framework, we have developed and compared three algorithms that are promising to make accurate predictions on the feasible regions with a limited sampling budget. Both the advantages and limitations are discussed based on the results from five benchmark problems. Finally, we apply such methods to a pharmaceutical manufacturing process and demonstrate its potential application in characterizing the design space of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Halemane, K.P., Grossmann, I.E.: Optimal process design under uncertainty. AIChE J. 29(3), 425–433 (1983)

    Article  MathSciNet  Google Scholar 

  2. Swaney, R.E., Grossmann, I.E.: An index for operational flexibility in chemical process design. Part I: formulation and theory. AIChE J. 31(4), 621–630 (1985)

    Article  Google Scholar 

  3. Swaney, R.E., Grossmann, I.E.: An index for operational flexibility in chemical process design. Part II: computational algorithms. AIChE J. 31(4), 631–641 (1985)

    Article  Google Scholar 

  4. Grossmann, I.E., Floudas, C.A.: Active constraint strategy for flexibility analysis in chemical processes. Comput. Chem. Eng. 11(6), 675–693 (1987)

    Article  Google Scholar 

  5. Floudas, C.A., Gümüş, Z.H., Ierapetritou, M.G.: Global optimization in design under uncertainty: feasibility test and flexibility index problems. Ind. Eng. Chem. Res. 40(20), 4267–4282 (2001)

    Article  Google Scholar 

  6. Pistikopoulos, E., Mazzuchi, T.: A novel flexibility analysis approach for processes with stochastic parameters. Comput. Chem. Eng. 14(9), 991–1000 (1990)

    Article  Google Scholar 

  7. Dimitriadis, V.D., Pistikopoulos, E.N.: Flexibility analysis of dynamic systems. Ind. Eng. Chem. Res. 34(12), 4451–4462 (1995)

    Article  Google Scholar 

  8. Adi, V.S.K., Chang, C.-T.: A mathematical programming formulation for temporal flexibility analysis. Comput. Chem. Eng. 57, 151–158 (2013)

    Article  Google Scholar 

  9. Ierapetritou, M.G.: New approach for quantifying process feasibility: convex and 1D quasiconvex regions. AIChE J. 47(6), 1407–1417 (2001)

    Article  Google Scholar 

  10. Goyal, V., Ierapetritou, M.G.: Determination of operability limits using simplicial approximation. AIChE J. 48(12), 2902–2909 (2002)

    Article  Google Scholar 

  11. Banerjee, I., Ierapetritou, M.G.: Feasibility evaluation of nonconvex systems using shape reconstruction techniques. Ind. Eng. Chem. Res. 44(10), 3638–3647 (2005)

    Article  Google Scholar 

  12. Adi, V.S.K., Laxmidewi, R., Chang, C.-T.: An effective computation strategy for assessing operational flexibility of high-dimensional systems with complicated feasible regions. Chem. Eng. Sci. 147, 137–149 (2016)

    Article  Google Scholar 

  13. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 4(1), 1–32 (1996)

    Article  Google Scholar 

  14. Banerjee, I., Pal, S., Maiti, S.: Computationally efficient black-box modeling for feasibility analysis. Comput. Chem. Eng. 34(9), 1515–1521 (2010)

    Article  Google Scholar 

  15. Boukouvala, F., Muzzio, F.J., Ierapetritou, M.G.: Design space of pharmaceutical processes using data-driven-based methods. J. Pharm. Innov. 5(3), 119–137 (2010)

    Article  Google Scholar 

  16. Rogers, A., Ierapetritou, M.: Feasibility and flexibility analysis of black-box processes. Part 1: surrogate-based feasibility analysis. Chem. Eng. Sci. 137, 986–1004 (2015)

    Article  Google Scholar 

  17. Rogers, A., Ierapetritou, M.: Feasibility and flexibility analysis of black-box processes. Part 2: surrogate-based flexibility analysis. Chem. Eng. Sci. 137, 1005–1013 (2015)

    Article  Google Scholar 

  18. Wang, Z., Ierapetritou, M.: A novel feasibility analysis method for blackbox processes using a radial basis function adaptive sampling approach. AIChE J. 63(2), 532–550 (2017)

    Article  Google Scholar 

  19. Chen, X., Zhou, Q.: Sequential design strategies for mean response surface metamodeling via stochastic Kriging with adaptive exploration and exploitation. Eur. J. Oper. Res. 262(2), 575–585 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shao, X., Shi, L.: Enhancing feasibility determination with Kriging metamodels. In: 2016 IEEE International Conference on Automation Science and Engineering (CASE), pp. 476–481. IEEE (2016)

  22. Wang, Z., Wang, P.: An integrated performance measure approach for system reliability analysis. J. Mech. Des. 137(2), 021406 (2015)

    Article  Google Scholar 

  23. Sadoughi, M.K., Hu, C., MacKenzie, C.A., Eshghi, A.T., Lee, S.: Sequential exploration-exploitation with dynamic trade-off for efficient reliability analysis of complex engineered systems. Struct. Multidiscipl. Optim. 57(1), 235–250 (2018)

    Article  MathSciNet  Google Scholar 

  24. Grossmann, I.E., Calfa, B.A., Garcia-Herreros, P.: Evolution of concepts and models for quantifying resiliency and flexibility of chemical processes. Comput. Chem. Eng. 70, 22–34 (2014)

    Article  Google Scholar 

  25. Birjandi, M.R.S., Shahraki, F., Razzaghi, K.: Hydrogen network retrofit via flexibility analysis: the steady-state flexibility index. Chem. Eng. Res. Des. 117, 83–94 (2017)

    Article  Google Scholar 

  26. Garcia-Munoz, S., Luciani, C.V., Vaidyaraman, S., Seibert, K.D.: Definition of design spaces using mechanistic models and geometric projections of probability maps. Org. Process Res. Dev. 19(8), 1012–1023 (2015)

    Article  Google Scholar 

  27. Wang, Z., Escotet-Espinoza, M.S., Ierapetritou, M.: Process analysis and optimization of continuous pharmaceutical manufacturing using flowsheet models. Comput. Chem. Eng. 107, 77–91 (2017)

    Article  Google Scholar 

  28. Sharifzadeh, M., Meghdari, M., Rashtchian, D.: Multi-objective design and operation of solid oxide fuel cell (SOFC) triple combined-cycle power generation systems: integrating energy efficiency and operational safety. Appl. Energy 185, 345–361 (2017)

    Article  Google Scholar 

  29. Sahay, N., Ierapetritou, M.: Flexibility assessment and risk management in supply chains. AIChE J. 61(12), 4166–4178 (2015)

    Article  Google Scholar 

  30. Wang, H., Mastragostino, R., Swartz, C.L.: Flexibility analysis of process supply chain networks. Comput. Chem. Eng. 84, 409–421 (2016)

    Article  Google Scholar 

  31. Zhang, Q., Grossmann, I.E., Lima, R.M.: On the relation between flexibility analysis and robust optimization for linear systems. AIChE J. 62(9), 3109–3123 (2016)

    Article  Google Scholar 

  32. Boukouvala, F., Ierapetritou, M.G.: Derivativefree optimization for expensive constrained problems using a novel expected improvement objective function. AIChE J. 60(7), 2462–2474 (2014)

    Article  Google Scholar 

  33. Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a review of algorithms and applications. 4OR 12(4), 301–333 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Picheny, V., Ginsbourger, D., Richet, Y., Caplin, G.: Quantile-based optimization of noisy computer experiments with tunable precision. Technometrics 55(1), 2–13 (2013)

    Article  MathSciNet  Google Scholar 

  35. Ankenman, B., Nelson, B.L., Staum, J.: Stochastic Kriging for simulation metamodeling. Oper. Res. 58(2), 371–382 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cressie, N.: Statistics for Spatial Data. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  37. Kleijnen, J.P.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192(3), 707–716 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Martin, J.D., Simpson, T.W.: Use of Kriging models to approximate deterministic computer models. AIAA J. 43(4), 853–863 (2005)

    Article  Google Scholar 

  39. Jalali, H., Van Nieuwenhuyse, I., Picheny, V.: Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise. Eur. J. Oper. Res. 261(1), 279–301 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Žilinskas, A., Zhigljavsky, A.: Stochastic global optimization: a review on the occasion of 25 years of Informatica. Informatica 27(2), 229–256 (2016)

    Article  MATH  Google Scholar 

  41. Močkus, J.: On Bayesian methods for seeking the extremum. In: Optimization Techniques IFIP Technical Conference, pp. 400–404. Springer (1975)

  42. Zhilinskas, A.: Single-step Bayesian search method for an extremum of functions of a single variable. Cybern. Syst. Anal. 11(1), 160–166 (1975)

    Article  Google Scholar 

  43. Schonlau, M., Welch, W.J., Jones, D.: Global optimization with nonparametric function fitting. In: Proceedings of the ASA, Section on Physical and Engineering Sciences, pp. 183–186 (1996)

  44. Picheny, V., Wagner, T., Ginsbourger, D.: A benchmark of Kriging-based infill criteria for noisy optimization. Struct. Multidiscipl. Optim. 48(3), 607–626 (2013)

    Article  Google Scholar 

  45. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic black-box systems via sequential Kriging meta-models. J. Global Optim. 34(3), 441–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ranjan, P., Bingham, D., Michailidis, G.: Sequential experiment design for contour estimation from complex computer codes. Technometrics 50(4), 527–541 (2008)

    Article  MathSciNet  Google Scholar 

  47. Lophaven, S., Nielsen, H., Sondergaard, J., Toolbox, D.-A.M.K.: Technical University of Denmark. Technical Report IMM-TR2002-12 (2002)

  48. Al-Asady, R.B., Dhenge, R.M., Hounslow, M.J., Salman, A.D.: Roller compactor: determining the nip angle and powder compaction progress by indentation of the pre-compacted body. Powder Technol. 300, 107–119 (2016)

    Article  Google Scholar 

  49. Hsu, S.-H., Reklaitis, G.V., Venkatasubramanian, V.: Modeling and control of roller compaction for pharmaceutical manufacturing. Part I: process dynamics and control framework. J. Pharm. Innov. 5(1–2), 14–23 (2010)

    Article  Google Scholar 

  50. Singh, R., Ierapetritou, M., Ramachandran, R.: An engineering study on the enhanced control and operation of continuous manufacturing of pharmaceutical tablets via roller compaction. Int. J. Pharm. 438(1), 307–326 (2012)

    Article  Google Scholar 

  51. Fu, M.C., Glover, F.W., April, J.: Simulation optimization: a review, new developments, and applications. In: Proceedings of the 2005 Winter Simulation Conference, p. 13. IEEE (2005)

  52. Rulliere, D., Faleh, A., Planchet, F., Youssef, W.: Exploring or reducing noise? Struct. Multidiscipl. Optim. 47(6), 921–936 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from FDA (DHHS - FDA - 1 U01 FD005295-01) as well as National Science Foundation Engineering Research Center on Structured Organic Particulate Systems (NSF-ECC 0540855).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianthi Ierapetritou.

Appendix

Appendix

A. Derivation of \({\varvec{E}}{\varvec{I}}_{{\varvec{feas}}}\)

Rewrite the improvement of feasibility as follows:

$$\begin{aligned} I_{ feas}=\left\{ {\begin{array}{ll} {\hat{s}}(0-z),\, &{} \quad \mathrm {if}\, z\le {f}^{{t}^{'}}\le 0\\ 0,\, &{} \quad \mathrm {else} \\ {\hat{s}}(z-0),\, &{} \quad \mathrm {if}\, z\ge {f}^{{t}^{'}}>0, \\ \end{array}} \right. \end{aligned}$$

where \(z=\frac{y-{\hat{\mu }}}{{\hat{s}}},\, {f}^{{t}^{'}}=\frac{f^{t}-{\hat{\mu }}}{{\hat{s}}}\).

Due to the assumed normal distribution for y, in the case when \({f}^{{t}'}\le 0\), the expected value of \(I_{ feas}\) can be derived as follows:

$$\begin{aligned} E\left[ I_{ feas} \right]&={\hat{s}}\int _{-\infty }^{{f}^{{t'}}} {\left( 0-z \right) \phi \left( z \right) dz} \\&\qquad \qquad ={\hat{s}}\left[ \frac{e^{-\frac{z^{2}}{2}}}{\sqrt{2\pi } } \right] _{-\infty }^{{f}^{{t'}}} \\&\qquad \qquad ={\hat{s}}\phi \left( f^{t'} \right) \\&\qquad \qquad ={\hat{s}}\phi \left( \frac{f^{t}-{\hat{\mu }}}{{\hat{s}}} \right) . \\ \end{aligned}$$

In the case when \(f^{{t}^{'}}>0\), the same expression for \(E\left[ I_{ feas} \right] \) can be obtained by taking similar derivation steps as mentioned above.

Fig. 18
figure 18

“Branin” test function. a “easy” noise; b “hard” noise. Thick-dashed line: feasible region boundaries; filled contour: standard deviation of the noise term

Fig. 19
figure 19

“Camelback” test function. a “easy” noise; b “hard” noise. Thick-dashed line: feasible region boundaries; filled contour: standard deviation of the noise term

Fig. 20
figure 20

“Example3” test function. a “easy” noise; b “hard” noise. Thick-dashed line: feasible region boundaries; filled contour: standard deviation of the noise term

Fig. 21
figure 21

“Sasena” test function. a “easy” noise; b “hard” noise. Thick-dashed line: feasible region boundaries; filled contour: standard deviation of the noise term

B. Figures for the 2D test problems

Below, we show the figures depicting the feasible region boundaries (denoted with thick-dashed line) and noise standard deviation \(\xi \) (denoted with filled contour) for the four 2D test functions. “Branin” in Fig. 18; “Camelback” in Fig. 19; “Example3” in Fig. 20; “Sasena” in Fig. 21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ierapetritou, M. Surrogate-based feasibility analysis for black-box stochastic simulations with heteroscedastic noise. J Glob Optim 71, 957–985 (2018). https://doi.org/10.1007/s10898-018-0615-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0615-4

Keywords

Navigation