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Abstract Given a non-convex optimization problem, we study conditions un-
der which every Karush-Kuhn-Tucker (KKT) point is a global optimizer. This
property is known as KT-invexity and allows to identify the subset of problems
where an interior point method always converges to a global optimizer. In this
work, we provide necessary conditions for KT-invexity in n-dimensions and
show that these conditions become sufficient in the two-dimensional case. As
an application of our results, we study the Optimal Power Flow problem, show-
ing that under mild assumptions on the variable’s bounds, our new necessary
and sufficient conditions are met for problems with two degrees of freedom.
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Notations

BS boundary of a set S.
xi ith component of vector x.

f 1xi
“

Bf
Bxi

partial derivative of f with respect to xi.

||x|| Euclidean norm of vector x.
x ¨ y the dot product of vectors x and y.
xT the transpose of vector x.
AB a segment between two points.
2N, 2N`1 the sets of even and odd numbers.
f 1´pxq, f

1
`pxq left and right derivatives of f .

signpxq the sign function.

1 Introduction

Convexity plays a central role in mathematical optimization. Under constraint
qualification conditions [22], the Karush-Kuhn-Tucker (KKT) necessary op-
timality conditions become also sufficient for convex programs [5]. In addi-
tion, convexity of the constraints is used to prove convergence (and rates of
convergence) of specialized algorithms [18]. However, real-world problems of-
ten describe non-convex regions, and relaxing the convexity assumption while
maintaining some optimality properties is highly desirable.

One such property, called Kuhn-Tucker invexity, is the sufficiency of KKT
conditions for global optimality:

Definition 1 [14] An optimization problem is said to be Kuhn-Tucker invex
(KT-invex) if every KKT point is a global optimizer.

Various notions of generalized convexity have been proposed in the litera-
ture. Early generalizations include pseudo- and quasi-convexity introduced by
Mangasarian in [13] where he also proves that problems with a pseudo-convex
objective and quasi-convex constraints are KT-invex. Hanson [9] defined the
concept of invex functions and gave a sufficient condition for KT-invexity,
which was relaxed by Martin [14] in order to obtain a condition that is both
necessary and sufficient. Later on, Craven [8] investigated the properties of
invex functions.

These ideas inspired more research on generalized convexity. K-invex [7],
preinvex [4], B-vex [3], V-invex [10], (p,r)-invex [2] and other types of functions
and their roles in mathematical optimization.

However, to the best of our knowledge, there are no computationally ef-
ficient procedures to check KT-invexity in practice even when restricted to
two-dimensional spaces. To address this problem, we propose a new set of
conditions expressed in terms of the behavior of the objective function on the
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boundary of the feasible set. We prove that these conditions are necessary and,
for two-dimensional problems, sufficient for KT-invexity.

The paper is organized as follows. In Section 2 we introduce the notion of
boundary-invexity and study its connection to the local optimality of KKT
points. Here we also establish the connection between global optimality on
the boundary and in the interior. Section 3 gives the definition of a two-
dimensional cross product. In Section 4 we define a parametrization of the
boundary curve. In Section 5 we study the behavior of concave functions on
a line and present some results on boundary-optimality. Section 6 presents
the main theorem establishing the sufficiency of boundary-invexity for two-
dimensional problems. Finally, Section 7 investigates boundary-invexity of the
Optimal Power Flow problem and Section 8 concludes the paper.

2 Conditions for Kuhn-Tucker invexity

Consider the optimization problem:

max fpxq

s.t. gipxq ď 0 @i “ 1..m (NLP)

x P Rn,

where all functions fpxq, gpxq and hpxq are twice continuously differentiable
and fpxq is concave. The results in this paper can be extended to problems
with quasiconcave objective functions since only convexity of the superlevel
sets of f is used in the proofs.

Let F denote the feasible set of (NLP).

Definition 2 [24] A solution x˚ of problem (NLP) is said to satisfy Karush-
Kuhn-Tucker (KKT) conditions if there exist constants µi pi “ 1, ...,mq, called
KKT multipliers, such that

∇fpx˚q “
m
ÿ

i“1

µi∇gipx˚q, (1)

gipx
˚q ď 0, @i “ 1, ...,m, (2)

µi ě 0, @i “ 1, ...,m, (3)

µigipxq “ 0, @i “ 1, ...,m. (4)

Points that satisfy KKT conditions are referred to as KKT points.

Definition 3 [24] A point x˚ P Rn is a local maximizer for (NLP) if x˚ P F
and there is a neighborhood Npx˚q such that fpxq ď fpx˚q for x P Npx˚qXF .
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Let us emphasize that checking local optimality is NP-hard in general:

Theorem 1 [19] The problem of checking local optimality for a feasible solu-
tion of (NLP) is NP-hard.

In this work, we try to investigate necessary and sufficient conditions that
allow us to circumvent the negative result presented in Theorem 1 by identi-
fying problems where KKT points are provably global optimizers.

2.1 Weak boundary-invexity

For each non-convex constraint gipxq ď 0 define the problem:

min fpxq (NLPi)

s.t. gipxq “ 0.

Definition 4 (Weak boundary-invexity) Problem (NLP) is weakly boundary-
invex if (NLPi) is unbounded or at least one of the following holds for its global
minimum x˚:

1. x˚ is infeasible for (NLP),
2. x˚ is not a strict minimizer,
3. the KKT multiplier for x˚ in (NLPi) is non-negative,
4. there exist constraints gjpxq ď 0, j ‰ i in (NLP) that are active at x˚.

(NLPi) is still a non-convex problem, and finding its global optimum can
be NP-hard in general. However, in some special cases (NLPi) can be more
tractable than (NLP) since we are restricting the feasible region to one of its
boundaries.

For instance, when both fpxq and gipxq are quadratic functions we can
apply an extension of the S-lemma:

Theorem 2 [25] Let fpxq “ xTAx` aT ¨x` c and gpxq “ xTBx` bT ¨x` d
be two quadratic functions having symmetric matrices A and B. If gpxq takes
both positive and negative values and B ‰ 0, then the following two statements
are equivalent:

1. p@x P Rnq gpxq “ 0 ùñ fpxq ě 0,
2. There exists a µ P R such that fpxq ` µgpxq ě 0, @x P Rn.

Using this theorem and based on the approach described in [25], (NLPi) can
be reformulated as a Semidefinite Program and thus solved efficiently.
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2.2 Necessary condition for KT-invexity

Theorem 3 (Necessary condition) If (NLP) is KT-invex, then it is weakly
boundary-invex.

Proof We will proceed by contradiction, assume that (NLP) is KT-invex but
not weakly boundary-invex. Thus, there exists a point x˚ P F which is a global
minimizer and therefore a KKT point of (NLPi):

∇fpx˚q “ ´λi∇gipx˚q,
gipx

˚q “ 0,

λi ă 0.

Let µi “ ´λi. Since gi is the only active constraint at x˚, we can set
µj “ 0, j “ 1, ..., i´ 1, i` 1, ...,m and obtain the following system:

∇fpx˚q “
m
ÿ

j“1

µj∇gjpx˚q,

gjpx
˚q “ 0, @j “ 1, ...,m,

µj ě 0, @j “ 1, ...,m,

implying that x˚ is a KKT point of (NLP). Since no other constraints are
active at x˚, there exists a point x̂ in the neighborhood of x˚, such that

gipx̂q “ 0 and x̂ P F

Since x˚ is a strict global minimizer in (NLPi), we have that fpx˚q ă fpx̂q
which contradicts with (NLP) being KT-invex.

[\

2.3 Connection between boundary and interior optimality

Definition 5 [20] A connected set is a set which cannot be represented as the
union of two disjoint non-empty closed sets.

Lemma 1 Given a local maximizer x˚ P Rn for (NLP), if F is connected
then the following statement is true:
If x˚ is a global maximizer on BF then it is also a global maximizer for (NLP).

Proof x˚ is a local maximizer, so there is a neighborhood Npx˚q such that if
fpxq ą fpx˚q and x P Npx˚q, then x R F .

Let us prove the lemma by contradiction. Consider an arbitrary point x̂ P F
such that fpx̂q ą fpx˚q. Since f is concave, there exists a convex set Lcpfq “
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tx | fpxq ě cu, where c satisfies fpx˚q ă c ă fpx̂q. Since f is continuous, c
can be chosen so that BLcpfq XNpx

˚q is non-empty. Note that x̂ P Lcpfq.

Since fpxq ď fpx˚q @x P BF and fpxq ą fpx˚q @x P BLcpfq, the two
boundaries cannot have common points: BLcpfq X BF “ H. Given that F is
connected, there are three possibilities:

1) If F X Lcpfq “ H. Contradiction, since x̂ P Lcpfq would imply that
x̂ R F .

2) If F Ă Lcpfq. Contradiction, since x˚ P F and x˚ R Lcpfq given that
fpx˚q ă c.

3) If Lcpfq Ă F . Given that BLcpfq X Npx˚q is non-empty, points in this
intersection have a higher objective function value with respect to x˚ and
belong to its neighborhood are feasible. This contradicts with x˚ being a local
maximizer.

We have proven that x̂ R F for any x̂ such that fpx̂q ą fpx˚q. Thus x˚ is
a global maximizer in F .

[\

2.4 Problems with two degrees of freedom

To the best of our knowledge, there are no polynomial-time verifiable necessary
and sufficient conditions for checking KT-invexity even in two dimensions. In
this work, we try to take a first step in this direction, showing that boundary-
invexity is both necessary and sufficient while being efficiently verifiable. Even
after restricting the problem to two degrees of freedom, the proof of sufficiency
is not straightforward and requires an elaborate geometric reasoning. In the
following sections, we try to brake up our approach into various pieces, in the
hope of making it easier for the reader.

We consider the following optimization problem:

max f0pxq

s.t. g0i pxq ď 0 @i “ 1..m (NLP0)

h0i pxq “ 0 @i “ 1..n´ 2

x P Rn.

and assume that n ´ 2 variables can be projected out given the system
of non-redundant n ´ 2 linear equations h0i pxq “ 0. After projecting these
variables out, (NLP0) can be expressed as a two-dimensional problem:
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max fpx1, x2q

s.t. gipx1, x2q ď 0 @i “ 1..m (NLP2)

px1, x2q P R2.

Definition 6 [11] A real function f is said to be real analytic at x0 if it may
be represented by a convergent power series on some interval of positive radius
centered at x0:

fpxq “
8
ÿ

j“0

ajpx´ x0qj

The function is said to be real analytic on a set S Ă Rn if it is real analytic
at each x0 P S.

We will assume that f is a concave real analytic function, gi are twice
continuously differentiable, F is connected and bounded and LICQ holds for
all points x P BF .

Given these assumptions, the corresponding boundary-invexity models (NLPi)
become:

min fpx1, x2q (NLP2i)

s.t. gipx1, x2q ě 0.

We will define a stronger version of the boundary-invexity property, which
is both necessary and sufficient for KT-invexity of (NLP2):

Definition 7 (Boundary-invexity) Problem (NLP2) is boundary-invex if at
least one of the following holds for all KKT points x˚ of (NLP2i):

1. x˚ is infeasible for (NLP2),
2. x˚ has non-negative KKT multipliers in (NLPi),
3. x˚ is a local maximum with respect to (NLP2).

2.5 Local optimality of KKT points

We first recall a result from [24]. Let Apxq be the set of all active constraints
at point x.

Definition 8 Given a KKT point x˚ of problem (NLP2) and corresponding
Lagrange multiplier vector µ, a critical cone Cpx˚,µq is defined as a set of
vectors w such that:
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#

p∇gipx˚qqT ¨w “ 0 @i | gipx
˚q “ 0, @i P Apx˚q with µi ą 0,

p∇gipx˚qqT ¨w ď 0 @i | gipx
˚q “ 0, @i P Apx˚q with µi “ 0.

The directions contained in the critical cone are important for distinguish-
ing between a local maximum and other types of stationary points.

Theorem 4 [24](Second-order sufficient conditions) Let x˚ be a KKT point
for problem (NLP2) with a Lagrange multiplier vector µ. Suppose that

wT∇2
xLpx

˚,µqw ą 0 @w P Cpx˚,µq, w ‰ 0,

where Lpx,µq “ fpxq ´
m
ř

i“1

µigipxq is the Lagrangian function.

Then x˚ is a strict local maximum in (NLP2).

Lemma 2 Suppose that (NLP2) is boundary-invex. Then every KKT point is
a local maximum.

Proof Consider a KKT point x˚. Since (NLP2) is two-dimensional, at most
two constraints can be active and non-redundant at x˚. Let these constraints
be denoted as g1 and g2 and let the corresponding KKT multipliers be µ1, µ2.

1. If both µi ą 0, then the critical cone can be written as:

w P Cpx˚,µq ô

#

p∇g1px˚qqT ¨w “ 0

p∇g2px˚qqT ¨w “ 0

ñ

«

w “ 0

p∇g1px˚qqT ¨w “ p∇g2px˚qqT ¨w
ñ

«

w “ 0

∇g1px˚q “ ∇g2px˚q

In the first case, w P Cpx˚,µq ô w “ 0. The conditions of Theorem 4
are satisfied and x˚ is a local maximum. Otherwise LICQ is violated.

2. Suppose that µ2 “ 0 and µ1 ą 0. Then, by (1), ∇fpx˚q “ µ1∇g1px˚q.
Then the following cases are possible:

(a) g1 is convex. Since (2) and (4) are satisfied, x˚ is a KKT point for a
problem of maximizing f on g1pxq “ 0. Then it is a local maximum for
this problem and, since it is a relaxation of (NLP2), a local maximum
for (NLP2).

(b) g1 is non-convex. Setting λ1 “ ´µ1, we get ∇fpx˚q “ ´λ1∇g1px˚q,
λ1 ă 0. (4) implies that g1px

˚q “ 0. Then x˚ is a KKT point for
(NLP2i) with a negative KKT multiplier which is feasible for (NLP2).
Since (NLP2) is boundary-invex, x˚ is a local maximum.

3. µ1 “ µ2 “ 0. Then x˚ is the unconstrained global maximum of f and thus
a maximum for (NLP2).

[\
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3 Two-dimensional cross product

Definition 9 Given two vectors x,y P R2 define their cross product to be

xˆ y “ x1y2 ´ x2y1.

The sign of x ˆ y has a geometric interpretation. If x ˆ y ą 0, then the
shortest angle at which x has to be rotated for it to become co-directional
with y corresponds to a counter-clockwise rotation. If x ˆ y ă 0, then such
an angle corresponds to a clockwise rotation. If x ˆ y “ 0, the vectors are
parallel.

Definition 10 (Tangent vector) [1] Given a parametrization px1ptq, x2ptqq
of a curve gpx1, x2q “ 0, the vector px11ptq, x

1
2ptqq

T is said to be its tangent
vector.

Tangent vectors are orthogonal to gradient vectors. This can be proven
using the chain differentiation rule:

gpx1ptq, x2ptqq “ 0 ñ
Bg

Bx1

Bx1
Bt
`
Bg

Bx2

Bx2
Bt

“ p∇gpx1, x2qqT ¨px11ptq, x12ptqqT “ 0.

Lemma 3 Given a differentiable function g : R2 Ñ R, a point y “ py1, y2q
such that gpyq “ 0, the vector p´g1x2

pyq, g1x1
pyqq is the tangent vector to the

curve gpxq “ 0 at point y.

Proof Considering the dot product,

p´g1x2
pyq, g1x1

pyqq ¨∇gpyq “ p´g1x2
pyq, g1x1

pyqq ¨ pg1x1
pyq, g1x2

pyqqT “

“ ´g1x2
pyqg1x1

pyq ` g1x1
pyqg1x2

pyq “ 0

the vector p´g1x2
pyq, g1x1

pyqq is orthogonal to the gradient and thus a tangent
to the curve gpxq “ 0 at the point y.

[\

Definition 11 The positive (resp. negative) direction of moving along the
curve gpxq “ 0 is the direction corresponding to the vector p´gx2

pxq, gx1
pxqq

(resp. pgx2
pxq,´gx1

pxqq).

Definition 12 [23] Given a differentiable function f , the directional derivative
of f along vector u is defined as:

Bfpxq

Bu
“ p∇fpxqqT ¨ u
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Fig. 1 Tangent vectors

Lemma 4 Consider differentiable functions f : R2 Ñ R and g : R2 Ñ R. We
have ∇fpyq ˆ ∇gpyq ě 0 (resp. ∇fpyq ˆ ∇gpyq ď 0) if and only if fpxq is
non-increasing (resp. non-decreasing) when moving along the curve gpxq “ 0
in the positive direction.

Proof We will prove the case where f is non-increasing.

Consider the directional derivative of f with respect to the tangent vector
at point y:

Bf

Bp´g1x2
pyq, g1x1

pyqq
pyq “ p∇fpyqq ¨ p´g1x2

pyq, g1x1
pyqqT “

´f 1x1
pyqg1x2

pyq ` f 1x2
pyqg1x1

pyq “ ´∇fpyq ˆ∇gpyq ď 0,

and this implies that the cross product being non-negative at y is equivalent
to f being non-increasing on gpxq “ 0 at y.

[\

3.1 Reformulation of the KKT conditions

Now we shall establish a connection between the KKT conditions and the sign
of the cross products corresponding to the gradient vectors.

Lemma 5 Consider a point x˚ P F with two active non-redundant constraints
g1pxq ď 0 and g2pxq ď 0 such that ∇g1px˚qˆ∇g2px˚q ą 0. x˚ is a KKT point
if and only if

∇fpx˚q ˆ∇g1px˚q ě 0,

∇fpx˚q ˆ∇g2px˚q ď 0.
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Proof By KKT conditions (1)-(4), there exist µ1, µ2 such that the following
holds:

$

’

’

’

&

’

’

’

%

µ1
Bg1
Bx1
px˚q ` µ2

Bg2
Bx1
px˚q “ Bf

Bx1
px˚q

µ1
Bg1
Bx2
px˚q ` µ2

Bg2
Bx2
px˚q “ Bf

Bx2
px˚q

µ1, µ2 ě 0

From this system we can find µ1, µ2:

µ1 “

Bf
Bx1
px˚q Bg2

Bx2
px˚q ´ Bg2

Bx1
px˚q Bf

Bx2
px˚q

Bg1
Bx1
px˚q Bg2

Bx2
px˚q ´ Bg2

Bx1
px˚q Bg1

Bx2
px˚q

“
∇fpx˚q ˆ∇g2px˚q
∇g1px˚q ˆ∇g2px˚q

µ2 “

Bg1
Bx1
px˚q Bf

Bx2
px˚q ´ Bf

Bx1
px˚q Bg1

Bx2
px˚q

Bg1
Bx1
px˚q Bg2

Bx2
px˚q ´ Bg2

Bx1
px˚q Bg1

Bx2
px˚q

“
∇g1px˚q ˆ∇fpx˚q
∇g1px˚q ˆ∇g2px˚q

µ1, µ2 ě 0 is equivalent to

∇fpx˚q ˆ∇g1px˚q ě 0

∇fpx˚q ˆ∇g2px˚q ď 0

[\

4 Parametrization of the boundary of F

Given a real variable t P r0, T s, where T P R, T ą 0, define a parametrization
γ : R Ñ R2 of BF such that γp0q “ γpT q and the direction of increase of t
corresponds to the positive direction of moving along the boundary. Then

γ1´ptq “

ˆ

´
Bgi´ptq

Bx2
pγptqq,

Bgi´ptq

Bx1
pγptqq

˙T

γ1`ptq “

ˆ

´
Bgi`ptq

Bx2
pγptqq,

Bgi`ptq

Bx1
pγptqq

˙T

where i´ptq and i`ptq are indices of constraints that are active at γptq and
non-redundant in some neighborhood of this point. If there is only one active
non-redundant constraint at γptq, then i´ptq “ i`ptq “ iptq and γ1´ptq “
γ1`ptq “ γ1ptq. Otherwise we will require that there exists an ε0 ą 0 such that
i´ptq “ ipt´ εq and i`ptq “ ipt` εq @ε P p0, ε0q.

Let γrptq be the reversed direction parametrization of BF :
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γr1´ptq “

ˆ

Bgir´ptq

Bx2
pγptqq,´

Bgir´ptq

Bx1
pγptqq

˙T

,

γr1`ptq “

ˆ

Bgir`ptq

Bx2
pγptqq,´

Bgir`ptq

Bx1
pγptqq

˙T

,

where ir´ptq, ir`ptq are defined in a similar way to the indices in the direct
parametrization.

Fig. 2 Parametrisation of the boundary of the feasible region

In the following Lemma, we show that γ does not intersect itself.

Lemma 6 Consider two distinct values t1 and t2 of parameter t, such that
0 ă t1 ă t2 ă T , then γpt1q ‰ γpt2q.

Proof We will proceed by contradiction, suppose that there exist numbers t1,
t2 such that γpt1q “ γpt2q “ y and 0 ă t1 ă t2 ă T . Let j “ ipt1q and
k “ ipt2q. Consider the product p∇gjpyqqT ¨ γ1pt2q.

1. p∇gjpyqqT ¨ γ1pt2q “ 0. Then

pgjq
1
x1
pyqpgkq

1
x2
pyq ´ pgjq

1
x2
pyqpgkq

1
x1
pyq

“ p∇gjpyqqT ¨ ppgkq1x2
pyq,´pgkq

1
x1
pyqqT “ p∇gjpyqqT ¨ γ1pt2q “ 0

and thus

pgjq
1
x2
pyq “

pgjq
1
x1
pyqpgkq

1
x2
pyq

pgkq1x1
pyq

.

If c “ ´
pgjq

1
x1
pyq

pgkq1x1
pyq , we have that
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c∇gkpyq “ ´
pgjq

1
x1
pyq

pgkq1x1
pyq

˜

pgkq
1
x1
pyq

pgkq
1
x2
pyq

¸

“ ´

¨

˝

pgjq
1
x1
pyq

pgkq
1
x2
pyqpgjq

1
x1
pyq

pgkq1x1
pyq

˛

‚

“ ´

˜

pgjq
1
x1
pyq

pgjq
1
x2
pyq

¸

and
∇gjpyq ` c∇gkpyq “ ∇gjpyq ´∇gjpyq “ 0.

This violates LICQ.
2. p∇gjpyqqT ¨ γ1pt2q ‰ 0. This product can be interpreted as the directional

derivative of gj with respect to γ1pt2q. Note that gjpyq “ 0. Since the
directional derivative is non-zero and γ1pt2q locally approximates γptq, then
gj changes sign on γptq at t2. Then we either have gjpγpt2 ´ εqq ă 0 and
gjpγpt2 ` εqq ą 0, or gjpγpt2 ´ εqq ą 0. In both cases there exist infeasible
points on γptq. But since F is a closed set, BF P F and all points x “
γptq, t P r0, T s are feasible. Contradiction.

[\

Lemma 7 Consider a boundary point y “ γptyq. If there exist two constraints
that are active and non-redundant at y, then ∇gi´ptyqpyq ˆ∇gi`ptyqpyq ą 0.

Proof Consider the vector γ1`pt
yq, which is the tangent vector to gi`ptyq at

point y. By definition of i`, constraint gi`ptyq is active and non-redundant on
γptq in some right neighborhood of ty. Then the tangent is a feasible direction
at y with respect to constraint gi´ptyqpxq ď 0. This can be written as:

p∇gi´ptyqpyqqT ¨ γ1`ptyq ď 0.

Or, equivalently:

˜

Bg1i´ptyq

Bx1
pyq,

Bg1i´ptyq

Bx2
pyq

¸

¨

˜

´
Bg1i`ptyq

Bx2
pyq,

g1i`ptyq

Bx1
pyq

¸T

ď 0 ô

´

˜

Bg1i´ptyq

Bx1
pyq
Bg1i`ptyq

Bx2
pyq ´

Bg1i´ptyq

Bx2
pyq

g1i`ptyq

Bx1
pyq

¸

ď 0 ô

˜

Bg1i´ptyq

Bx1
pyq
Bg1i`ptyq

Bx2
pyq ´

Bg1i´ptyq

Bx2
pyq

g1i`ptyq

Bx1
pyq

¸

ě 0 ô

∇gi´ptyqpyq ˆ∇gi`ptyqpyq ě 0.

If ∇gi´ptyqpyq ˆ∇gi`ptyqpyq “ 0, then LICQ is violated at point y:

∇gi´ptyqpyq ` c∇gi`ptyqpyq “ 0 if c “

˜

Bg1i´ptyq

Bx1
pyq

¸

{

˜

Bg1i`ptyq

Bx1
pyq

¸

.
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Thus only strict inequality is possible:

∇gi´ptyqpyq ˆ∇gi`ptyqpyq ą 0.

[\

5 Splitting the space in two

5.1 Behavior of a concave function on a line

First we will prove a general result for one-dimensional real analytic functions.

Lemma 8 Let f : RÑ R be a real analytic function. If f is constant on some
nonempty interval ra, bs, then it is identically constant.

Proof Suppose that b is the largest number such that fpxq is constant for
all x P ra, bs. Since f is real analytic at b, at each point y the Taylor series
8
ř

i“0

fpnqpyq
n! px´ yq converges to fpyq [11]. f being constant in some left neigh-

borhood of b implies that left-sided derivatives of any order are equal to 0 at
b. Then all coefficients of the Taylor series defining f around b are equal to 0,
so there exists ε ą 0 such that fpxq “ 0 @x P pb ´ εq, pb ` εq. But then f is
constant on pa, b` εq, which is impossible as b` ε ą b.

[\

Let f : R2 Ñ R be a real analytic concave function. Consider a linear
function lpx1, x2q “ ax1 ` bx2 ` c. Let y be a point such that lpyq “ 0. We
will define two rays:

Definition 13 rdpyq is the ray lying on the line lpxq “ 0 starting at y and
pointing in the locally decreasing direction of f .

Definition 14 ripyq is the ray lying on the line lpxq “ 0 starting at y and
pointing in the locally increasing direction of f .

Let xmaxl be a point maximizing f subject to lpxq “ 0.

Lemma 9 If a concave real analytic function fpxq is not identically constant
on lpxq “ 0 then it is strictly decreasing on rdpyq.

Proof Consider two points x1,x2 P rdpyq such that ||x2´y|| ą ||x1´y||. Since
f is locally decreasing at y in the direction of rdpyq, pf 1pyqqT ¨ px1 ´ yq ď 0.
By concavity of fpxq we have:

fpx1q´ fpyq ď pfpyqqT ¨ px1´yq ñ fpx1q´ fpyq ď 0 ñ fpyq´ fpx1q ě 0.
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Fig. 3 Rays ripyq and rdpyq

Using the concavity of fpxq again, we get:

fpyq ´ fpx1q ď pfpx1qqT ¨ py ´ x1q ñ pfpx1qqT ¨ py ´ x1q ě 0

ñ pfpx1qqT ¨ px2 ´ x1q ď 0.

Repeating the same reasoning for x1 and x2 as for y and x1, we can show
that fpx2q ď fpx1q.

Since fpx1, x2q is real analytic, so is fpx1,´
ax1`c
b q, which is the func-

tion of one variable x1 and represents the behavior of f on lpxq “ 0. Since
fpx1,´

ax1`c
b q is not identically constant, by Lemma 8 no interval exists where

it is constant. Then strict inequality holds: fpx2q ă fpx1q.

[\

5.2 Boundary optimality on a half-plane

Let x̂ “ γpt̂q be a point on the boundary of F . In this section we will assume
that for the parametrization γptq defined in Section 4, fpγptqq is non-increasing
as a function of t on some interval rt̂, t̂ ` εs, where ε ą 0. Otherwise, similar
results can be proven for the reverse direction parametrization γrptq.

Definition 15 [15] A path in Rn is a continuous function mapping every point
in the unit interval r0, 1s to a point in Rn:

ρ : r0, 1s Ñ Rn

Consider a function l : R2 Ñ R such that lpx̂q “ 0. Let t1 ą t̂ be a
parameter value corresponding to the point where γptq first crosses the line
lpxq “ 0 after t̂:
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t1 “

#

mintt ą t̂ | lpγptqq “ 0u if such t exist

8 otherwise

t1 exists if F is bounded.

Define the optimization problem

max fpx1, x2q

s.t. gipx1, x2q ď 0 @i “ 1..m (NLPl)

lpx1, x2q ď 0

px1, x2q P R2.

Fig. 4 An example problem for Lemma 10

Lemma 10 Given γptq, a parametrization of BF in (NLP2) and given a linear
function lpxq, if (NLP2) is boundary-invex and x̂ is a KKT point of (NLPl),
then fpγptqq ď fpγpt̂qq @t P rt̂, t1s.

Proof Let t1min denote the parameter value corresponding to the point where
fpγptqq starts increasing as a function of t:

$

’

&

’

%

t1min ą t̂

p∇fpγptqq ˆ∇giptqpγptqqq ě 0 @t P pt̂, t1minq

p∇fpγptqq ˆ∇giptqpγptqqq ă 0 @t P pt1min, t
1
min ` εq for some ε ą 0

t1min exists since F is bounded. Let x1
min “ γpt1minq.
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If t1min “ t1, then for all t̂ ă t ď t1 the inequality fpγptqq ď fpγpt̂qq is
satisfied and the statement of the lemma holds. Now suppose that t1min ă t1.

Consider the set

L1 “

#

x

ˇ

ˇ

ˇ

ˇ

ˇ

#

lpxq ď 0

fpxq ě fpx1
minq

+

and the curve γ1ptq “ γptq, t P rt̂, t1minq. F is connected, γ1ptq is piecewise-
continuous, and γ1pt̂q “ x̂ lies on the line lpxq “ 0 and γ1pt

1
minq lies on the

curve fpxq “ fpx1
minq, and these are the only points of intersection of the

curve and the boundary of L1. Thus γ1ptq is dividing L1 into two connected
sets. We will denote the set where all points in the neighborhood of γ1ptq are
feasible as S1.

We know that, by definition of S1, all points on its boundary belong to one
of the following sets:

1. The level curve fpxq “ fpx1
minq. By definition of x1

min we have that
fpx1

minq ď fpx̂q.
2. The curve γ1ptq. By definition of γ1ptq and t1min, fpxq ď fpx̂q @x P γ1ptq.
3. The line lpxq “ 0. Since x̂ is a KKT point and thus, by Lemma 2, a local

maximum, only the direction of local decrease of f on the line is locally
feasible. Together with the fact that x̂ is the only point where γ1ptq crosses
the line, we have that points x in S1 for which lpxq “ 0 lie on the ray rdpx̂q
and, by Lemma 9, satisfy fpxq ď fpx̂q.

Thus fpxq ď fpx̂q @x P BS1. By Lemma 2, x̂ is a local maximum in S1 and
thus, by Lemma 1, fpxq ď fpx̂q @x P S1.

The points following γpt1minq are in S1

We will say that a path ρ starting at some point xs P γ1ptq is S1-feasible if
x P ρ ùñ x P S1.

The definition of S1 implies that for all constraints gi that are active on
γ1ptq, gipxq ă 0 for all x on ρ in some neighborhood of xs excluding xs itself.

Consider a neighborhood Npx1
minq such that only constraints gi´pt1minq

and
gi`pt1minq

are non-redundant in it.

Let t´ “ t1min ´ ε and t` “ t1min ` ε for some ε ą 0 and let:

x´ “ γpt´q, x` “ γpt`q,

φ´ “ gi´pt1minq
, φ` “ gi`pt1minq

.

We will show that there exists an ε0 such that for all ε ă ε0 the segment
connecting γpt´q and γpt`q satisfies the conditions defined for the path ρ.

Consider two cases:
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1. One constraint is active at x1
min.

Define φ “ φ´ “ φ`.
In this case x1

min is a local minimum of f on φpxq “ 0. Then φ is ei-
ther concave or convex in some neighborhood Npx1

minq. If φ is concave
in Npx1

minq, then x1
min violates boundary-invexity of (NLP2). Indeed, this

point is a KKT point for (NLP2i) with a negative KKT multiplier and not
a local maximum for (NLP2).
Then φ can only be convex in Npx1

minq.
Since x` is feasible and belongs to the neighborhood of x1

min, then φpxq ď
0 @x P x´x` and φpxq ă 0 for all x on this segment excluding x´. Hence
x` P S1.

2. Two constraints are active at x1
min.

By Lemma 7, ∇φ´px1
minq ˆ ∇φ`px1

minq ą 0. By definitions of the two-
dimensional cross product, this is equivalent to:

p∇φ´px1
minqq

T ¨ γ1`pt
1
minq ă 0

This product can be interpreted as the directional derivative of φ´ with
respect to the vector γ1`. Observe that γ1`pt

1
minq shows how x behaves on

γptq when small changes to t are made. Therefore, the above inequality
implies that there exists ε0 such that for any ε ă ε0 the following holds:

p∇φ´px1
minqq

T ¨ px` ´ x1
minq ă 0

Since all constraints are twice continuously differentiable, ∇φ´pxqpx`´xq
is a differentiable function of x. Thus there exists a neighborhood Npx1

minq

where this function stays negative. We can choose ε0 such that x´ P

Npx1
minq @ε ă 0 and:

p∇φ´px´qqT ¨ px` ´ x´q ă 0

There exists ε0 such that φ´pxq ď 0 @x P x´x` if ε ă ε0. Thus the segment
x´x` is an S1-feasible path.

Exiting S1

By Lemma 6, γptq cannot intersect itself and therefore cannot cross γ1ptq.
Consequently, there are only two ways of exiting S1:

1. Crossing the level curve. Then f is decreasing on γptq at the intersection
point. Let the next point where fpγptqq starts increasing again be denoted
as t2min and define γ2ptq “ γptq, t P rt̂, t2mins. This curve has the same
properties as γ1ptq:

(a) fpxq ď fpx̂q for all x on γ2ptq and
(b) γ2ptq only crosses the line lpxq “ 0 at x̂ and the level curve fpxq “

fpx2
minq at x2

min, where x2
min “ γpt2minq.

Then S2 can be defined similarly to S1 with the new parameters and the
same reasoning can be repeated.
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2. Cross lpxq “ 0. Then fpγptqq ď fpγpt̂qq @t P rt̂, t1s.

[\

Lemma 11 Consider a point x̂ satisfying the conditions of Lemma 10 with
lpxq and γptq. Let x1 P ripx̂q be the next point where γptq crosses the line after
x̂, then x1 satisfies the conditions of Lemma 10 for γptq and ´lpxq.

Proof Let t1 be defined similarly to Lemma 10 and x1 “ γpt1q.

It follows immediately from the definition of x1 that lpx1q “ 0.

First let us prove that fpγptqq is non-increasing as a function of t at t1.
Assume the contrary: fpγptqq strictly increases as a function of t at t1. Then
there exists a timin such that t̂ ă timin ă t1 and fpγptqq is monotone on the
rtimin, t

1s interval.

Then there exists a set Si and, as proved in the previous lemma, if x P ripx̂q
then x R Si. Then γptq has to exit Si at some t ă t1. There are two possibilities:

1. γptq crosses rdpx̂q. This contradicts with γpt1q P ripx̂q,
2. γptq crosses the level curve. Then fpγptqq decreases somewhere between
t1min and t1. This contradicts with fpγptqq being monotonic on rtimin, t

1s.

This proves that fpγptqq is non-increasing at t1.
Now we shall show that x1 is a local maximizer of f in F X lpxq ě 0.
By Lemma 4, fpγptqq being non-increasing at t1 implies that:

∇fpx1q ˆ∇gipt1qpx1q ě 0. (5)

Since γptq crosses the line from the lpxq ď 0 half-space into the lpxq ě 0
half-space at x1 , lpγptqq is increasing at t1 and thus, by Lemma 4, we have
that ∇l ˆ∇gipt1qpx1q ď 0 or, equivalently:

p´∇lq ˆ∇gipt1qpx1q ą 0. (6)

Finally, by Lemma 10, fpx1q ď fpx̂q and thus x1 belongs to the part of
ray ripx̂q where f is decreasing. If we consider the direction which ripx̂q points
to as the positive direction of moving along the line, then the corresponding
gradient is ´∇l. Then Lemma 4 implies that

∇fpx1q ˆ p´∇lq ě 0. (7)

By Lemma 5, these inequalities imply that x1 is a KKT point in FXtlpxq ě
0u. Thus the conditions of Lemma 10 are satisfied at x1 for F X tlpxq ě 0u.

[\
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6 Kuhn-Tucker invexity of boundary-invex problems

6.1 Sequence of crossing points

Consider a point x˚ which is a local maximum of (NLP2) and a linear function
lpxq such that f is not constant on lpxq “ 0. Let γp0q “ x˚.

Given two parameter values r, s, let γ̂pr, sq denote the segment of the γptq
curve with t P rr, ss.

Let xi be the ith point where γptq crosses lpxq “ 0 and let ti be a parameter
value such that xi “ γptiq. Since γptq is a closed curve, xi exists for each i P N
if at least one crossing point exists.

The numbering of the crossing points will be chosen so that the even indices
will correspond to γptq crossing the line lpxq “ 0 from lpxq ą 0 into lpxq ă 0,
and the odd indices will correspond to the opposite direction of crossing.

Lemma 12 Consider a crossing point xi, i P 2N. If ∇l ˆ ∇fpxiq ě 0, then
xi satisfies Lemma 10 for either lpxq and γptq or for ´lpxq and γrptq.

Proof Since γptq crosses the line from lpxq ă 0 into lpxq ą 0 at xi, we have
that ∇l ˆ∇giptiqpxiq ă 0.

By Lemma 5, xi is a KKT point in one of the following sets:

1. F X tlpxq ď 0u if ∇f ˆ∇giptiq ě 0. The latter inequality also implies that
Lemma 10 is satisfied at xi for γptq and lpxq (see the beginning of Section
5).

2. F X t´lpxq ď 0u if ∇f ˆ ∇giptiq ď 0. The latter inequality implies that
Lemma 10 is satisfied at xi for γrptq and ´lpxq.

[\

Let SpAB,BC, ...q Ă F denote a set with the boundary comprised of some
sections of BF and segments AB, BC, ... on the line lpx “ 0q.

Definition 16 SpAB,BC, ...q Ă F is a safe set if fpxq ď fpx˚q @x P S.

Theorem 5 Consider points xj, xk P F such that:

xk, k P 2N, satisfies Lemma 10 for γr and ´l, fpxkq ď fpx˚q;

xj P rdpxkq, j P 2N, satisfies Lemma 10 for γ and l;

fpγptqq ă fpx˚q @t P r0, tjs;

if xj ‰ xk and γptq crosses xjxk from lpxq ą 0 into lpxq ă 0, it enters a

safe set Spxjxkq with the boundary consisting of xjxk and γ̂ptk, tj´1q.

Then x˚ is the global optimum of (NLP2).

Proof The conditions on xk imply that ∇fpxkq ˆ ∇l ď 0. By Lemma 9,
f is monotonically decreasing on the whole ray rdpxkq and thus ∇fpxq ˆ
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Fig. 5 Points x˚, xj , xk and set Spxjxkq satisfying the conditions of Theorem 5

∇l ď 0 @x P rdpxkq. Then points xi P rdpxkq, i P 2N, satisfy conditions of
Lemma 12.

Let us consider the following cases:

1. xj`1 P rdpxkq.

Let Spxjxj`1q be the set with the boundary composed of γ̂ptj , tj`1q and the

segment xjxj`1. By Lemma 10, fpxq ď fpxjq @x P γ̂ptj , tj`1q. Since the

segment xjxj`1 is part of the rdpxjq ray, then by Lemma 9, f is decreasing
on this segment from xj in the direction of xj`1 and thus fpxq ď fpxjq @x P

xjxj`1. Since xj satisfies the conditions of Lemma 10, it is a local maximum
in Spxjxj`1q. Then, by Lemma 1, fpxq ď fpxjq ď fpx˚q @x P Spxjxj`1q.

Thus Spxjxj`1q is a safe set.

By Lemma 6, γptq cannot exit Spxjxj`1q by crossing itself. Then the only

way to exit Spxjxj`1q is to cross the xjxj`1 line segment again.

Let Spxjxk,xjxj`1q “ SpxjxkqYSpxjxj`1q. Since it is a union of two safe

sets, Spxjxk,xjxj`1q is a safe set.

If xj`2 “ xk, then, by Lemma 10 applied to xk, ´l and γr, fpxq ď fpxkq ď
fpx˚q @x P γ̂ptj`1, tj`2q. Since the conditions of the theorem imply that
fpγptqq ď fpx˚q @t P rk, T s Y r0, js, we have that fpγptqq ď fpx˚q @t P
r0, T s.
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We will consider the following cases that depend on the position of xj`2

on lpxq “ 0:

(a) xj`2 P xkxj`1.

γptq enters Spxjxk,xjxj`1q at xj`2. Since it is a safe set, f cannot
reach values larger than fpx˚q unless xj`3 exists. Repeat case (1) with
xj`3 instead of xj`1.

(b) xj`2 P rdpxj`1q.

j`2 P 2N. Since xj`2 P rdpxj`1q P rdpxkq and, by Lemma 9, a concave
function is always decreasing in the direction of local decrease from a
given point, the monotonicity of f on lpxq “ 0 at xj`2 is similar to that
at xk. This implies that signp∇lˆ∇fpxj`2qq “ signp∇lˆ∇fpxkqq ě 0.
Then, by Lemma 12, one of the following is true at xj`2:

i. fpγptqq is increasing at tj`2. Then at this point Lemma 10 can
be applied for γr and ´l to show that fpγptqq ď fpxj`2q @t P
ptj`1, tj`2q. But by Lemma 9, f is non-increasing on rdpxkq and
fpxj`2q ă fpxj`1q. This contradicts with fpxj`2q ď fpxj`1q.

ii. fpγptqq is decreasing at tj`2. Then Lemma 10 is satisfied at xj`2 for
γ and l. Then xj`2,xk and the lpxq “ 0 line satisfy the conditions
of this theorem and the reasoning can be repeated from the start.

(c) xj`2 P ripxkq.

Let Spxj`1xj`2q be the set with the boundary composed of xj`1xj`2

and γptj`1, tj`2q. Let Spxj`2xkq “ Spxj`1xj`2q YSpxkxjq YSpxjxj`1q.

At xj`2 γptq leaves Spxj`2xkq. But xk belongs to the boundary of

Spxj`2xkq and γptq approaches xk from the interior of this set. This

implies that at some point γptq enters Spxj`2xkq. Let xm denote the
last such point on γptq before xk. Then the next crossing point xm`1

can only belong to xkxj`1.

fpγptqq is increasing at tm

Consider the point xk´1. If xk´1 “ xm, then the proof is done.

Now suppose that xk´1 ‰ xm. The definition of xm implies that xk´1 P

xkxj`1. The points following xk´1 on γrptq belong to one of the sets

Spxkxjq, Spxjxj`1q. Thus fpγptqq ď fpx˚q @t P rk ´ 1, ks and xk´2

exists and belongs to xkxj`1. Consider the following cases:
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Fig. 6 Case (1c): xj`1 P rdpxkq

i. xk´2 P xkxk´1. Then γrptq enters the set Spxkxk´1q and xk´3 ‰

xm. Repeat case (1ci) with xk´3 instead of xk´1.

ii. xk´2 P xk´1xj´1. Then, similarly to case (1b), xk´2 satisfies the
conditions of Lemma 10 for ´l and γr. Thus fpγptqq ď fpx˚q @t P
rtk´2, tk´3s. If xk´3 “ xm, by Lemma 11 xm satisfies the condi-
tions of Lemma 10 for l and γ. Otherwise repeat (1ci) and (1cii)
with xk´2 instead of xk and xk´3 instead of xk´1.

We have proven that fpγptqq ď fpx˚q @t P rtk, tms and xm satisfies the
conditions of Lemma 10 for l and γ.

Starting a new iteration

Consider the set Spxj`2xmq that contains the section of the γptq curve
from tm to tj`2. If this set is disconnected, then there exist points
x P Spxj`2xmq that cannot be connected to the segment xj`2xm by a
continuous path that belongs to this set. But since every feasible path
from Spxj`2xmq to F zSpxj`2xmq crosses xj`2xm, this implies that

there is no feasible path from x to points in F zSpxj`2xmq and thus F
is disconnected. This contradicts with the theorem assumptions. Hence
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Spxj`2xmq is a connected set.

We have shown that fpxq ď fpx˚q for all x on this curve. x˚ is a local

maximum in Spxj`2xmq. Then fpxq ď fpx˚q @x P Spxj`2xmq.

Case (1) of this theorem can be repeated with xj`2, Spxj`2xmq, ´l

and xm instead of xj`1, Spxjxk,xjxj`1q, l and xk.

Fig. 7 Case 2: xj`1 P ripxkq

2. xj`1 P ripxkq. By Lemma 11, fpγptqq is decreasing at tj`1 and xj`1 satisfies
the conditions of Lemma 10. Then fpxq ď fpxj`1q until the next crossing
point xj`2.
(a) xj`2 P xkxj`1.

The assumptions of this theorem imply that fpxkq ą fpxjq ě fpxj`1q.
This means that xk belongs to the increasing section of the ray ripxj`1q

and fpxq ą fpxj`1q @x P xkxj`1. Then fpxj`2q ą fpxj`1q. Contra-
diction with fpxj`2q ď fpxj`1q.

(b) xj`2 P rdpxkq.
By applying Lemma 11 to xj`2 we can show that this point satisfies the
conditions of Lemma 10 for γ and l. Then xj`2 has the same properties
as xj . Repeat everything with same xk and xj`2 instead of xj .
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(c) xj`2 P rdpxj`1q.

i. xj`3 P rdpxj`2q. Repeat (2) with xj`3 instead of xj`1.

ii. xj`3 P xkxj`2. From xj`2 γptq cannot reach the line segment

xkxj`1 without crossing γ̂ptj , tj`1q. Then xj`2 P xj`1xj`2 and

γptq enters a safe set Spxj`1xj`2q. Then xj`4 P xj`1xj`2. Repeat
(2c) with xj`4 instead of xj`2.

iii. xj`3 P rdpxkq. Repeat (1) with xj`3 instead of xj`1.

We have proven that fpγptqq ď fpx˚q @t P r0, T s. By Lemma 1, together
with the fact that x˚ is a local maximum this implies that x˚ is the global
maximum of (NLP2).

[\

6.2 The main theorem

Theorem 6 If (NLP2) is boundary-invex, then it is KT-invex.

Proof Let x˚ be a KKT point. If x˚ lies in the interior of F , then, by concavity
of f , it is the global unconstrained maximum of f and thus the global maximum
for (NLP2).

Now suppose that x˚ P BF . Let γp0q “ γpT q “ x˚ in the parametrization
of BF . By Lemma 1, it is enough to consider only the values on the boundary.
We need to prove that there exists a line lpxq “ 0 such that the conditions of
Theorem 5 are satisfied for the point x˚ “ xj “ xk.

If ∇g1px˚q ˆ ∇g2px˚q “ 0, then ∇g1px˚q “ c∇g2px˚q, and LICQ is vio-
lated. Now suppose that ∇g1px˚q ˆ ∇g2px˚q ‰ 0. Since u ˆ v “ ´pv ˆ uq,
we can assume w.l.o.g. that ∇g1px˚q ˆ∇g2px˚q ă 0. Then, by Lemma 5, the
following holds:

∇fpx˚q ˆ∇g1px˚q ě 0 (8)

∇fpx˚q ˆ∇g2px˚q ď 0 (9)

Consider a linear function lpx1, x2q such that lpx˚q “ 0 and ∇l “ ´∇g1px˚q`
∇g2px˚q. By (8), (9) we have:

∇fpx˚q ˆ∇l “ ´∇fpx˚q ˆ∇g1px˚q `∇fpx˚q ˆ∇g2px˚q ă 0

and

∇l ˆ∇g1px˚q “ ´∇g1px˚q ˆ∇g1px˚q `∇g2px˚q ˆ∇g1px˚q “
∇g2px˚q ˆ∇g1px˚q ą 0,

∇l ˆ∇g2px˚q “ ´∇g1px˚q ˆ∇g2px˚q `∇g2px˚q ˆ∇g2px˚q “
´∇g1px˚q ˆ∇g2px˚q ą 0.
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By Lemma 5, these inequalities imply that x˚ is a KKT point in both
F X tlpxq ď 0u and F X tlpxq ě 0u. ∇fpx˚q ˆ ∇l ă 0 also implies that f is
non-constant on lpxq “ 0. Theorem 5 can then be applied to show that x˚ is
the global maximum of (NLP2).

[\

7 Application

Notations

i - imaginary number constant
S “ p` iq - Electric power
V “ v=θ - Voltage
Y “ g ` ib - Line admittance
W “ wR` iwI - Product of two voltages
su - Line apparent power thermal limit
θij - Phase angle difference (i.e., θi ´ θj)
Sd “ pd ` iqd - Power demand
Sg “ pg ` iqg - Power generation
c0, c1, c2 - Generation cost coefficients
<p¨q - Real part of a complex number
=p¨q - Imaginary part of a complex number
p¨q˚ - Conjugate of a complex number
| ¨ | - Magnitude of a complex number, l2-norm
xl,xu - Lower and upper bounds of x

7.1 The Power Flow Equations

In Power Systems, the Alternating Current (AC) power flow equations link the
complex quantities of voltage V , power S, and admittance Y , using Ohm’s and
Kirchhoff’s Current Laws. They can be written as,

Sgi ´ S
d
i “

ÿ

pi,jqPE

Sij `
ÿ

pj,iqPE

Sij @i P N (10a)

Sij “ Y
˚
ij ViV

˚
i ´ Y

˚
ij ViV

˚
j pi, jq, pj, iq P E (10b)

A detailed derivation of these equations can be found in [6]. The non-convex
nonlinear equations (10a)–(10b) form the core building block of many power
network optimization applications. These equations are usually augmented
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with side constraints such as,

<pSgl
i q ď <pSgi q ď <pSgu

i q @i P N (11)

=pSgl
i q ď =pSgi q ď =pSgu

i q @i P N (12)

pvliq
2 ď |Vi|

2 ď pvui q
2 @i P N (13)

|Sij | ď s
u
ij @pi, jq, pj, iq P E (14)

tanpθlijq<pViV ˚j qď=pViV ˚j qďtanpθuijq<pViV ˚j q @pi, jqPE. (15)

Constraints (11)–(12) set limits on the real and reactive generator capabilities,
respectively. Constraints (13) limit the magnitudes of bus voltages. Constraints
(14) limit the power flow on the lines and constraints (15) limit the difference
of the phase angles (i.e., θi, θj) between the lines’ buses. A detailed derivation
and further explanation of these operational side constraints can be found in
[6].

7.2 Optimal Power Flow

The AC Optimal Power Flow Problem (ACOPF) combines the above power
flow equations, side constraints, and a convex objective function as described
in Model 1. This formulation utilizes a voltage product factorization ViV

˚
j “

Wij @pi, jq P E. Model 1 is a non-convex nonlinear optimization problem,
which has been shown to be NP-Hard in general [21,12]. In real-world deploy-
ments, the AC-OPF problem is solved with numerical methods such as [16,
17], which are not guaranteed to converge to a feasible point and provide only
stationary points (e.g., saddle points or local minimas) when convergence is
achieved.

In the following section we look at a family of ACOPF problems with
two degrees of freedom and show that they are boundary-invex under mild
assumptions on the variables’ bounds. Namely, we will enforce that

´
π

6
ď θl ă θu ď

π

6
and 0.95 ď vli ă v

u
i ď 1.05.

7.3 Boundary-invex ACOPF

Fig. 8 1-line network
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Model 1 The AC Optimal Power Flow Problem (AC-OPF).

variables:

Sgi P pS
gl
i ,S

gu
i q @i P N

Vi P pV
l
i ,V

u
i q @i P N

Wij P pW
l
ij ,W

u
ij q @i P N,@j P N

Sij P pS
l
ij ,S

u
ijq @pi, jq, pj, iq P E

minimize:
ÿ

iPN

c2ip<pSgi qq
2 ` c1i<pSgi q ` c0i (16a)

subject to:

=Vr “ 0 (16b)

Wij “ ViV
˚
j @pi, jq P E (16c)

Sgi ´ S
d
i “

ÿ

pi,jqPE

Sij `
ÿ

pj,iqPE

Sij @i P N (16d)

Sij “ Y
˚
ijWii ´ Y

˚
ijWij @pi, jq P E (16e)

Sji “ Y
˚
ijWjj ´ Y

˚
ijW

˚
ij @pi, jq P E (16f)

|Sij | ď ps
u
ijq @pi, jq, pj, iq P E (16g)

tanpθlijq<pWijqď=pWijqďtanpθuijq<pWijq @pi, jqPE

(16h)

Consider a 2-bus network with one line and two generators as depicted in
Figure 8. We assume the voltage magnitude to be fixed at node 1. For clarity
purposes we will adopt the following notations: w “ w1, wR “ wR12, wI “ wI12
and su “ su12. The real-number formulation of Model 1 is given in Model 2.

This model has four non-convex constraints, namely, (17c), (17f), (17g)
and (17h).

Minimal feasible wR

Lemma 13 If wR ď 0.77w, then pwR, wIq is infeasible for Model 2.

Proof Consider the lower bound on w2 and voltage angle bounds. No feasible
points exist where:

wR tanpθlq ď wI ď wR tanpθuq ùñ pwRq2 ` pwIq2 ă pvl2q
2w
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Model 2 AC-OPF for 1-line networks.

variables:

wR, wI

minimize:

c1pgw ´ gw
R ´ bwIq ` c2p

g

w
ppwRq2 ` pwIq2q ´ gwR ` bwIq (17a)

subject to:

pgw ´ gwR ´ bwIq2 ` p´bw ` bwR ´ gwIq2 ď su (17b)

p
g

w
ppwRq2 ` pwIq2q ´ gwR ` bwIq2

` p´
b

w
ppwRq2 ` pwIq2q ` bwR ` gwIq2 ď su (17c)

ppg1q
l ´ pd1 ď gw ´ gw

R ´ bwI ď ppg1q
u ´ pd1 (17d)

pqg1q
l ´ qd1 ď ´bw ` bw

R ´ gwI ď pqg1q
u ´ qd1 (17e)

ppg2q
l ´ pd2 ď

g

w
ppwRq2 ` pwIq2q ´ gwR ` bwI ď ppg2q

u ´ pd2 (17f)

pqg2q
l ´ qd2 ď ´

b

w
ppwRq2 ` pwIq2q ` bwR ` gwI ď pqg2q

u ´ qd2 (17g)

pvl2q
2 ď

pwRq2 ` pwIq2

w
ď pvu2 q

2 (17h)

wR tanpθlq ď wI ď wR tanpθuq (17i)

If wR ě pvl2q
2w, the latter is always false. Suppose that wR ă pvl2q

2w.
Consider the wI ě 0 half-space. The lower angle bound is redundant here,
and the remaining two inequalities can be written as:

wI ď wR tanpθuq

wI ă
b

pvl2q
2w ´ pwRq2

The implication holds if the second inequality is dominated by the first:

wR tanpθuq ă
b

pvl2q
2w ´ pwRq2 ô

pwRq2 tan2pθuq ă pvl2q
2w ´ pwRq2

It can be seen that only points with non-negative wR can satisfy constraint
(17i). Then the above is equivalent to:

wR ă

d

pvl2q
2w

tan2pθuq ` 1
.
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Fig. 9 Feasible set of Model 2 (feasible region in white)

Since θu ď π
6 and pvl2q

2 ě p0.95q2, we have that:

d

pvl2q
2w

tan2pθuq ` 1
ě

d

p0.95q2w
1
3 ` 1

ě 0.82
?
w

All wR ă 0.82
?
w are guaranteed to be infeasible. Since w ď 1.1025, it

can be shown that
?
w ě 0.95w and thus all wR ă 0.77w are infeasible.

[\

w2 lower bound Consider constraint (17h). Let g1pw
R, wIq “ pvlq2´ pw

R
q
2
`pwI

q
2

w .

Lemma 14 KKT points of problem (NLP2i), i “ 1 do not violate the boundary-
invexity for Model 2.

Proof (NLP2i) takes the following form for i “ 1:

max c1pgw ´ gw
R ´ bwIq ` c2p

g

w
ppwRq2 ` pwIq2q ´ gwR ` bwIq

s.t. pwRq2 ` pwRq2 “ pvlq2w

which can be rewritten as

max c1pgw ´ gw
R ´ bwIq ` c2p

g

w
pvlq2w ´ gwR ` bwIq

s.t. pwRq2 ` pwIq2 “ pvlq2w

The KKT conditions for this problem are:
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´ gpc1 ` c2q “ 2λŵR (18)

bpc2 ´ c1q “ 2λŵI (19)

ppŵRq2 ` pŵIq2 “ pvlq2w (20)

The solution of this system can violate boundary-invexity only if λ ą 0. It
can be seen from (18) that ŵR ă 0 if λ ą 0. But since by Lemma 13 all points
pwR, wIq such that wR ă 0.77w are infeasible, pŵR, ŵIq is infeasible.

[\

p21 lower bound Consider constraint (17f). Let g2 “ pp
g
2q
l ´ pd2 ´

g
w ppw

Rq2 `

pwIq2q ` gwR ´ bwI .

Lemma 15 KKT points of problem (NLP2i), i “ 2 do not violate the boundary-
invexity for Model 2.

Proof (NLP2i) takes the following form for i “ 2:

max c1pgw ´ gw
R ´ bwIq ` c2p

g

w
ppwRq2 ` pwIq2q ´ gwR ` bwIq

s.t.
g

w
ppwRq2 ` pwIq2q “ ppg2q

l ´ pd2 ` gw
R ´ bwI

which can be rewritten as

max c1pgw ´ gw
R ´ bwIq ` c2ppp

g
2q
l ´ pd2q

s.t.
g

w
ppwRq2 ` pwIq2q “ ppg2q

l ´ pd2 ` gw
R ´ bwI

The KKT conditions for this problem are:

c1g “ ´λp
2gŵR

w
´ gq

c1b “ ´λp
2gŵI

w
` bq

g

w
ppŵRq2 ` pŵIq2q “ ppg2q

l ´ pd2 ` gŵ
R ´ bŵI

and the first equation implies that

ŵR “ ´
c1w

2λ
`
w

2
.

The solution of this system can violate boundary-invexity only if λ ą 0.
Then ŵR ă w

2 . But since by Lemma 13 all points pwR, wIq such that wR ă
0.77w are infeasible, pŵR, ŵIq is infeasible.

[\
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q21 lower bound Consider constraint (17g). Let g3 “ pq
g
2q
l ´ qd2 `

b
w ppw

Rq2 `

pwIq2q ´ bwR ´ gwI .

Lemma 16 KKT points of problem (NLP2i), i “ 3 do not violate the boundary-
invexity for Model 2.

Proof (NLP2i) takes the following form for i “ 3:

max c1pgw ´ gw
R ´ bwIq ` c2p

g

w
ppwRq2 ` pwIq2q ´ gwR ` bwIq

s.t. ´
b

w
ppwRq2 ` pwIq2q “ pqg2q

l ´ qd2 ´ bw
R ´ gwI

which can be rewritten as

max c1pgw ´ gw
R ´ bwIq `

c2
b
ppb2 ` g2qwI ´ gppqg2q

l ´ qd2qq

s.t.
pwRq2 ` pwIq2

w
“ ´

pqg2q
l ´ qd2
b

` wR `
g

b
wI

The KKT conditions for this problem are:

c1g “ ´λp
2ŵR

w
´ 1q

´c1b´
c2pb

2 ` g2q

b
“ ´λp

2ŵI

w
´
g

b
q

pŵRq2 ` pŵIq2

w
“ ´

pqg2q
l ´ qd2
b

` ŵR `
g

b
ŵI

and the first equation implies that

ŵR “ ´
c1gw

2λ
`
w

2
.

The solution of this system can violate boundary-invexity only if λ ą 0.
Then ŵR ă w

2 . But since by Lemma 13 all points pwR, wIq such that wR ă
0.77w are infeasible, pŵR, ŵIq is infeasible.

[\

We now consider the thermal limit constraint (17c).

Lemma 17 If constraint (17c) is non-redundant in a given subset, it is locally
convex in this subset.
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Proof Consider the boundary of the set defined by constraint (17c). It is given
by:

p
g

w
ppwRq2 ` pwIq2q ´ gwR ` bwIq2 ` p´

b

w
ppwRq2 ` pwIq2q ` bwR ` gwIq2

´ su “
g2

w2
s2 `

2g

w
spbwI ´ gwRq ` pbwI ´ gwRq2 `

b2

w2
s2 ´

2b

w
spbwR ` gwIq

` pbwR ` gwIq2 ´ su “
|Y |

w2
s2 `

2

w
sp´g2wR ´ b2wRq ` pbwI ´ gwRq2

` pbwR ` gwIq2 ´ su “
|Y |

w2
s2 ´

2wR|Y |

w
s` |Y |s´ su “ 0

where s “ pwRq2`pwIq2 and |Y | “ g2`b2. This equation has the following
solutions:

s “
w

2
p2wR ´w ´

d

p2wR ´wq2 `
4su

|Y |
q and

s “
w

2
p2wR ´w `

d

p2wR ´wq2 `
4su

|Y |
q

The first equation has no solution since s is non-negative and the right-
hand side is negative. Now we can write the thermal limit constraint as:

pwIq2 ď
w

2
p2wR ´w `

d

p2wR ´wq2 `
4su

|Y |
q ´ pwRq2

Let R “

b

p2wR ´wq2 ` 4su

|Y | and φpwRq “ w
2 p2w

R ´ w ` Rq ´ pwRq2.

Constraint (17c) describes a convex set if φpwRq is concave. To obtain the
conditions for its concavity, we will calculate the second derivative:

φ1pwRq “
w

2
p2`R1q ´ 2wR

φ2pwRq “
w

2
R2 ´ 2 “

w

2

4R´ 4p2wR
´wq2

R

R2
´ 2

A function is concave if its second derivative is negative:

w

2

4R´ 4p2wR
´wq2

R

R2
´ 2 ă 0

R2 ´ p2wR ´wq2 ă
R3

w
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Observe that, from the definition of R, the left hand side of this inequality
is equal to 4su

|Y | :

4su

|Y |
ă
R3

w
ô p

4suw

|Y |
q

2
3 ă R2 ô

3

d

p
4suw

|Y |
q2 ă p2wR ´wq2 `

4su

|Y |
ô

wR ą
1

2

g

f

f

e 3

d

p
4suw

|Y |
q2 ´

4su

|Y |
`
w

2

Let ψpxq “ x
2
3w

2
3 ´ x. Find the stationary point of ψpxq:

ψ1pxq “ w
2
3

2

3

1
3
?
x
´ 1 “ 0

x “
8w2

27

To verify the second order optimality condition, calculate the second deriva-
tive:

ψ2pxq “ ´
2

9
w

2
3

1
?
x4
ă 0

Hence ψpxq is concave and

ψp
8w2

27
q “ p

8w2

27
q

2
3w

2
3 ´

8w2

27
“

4w2

27
.

We have shown that ψpxq ď 4w2

27 @x ą 0. Then we can guarantee that
constraint (17c) is convex if

wR ą wp
1

3
?

3
` 0.5q.

Since p 1
3
?
3
`0.5q ă 0.77 and, by Lemma 13, all pwR, wIq such that wR ă 0.77w

are infeasible, (17c) is convex everywhere where it is non-redundant.

[\

Corollary 1 Model 2 is boundary-invex.

Proof Based on Lemmas 14-17, we can show that all KKT points for the
auxiliary NLP2i problems are infeasible with respect to Model 2. Based on
Definition 7, boundary-invexity is established.

[\
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8 Conclusion

Given a non-convex optimization problem, boundary-invexity captures the be-
havior of the objective function on the boundary of its feasible region. In this
work, we show that boundary-invexity is a necessary condition for KT-invexity,
that becomes sufficient in the two-dimensional case. Unlike conventional in-
vexity conditions, boundary-invexity can be verified algorithmically and in
some cases in polynomial-time. This is a first step in extending the reach of
interior-point methods to non-convex problems. Future research directions in-
clude extending the sufficiency proof to the n-dimensional case and deriving
conditions for checking the connectivity of non-convex sets.
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