Skip to main content
Log in

MultiGLODS: global and local multiobjective optimization using direct search

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The optimization of multimodal functions is a challenging task, in particular when derivatives are not available for use. Recently, in a directional direct search framework, a clever multistart strategy was proposed for global derivative-free optimization of single objective functions. The goal of the current work is to generalize this approach to the computation of global Pareto fronts for multiobjective multimodal derivative-free optimization problems. The proposed algorithm alternates between initializing new searches, using a multistart strategy, and exploring promising subregions, resorting to directional direct search. Components of the objective function are not aggregated and new points are accepted using the concept of Pareto dominance. The initialized searches are not all conducted until the end, merging when they start to be close to each other. The convergence of the method is analyzed under the common assumptions of directional direct search. Numerical experiments show its ability to generate approximations to the different Pareto fronts of a given problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Audet, C., Béchard, V., Le Digabel, S.: Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J. Global Optim. 41, 299–318 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Audet, C., Dennis Jr., J.E.: Analysis of generalized pattern searches. SIAM J. Optim. 13, 889–903 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17, 188–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Audet, C., Savard, G., Zghal, W.: Multiobjective optimization through a series of single-objective formulations. SIAM J. Optim. 19, 188–210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Audet, C., Savard, G., Zghal, W.: A mesh adaptive direct search algorithm for multiobjective optimization. Eur. J. Oper. Res. 204, 545–556 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated anneling-based multiobjective optimization algorithm: AMOSA. IEEE Trans. Evolut. Comput. 12, 269–283 (2008)

    Article  Google Scholar 

  7. Coello Coello, C.A., Lechuga, M.S.: Mopso: A proposal for multiple objective particle swarm optimization. In: Congress on Evolutionary Computation (CEC’2002), vol. 2, pp. 1051–1056, Los Alamitos, USA, 2002. IEEE Computer Society

  8. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  9. Custódio, A.L., Emmerich, M., Madeira, J.F.A.: Recent developments in derivative-free multiobjective optimization. In: Topping, B.H.V. (ed.) Computational Technology Reviews, vol. 5, pp. 1–30. Saxe-Coburg Publications, Stirling (2012)

  10. Custódio, A.L., Madeira, J.F.A.: GLODS: Global and Local Optimization using Direct Search. J. Global Optim. 62, 1–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Custódio, A.L., Madeira, J.F.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective optimization. SIAM J. Optim. 21, 1109–1140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Das, I., Dennis Jr., J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davis, C.: Theory of positive linear dependence. Am. J. Math. 76, 733–746 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deb, K.: Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evolut. Comput. 7, 205–230 (1999)

    Article  Google Scholar 

  15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  16. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Congress on Evolutionary Computation (CEC’2002), vol. 2, pp. 825–830, Los Alamitos, USA. IEEE Computer Society (2002)

  17. Igel, C.C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evolut. Comput. 15, 1–28 (2007)

    Article  Google Scholar 

  18. Jahn, J.: Introduction to the Theory of Nonlinear Optimization. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  19. Kocis, L., Whiten, W.J.: Computational investigations of low-discrepancy sequences. ACM Trans. Math. Softw. 23, 266–294 (1997)

    Article  MATH  Google Scholar 

  20. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liuzzi, G., Lucidi, S., Rinaldi, F.: A derivative-free approach to constrained multiobjective nonsmooth optimization. SIAM J. Optim. 26, 2744–2774 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  24. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  25. Ryu, J.-H., Kim, S.: A derivative-free trust-region method for biobjective optimization. SIAM J. Optim. 24, 334–362 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, New York (2003)

    Book  MATH  Google Scholar 

  27. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evolut. Comput. 8, 173–195 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the editor and to two anonymous reviewers whose suggestions helped us to improve the paper. Also, we would like to thank Professor Charles Audet and Professor Sébastien Le Digabel, from École Polytechnique de Montréal, for providing us the Matlab code of the styrene production problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Custódio.

Additional information

Support for A.L. Custódio was provided by Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) under the project UID/MAT/00297/2013 (CMA).

Support for J.F.A. Madeira was provided by ISEL, IPL, Lisboa, Portugal and by Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through IDMEC, under LAETA, project UID/EMS/50022/2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Custódio, A.L., Madeira, J.F.A. MultiGLODS: global and local multiobjective optimization using direct search. J Glob Optim 72, 323–345 (2018). https://doi.org/10.1007/s10898-018-0618-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0618-1

Keywords

Mathematics Subject Classification

Navigation