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Abstract

In this paper, we study the generalized Douglas–Rachford algorithm and its cyclic variants which
include many projection-type methods such as the classical Douglas–Rachford algorithm and the
alternating projection algorithm. Specifically, we establish several local linear convergence results
for the algorithm in solving feasibility problems with finitely many closed possibly nonconvex sets
under different assumptions. Our findings not only relax some regularity conditions but also improve
linear convergence rates in the literature. In the presence of convexity, the linear convergence is
global.

AMS Subject Classifications: Primary: 47H10, 49M27; Secondary: 41A25, 65K05, 65K10, 90C26.

Keywords: affine-hull regularity, cyclic algorithm, generalized Douglas–Rachford algorithm, linear convergence,

linear regularity, strong regularity, superregularity, quasi Fejér monotonicity, quasi coercivity.

1. Introduction

The feasibility problem of finding a point in the intersection of closed constraint sets is of central
importance in diverse areas of mathematics and engineering. Many methods have been proposed for
this problem, and most of them naturally involve nearest point projectors and their variants with
respect to underlying sets. We refer the readers to [3] and the references therein for more reviews and
discussions on projection-type methods and applications.

Among methods for feasibility problems, the Douglas–Rachford (DR) algorithm has recently drawn
much attention due to its interesting features which mysteriously allow for its success in both convex
and nonconvex settings. The DR algorithm was first formulated in [21] for solving nonlinear heat flow
problems numerically. Since then, it has been emerged in optimization theory and applications thanks
to the seminal work [27]; more specifically, the DR algorithm was extended to the problem of finding
a zero of the sum of two maximally monotone operators. When specialized to normal cone operators,
the DR algorithm can be used for solving feasibility problems.

In the convex case, the convergence theory of the DR algorithm is well developed. In particular,
weak convergence of the DR sequence to a fixed point was proved in [27] while that of the shadow
sequence to a solution was proved in [37]. When the problem is infeasible, it was shown in [6] that the
shadow sequence is bounded with cluster points solving a best approximation problem, in [8] that the
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entire shadow sequence is weakly convergent if one set is an affine subspace, and in [13] that the affine
subspace condition can be removed. For nonconvex problems, the DR algorithm enjoys successful
applications including, notably, phase retrieval, protein folding, and Sudoku, see, e.g., [23] (in which
the DR algorithm is referred to as a special case of the difference map) and the references therein,
even though the supporting theory is far from being complete.

Regarding convergence rate analysis of the DR algorithm, various results have been obtained, some
of which even apply to certain nonconvex settings. For example, [1] proved linear convergence for two
subspaces, [7, 9] proved several finite convergence results, in particular, when the sets involved are
subspaces, halfspaces, epigraphs of convex functions, and finite sets, while [20, 24, 32] proved the
linear convergence rate under some regularity conditions, see also [14]. However, it was observed in
[10] that without regularity assumptions, linear convergence of the DR algorithm may fail even for
simple cases in the Euclidean plane. Recently, linear convergence was studied in [19] for the so-called
generalized Douglas–Rachford algorithm, which is a generalization of several projection-type methods
including the DR algorithm and the alternating projection algorithm. Although the generalized DR
algorithm in fact appeared earlier in [16, Example 3.5], little is known about its rate of convergence.

The goal of this paper is to provide linear convergence results for the generalized DR algorithm
and its cyclic variants. To obtain linear convergence, the essential assumptions employed in recent
works are superregularity of sets, linear regularity, strong regularity, and affine-hull regularity of the
system of constraint sets. Indeed, these concepts were previously utilized in [11, 12, 15, 22, 24, 26,
29, 31] to prove linear convergence for the alternating projection algorithm. In the literature, linear
regularity and strong regularly are also known as subtransversality and transversality, respectively.
Our main contributions include various improvements in this direction. Precisely, in one of the new
results, we obtain better linear convergence rate under the same assumptions used in recent studies
(see Theorem 5.4 and Remark 5.5). In another new result, we lessen the assumptions required for
linear convergence by exploiting the flexibility of generalized DR operators (see Theorem 5.8 and
Corollary 5.9). To the best of our knowledge, the latter is the first result that puts together linear
regularity and operator parameters to obtain linear convergence for variants of the DR algorithm. In
the convex case, we show that the linear convergence is global (see Theorem 5.11 and Corollary 5.12).
On the one hand, the linear convergence results in this work can be seen as a continuation of [19].
On the other hand, it is also worth noting that the generalized DR algorithm involving at most
one reflection is convergent in convex case even when the problem is infeasible (see Theorem 2.14).
Moreover, we present several new features of the generalized DR algorithm, for example, the parameters
may decide whether the iterations converge to the set of fixed points or to the intersection. Our results
provide another step toward understanding the behavior of the celebrated DR algorithm.

The remainder of the paper is organized as follows. Section 2 contains preliminary materials
needed for our analysis. While part of Section 2 was previously presented in [19], we include it here
for completeness. In Sections 3 and 4, we provide some improvements and new results on quasi
firm Fejér monotonicity and quasi coercivity which are key ingredients in convergence rate analysis.
Section 5 presents our main results on linear convergence for the generalized DR algorithm. Finally,
the conclusion is given in Section 6.

2. Auxiliary results

Unless otherwise stated, X is a Euclidean space with inner product 〈·, ·〉 and induced norm ‖ · ‖.
The nonnegative integers are N, the real numbers are R, while R+ := {x ∈ R

∣∣ x ≥ 0} and R++ :=
{x ∈ R

∣∣ x > 0}. If w ∈ X and ρ ∈ R+, then IB(w; ρ) := {x ∈ X
∣∣ ‖x − w‖ ≤ ρ} is the closed ball

centered at w with radius ρ, and IB simply stands for the unit ball IB(0; 1). The set of fixed points of
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a set-valued operator T : X ⇒ X is Fix T := {x ∈ X
∣∣ x ∈ T x}. Also, aff A represents the affine hull

of a set A and L⊥ := {u ∈ X
∣∣ ∀x ∈ L, 〈u, x〉 = 0} is the orthogonal complementary subspace of L.

2.1. Distance function and relaxed projectors

Let C be a nonempty subset of X. The distance function to C is defined by

dC : X → R : x 7→ inf
c∈C

‖x − c‖ (1)

and the projector onto C is

PC : X ⇒ C : x 7→ argmin
c∈C

‖x − c‖ = {c ∈ C
∣∣ ‖x − c‖ = dC(x)}. (2)

The relaxed projector for C with parameter λ ∈ R+ is defined by

P λ
C := (1 − λ) Id +λPC . (3)

Note that P 0
C = Id is the identity operator, P 1

C = PC is the projector onto C, and P 2
C = RC := 2PC −Id

is the so-called reflector across C.

We now collect some useful properties of relaxed projectors.

Lemma 2.1. Let L be an affine subspace of X. Then the following hold:

(i) PL is an affine operator, and for every x ∈ X, x − PLx ∈ (L − L)⊥.
(ii) ∀x ∈ X, ∀z ∈ X, ‖x − z‖2 = ‖PLx − PLz‖2 + ‖(x − PLx) − (z − PLz)‖2.
(iii) ∀x ∈ X, ∀w ∈ L, ‖x − w‖2 = ‖PLx − w‖2 + ‖x − PLx‖2. Consequently, ‖PLx − w‖ ≤ ‖x − w‖.

Proof. (i): This follows from [5, Corollary 3.22].

(ii): Let x ∈ X and let z ∈ X. Then (i) implies that 〈PLx − PLz, x − PLx〉 = 0 and
〈PLx − PLz, z − PLz〉 = 0, which yields

‖x − z‖2 = ‖(PLx − PLz) + [(x − PLx) − (z − PLz)]‖2

= ‖PLx − PLz‖2 + ‖(x − PLx) − (z − PLz)‖2.

(4a)

(4b)

(iii): Apply (ii) to z = w ∈ L. �

Lemma 2.2. Let C be a nonempty closed subset of X, let L be an affine subspace of X containing C,
and let λ ∈ R. Then the following hold:

(i) P λ
C(L) ⊆ L.

(ii) PCPL = PC = PLPC and PLP λ
C = P λ

CPL.
(iii) (Id −PL)P λ

C = (1 − λ)(Id −PL).
(iv) ∀x ∈ X, d2

C(P λ
Lx) = d2

C(PLx) + (1 − λ)2d2
L(x). In particular, d2

C(x) = d2
C(PLx) + d2

L(x).
(v) If Q is a nonempty closed subset of X such that Q ⊆ (L − L)⊥, then

∀y ∈ L, ∀q ∈ Q, PC+Q(y + q) = q + PC+Qy = q + PCy,

dC+Q(y + q) = dC+Q(y) = dC(y).

(5a)

(5b)

Proof. (i): Let x ∈ L. Since PCx ⊆ C ⊆ L and L is an affine subspace, we have that P λ
Cx =

(1 − λ)x + λPCx ⊆ (1 − λ)L + L ⊆ L.
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(ii): It follows from Fact 2.1(i) that PL is an affine operator, and from [11, Lemma 3.3] that
PCPL = PC = PLPC . Thus,

PLP λ
C = PL

(
(1 − λ) Id +λPC

)
= (1 − λ)PL + λPLPC = (1 − λ)PL + λPCPL = P λ

CPL. (6)

(iii): Using (ii), we obtain that

(Id −PL)P λ
C = P λ

C − PLP λ
C = P λ

C − P λ
CPL

= (1 − λ) Id +λPC − (1 − λ)PL − λPCPL = (1 − λ)(Id −PL).

(7a)

(7b)

(iv): In Lemma 2.1(iii), substituting x by P λ
Lx and using (iii), we get

‖P λ
Lx − w‖2 = ‖PLx − w‖2 + ‖(Id −PC)P λ

Lx‖2 = ‖PLx − w‖2 + (1 − λ)2‖x − PLx‖2. (8)

Taking the infimum over w ∈ C yields

d2
C(P λ

Lx) = d2
C(P λ

Lx) + (1 − λ)2‖x − PLx‖2. (9)

For the second conclusion, we apply (9) with λ = 0.

(v): Let y ∈ L and let q ∈ Q. It is straightforward to see that PC+Q(y + q) = PC+Q+q(y + q) =
q + PC+Qy. Now for all c ∈ C, since c − y ∈ L − L, we have

‖(c + q) − y‖2 = ‖c − y‖2 + 2 〈q, c − y〉 + ‖q‖2 = ‖c − y‖2 + ‖q‖2

≥ ‖c − y‖2 ≥ d2
C(y) ≥ d2

C+Q(y).

(10a)

(10b)

So c + q ∈ PC+Qy if and only if q = 0 and c ∈ PCy. Therefore, PC+Qy = PCy, which completes the
proof. �

2.2. Normal cones and regularity of sets

Let C be a nonempty subset of X and let x ∈ C. The proximal normal cone to C at x (see [30,
Section 2.5.2, D] and [35, Example 6.16]) is defined by

Nprox
C (x) := {λ(z − x)

∣∣ z ∈ P −1
C (x), λ ∈ R+}, (11)

and the limiting normal cone to C at x (see [30, Definition 1.1(ii) and Theorem 1.6]) can be given by

NC(x) := {u ∈ X
∣∣ ∃xn → x, un → u with xn ∈ C, un ∈ Nprox

C (xn)}. (12)

Let w ∈ X, ε ∈ R+, and δ ∈ R++. We recall from [11, Definition 8.1] and [24, Definition 2.9] that
C is (ε, δ)-regular at w if

x, y ∈ C ∩ IB(w; δ),

u ∈ Nprox
C (x)

}
=⇒ 〈u, x − y〉 ≥ −ε‖u‖ · ‖x − y‖ (13)

and (ε, ∞)-regular at w if it is (ε, δ)-regular for all δ ∈ R++. The set C is superregular at w if for all
ε ∈ R++, there exists δ ∈ R++ such that C is (ε, δ)-regular at w.

Fact 2.3. Let C be a nonempty closed subset of X, w ∈ C, λ ∈ R+, and δ ∈ R++. Then the following
hold:

(i) P λ
C(IB(w; δ/2)) ⊆ IB(w; (1 + λ)δ/2). In particular, PC(IB(w; δ/2)) ⊆ C ∩ IB(w; δ).

(ii) If λ ∈ ]0, 2] and C is (ε, δ)-regular at w with ε ∈ [0, 1/3], then P λ
C(IB(w; δ/2)) ⊆ IB(w; δ/

√
2).

Proof. This follows from [19, Lemma 3.4(i) and Proposition 3.5]. �
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2.3. Regularity of set systems

In this section, m is a positive integer, I := {1, . . . , m}, and {Ci}∈I is a system of closed subsets of X.
Recall that {Ci}∈I is linearly regular with modulus κ ∈ R++ (or κ-linearly regular) on a subset U of
X if

∀x ∈ U, dC(x) ≤ κ max
i∈I

dCi
(x), where C :=

⋂

i∈I

Ci. (14)

We say that {Ci}i∈I is linearly regular around w ∈ X if there exist δ ∈ R++ and κ ∈ R++ such that
{Ci}i∈I is κ-linearly regular on IB(w; δ). The system {Ci}∈I is said to be boundedly linearly regular
if for every bounded set S of X, there exists κS ∈ R++ such that {Ci}i∈I is κ-linearly regular on S.
Interested readers can find more discussion on linear regularity in [3, 4, 14, 19].

The following is a generalization of strong regularity, see, e.g., [19, Definition 2.3], and affine-hull
regularity [32, Definition 2.1].

Definition 2.4 (L-regularity of set systems). Let w ∈ ⋂
i∈I Ci and let L be an affine subspace of

X that contains w. The system {Ci}∈I is said to be L-regular at w if

∑

i∈I

ui = 0 and ui ∈ NCi
(w) ∩ (L − w) =⇒ ∀i ∈ I, ui = 0. (15)

We simply say that {Ci}i∈I is strongly regular at w when L = X, and say that {Ci}i∈I is affine-
hull regular at w when L = aff

⋃
i∈I Ci. In the case I = {1, 2}, condition (15) can be rewritten as

NC1
(w) ∩ (−NC2

(w)) ∩ (L − w) = {0}.

By definition, if the system {Ci}i∈I is L-regular at w, then so are all the subsystems. As shown in
[19], strong regularity in Definition 2.4 is equivalent to [25, Definition 1(vi)] and [24, Definition 3.2].

In what follows, |I| denotes the number of elements in the set I.

Proposition 2.5 (L-regularity implies linear regularity). Let w ∈ C :=
⋂

i∈I Ci and let L be an
affine subspace of X containing

⋃
i∈I Ci. Suppose that {Ci}∈I is L-regular at w. Then the following

hold:

(i) {Ci}i∈I is linearly regular around w.
(ii) If m = |I| ≥ 2, then L = aff

⋃
i∈J Ci whenever J ⊆ I and |J | ≥ 2.

(iii) Every subsystem of {Ci}i∈I , including itself, is affine-hull regular at w.

Consequently, if {Ci}i∈I is strongly regular at w, then X = aff
⋃

i∈I Ci.

Proof. (i): Consider the system {Ci}i∈I within L, then it is strongly regular at w within L. So we
learn from [25, Theorem 1(ii)] that {Ci}i∈I is linearly regular around w within L, i.e., there exist
δ, κ ∈ R++ such that

∀y ∈ IB(w; δ) ∩ L, dC(y) ≤ κ max
i∈I

dCi
(y). (16)

Let x ∈ IB(w; δ) and y = PLx ∈ L. By Lemma 2.1(iii), y ∈ IB(w; δ) ∩ L. Now by Lemma 2.2(iv),
d2

C(x) = d2
C(y) + d2

L(x) and d2
Ci

(x) = d2
Ci

(y) + d2
L(x) for every i ∈ I. Combining with (16), we obtain

d2
C(x) ≤ κ2 max

i∈I
d2

Ci
(y) + d2

L(x) ≤ max{κ2, 1} max
i∈I

d2
Ci

(x), (17)

and so {Ci}i∈I is max{κ, 1}-linearly regular at w on IB(w; δ).

(ii): Take two distinct indices i, j ∈ J . By assumption, {Ci, Cj} is L-regular at w. Suppose that
L strictly contains aff(Ci ∪ Cj). Then aff(Ci ∪ Cj) − w is a proper subspace of L − w. So there exists
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a unit vector u ∈ L − w such that u is perpendicular to aff(Ci ∪ Cj) − w. Now define yi = w + u
and yj = w − u. On the one hand, by [11, Lemma 3.2], PCi

yi = PCi
w = w and PCj

yj = PCj
w = w,

which yield u ∈ Nprox
Ci

(w) ∩ (L − w) and −u ∈ Nprox
Cj

(w) ∩ (L − w), respectively. On the other hand,

u + (−u) = 0 while u 6= 0. This contradicts the L-regularity of {Ci, Cj}. We must therefore have
L = aff(Ci ∪ Cj). Since aff(Ci ∪ Cj) ⊆ aff

⋃
i∈J Ci ⊆ L, it follows that L = aff

⋃
i∈J Ci.

(iii): Let {Ci}i∈J be a subsystem of {Ci}i∈I . If |J | = 1, then {Ci}i∈J is automatically affine-hull
regular at w. If |J | ≥ 2, then from (ii), we have L = aff

⋃
i∈J Ci, which implies affine-hull regularity of

{Ci}i∈J at w. �

Remark 2.6 (linear regularity does not imply affine-hull regularity). Proposition 2.5 has
shown that affine-hull regularity implies linear regularity. However, it is known that the reverse is not
true, for example, in R2, the system {R2

+,R2
−} is linear regular, but not affine-hull regular at (0, 0).

Remark 2.7 (affine-hull regularity of subsystems). Affine-hull regularity of every proper sub-
system {Ci}i∈J with J $ I and linear regularity of the entire system {Ci}i∈I do not imply affine-hull
regularity of {Ci}i∈I . For example, in R2, consider C1 = {(ξ, ζ)

∣∣ ξ + ζ ≤ 0}, C2 = {(ξ, ζ)
∣∣ ξ − ζ ≤ 0},

C3 = {(ξ, ζ)
∣∣ ξ ≥ 0}, and w = (0, 0) ∈ C1∩C2∩C3. Then one can check that {Ci}i∈J with J $ {1, 2, 3}

is affine-hull regular at w, and that {C1, C2, C3} is linearly regular around w, but {C1, C2, C3} is not
affine-hull regular at w.

Let A and B be nonempty subsets of X and let L be an affine subspace of X containing A ∪ B.
We recall from [11, Definiton 6.1] that the CQ-number at a point w ∈ X associated with (A, B, L)
and δ ∈ R++ is defined by

θA,B,L(w, δ) := sup
{

〈u, v〉
∣∣ u ∈ Nprox

A (a) ∩ (L − a) ∩ IB, a ∈ A ∩ IB(w; δ),

v ∈ −Nprox
B (b) ∩ (L − b) ∩ IB, b ∈ B ∩ IB(w; δ)

} (18)

and that the limiting CQ-number at w associated with (A, B, L) is defined by

θA,B,L(w) := lim
δ↓0

θA,B,L(w, δ). (19)

Clearly, θA,B,L(w, δ) = θB,A,L(w, δ) ≤ 1. When L = X, we simply write (A, B) for (A, B, L).

We end this section with a connection between the CQ-number and L-regularity for two sets.

Proposition 2.8 (L-regularity for two sets). Let A and B be two nonempty subsets of X, let
w ∈ A ∩ B, and let L be an affine subspace of X containing A ∪ B. Then the following are equivalent:

(i) {A, B} is L-regular at w.
(ii) The CQ-number θA,B,L(w, δ) < 1 for some δ ∈ R++.
(iii) The limiting CQ-number θA,B,L(w) < 1.

Proof. By [11, Example 7.2], it suffices to show the equivalence of (ii) and (iii). In fact, if (ii) holds,
then by the definition of the CQ-number, θA,B,L(w, δ′) ≤ θA,B,L(w, δ) < 1 for all δ′ ∈ ]0, δ], which
implies that θA,B,L(w) = limδ↓0 θA,B,L(w, δ) < 1. The converse is obvious. �

2.4. Generalized Douglas–Rachford operator

Let A and B be nonempty closed subsets of X, let λ, µ ∈ ]0, 2], and let α ∈ R++. The general-
ized Douglas–Rachford (gDR) operator for the pair (A, B) with parameters (λ, µ, α), which was also
considered in [19], is defined by

T α
λ,µ := (1 − α) Id +αP µ

BP λ
A. (20)
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It is worth mentioning that T 1
1,1 = PBPA is the classical alternating projection operator [18], that

T
1/2
2,2 = 1

2(Id +RBRA) is the classical DR operator [21, 27], and that

T
1/2
2,2α = (1 − α)PA + α

2 (Id +RBRA) (21)

is the relaxed averaged alternating reflection operator [28]. In addition, if B is an affine subspace of
X, then by Lemma 2.1(i), PB is an affine operator, and therefore

T
1/(1+α)
1+α,1+α = (1 − α)PBPA + α

2 (Id +RBRA) (22)

is an affine combination of the classical alternating projection and DR operators.

It is interesting to see that the shadow of any gDR step on certain affine subspaces is again a gDR
step. This phenomenon is referred to as affine reduction in [32, Section 3].

Lemma 2.9 (shadows of gDR steps). Let L be an affine subspace of X containing A ∪ B, x ∈ X,
and x+ ∈ T α

λ,µx. Define y = PLx, y+ = PLx+, and set η := 1−α+α(1−λ)(1−µ). Then the following
hold:

(i) y+ ∈ T α
λ,µy.

(ii) x+ − y+ = η(x − y). Consequently, dL(x+) = |η|dL(x).
(iii) ‖x − x+‖2 = ‖y − y+‖2 + (1 − η)2‖x − y‖2.

Proof. Since x+ ∈ T α
λ,µx, there exist r ∈ P λ

Ax and s ∈ P µ
Br such that x+ = (1 − α)x + αs.

(i): Using Lemma 2.2(ii), we have PLs ∈ PLP µ
BP λ

Ax = P µ
BP λ

APLx = P µ
BP λ

Ay. By Lemma 2.1(i), PL

is an affine operator, and hence

y+ = PLx+ = (1 − α)PLx + αPLs ∈ (1 − αn)y + αP µ
BP λ

Ay = T α
λ,µy. (23)

(ii): It follows from Lemma 2.2(iii) that

s − PLs = (1 − µ)(r − PLr) = (1 − µ)(1 − λ)(x − PLx). (24)

Combining with (23) yields

x+ − y+ = (1 − α)(x − PLx) + α(s − PLs) = η(x − PLx) = η(x − y). (25)

(iii): Apply Lemma 2.1(ii) to z = x+ and take (ii) into account. �

Next, we study the fixed points of gDR operators.

Lemma 2.10 (fixed points of gDR operators). Suppose that A ∩ B 6= ∅ and let L be an affine
subspace of X containing A ∪ B. Set η := 1 − α + α(1 − λ)(1 − µ). Then the following hold:

(i) ∀x ∈ X, ∀u ∈ (L − L)⊥, P λ
A(x + u) = P λ

Ax + (1 − λ)u, P µ
B(x + u) = P µ

Bx + (1 − µ)u, and
T α

λ,µ(x + u) = T α
λ,µx + ηu.

(ii) ∀c ∈ A ∩ B, ∀u ∈ (L − L)⊥, P λ
Ac = P µ

Bc = c, PA(c + u) = PB(c + u) = c ∈ A ∩ B, and
T α

λ,µ(c + u) = c + ηu.

(iii) A ∩ B ⊆ Fix T α
λ,µ and, moreover, if (1 − λ)(1 − µ) = 1, then (A ∩ B) + (L − L)⊥ ⊆ Fix T α

λ,µ. In

particular, (A ∩ B) + (L − L)⊥ ⊆ Fix T α
2,2.

7



Proof. (i): Let x ∈ X, u ∈ (L−L)⊥, and w ∈ A∩B. Then (L−L)⊥ = (L−w)⊥, hence u ∈ (aff A−w)⊥

and also u ∈ (aff B − w)⊥. Applying [11, Lemma 3.2] implies that

P λ
A(x + u) = (1 − λ)(x + u) + λPA(x + u) = (1 − λ)(x + u) + λPAx = P λ

Ax + (1 − λ)u. (26)

Similarly, P µ
B(x + u) = P µ

Bx + (1 − µ)u and the rest follows.

(ii): Let c ∈ A ∩ B and u ∈ (L − L)⊥. Since PAc = PBc = c, we derive that P λ
Ac = P µ

Bc = c,
which yields T α

λ,µc = c. Combining with (i), PA(c + u) = PB(c + u) = c ∈ A ∩ B and T α
λ,µ(c + u) =

T α
λ,µc + ηu = c + ηu.

(iii): It follows from (ii) that T α
λ,µc = c for all c ∈ A ∩ B, which gives A ∩ B ⊆ Fix T α

λ,µ. Now if

(1 − λ)(1 − µ) = 1, then η = 1, which leads to (A ∩ B) + (L − L)⊥ ⊆ Fix T α
λ,µ due to (i). �

In the rest of this section, we assume that X is a real Hilbert space and that A and B are convex
but need not intersect. Then B − A is convex, hence we can take g := PB−A0 and set

E := A ∩ (B − g) and F := (A + g) ∩ B. (27)

It is clear that if A ∩ B 6= ∅, then g = 0 and E = F = A ∩ B. We also note that

g ∈ B − A ⇐⇒ E 6= ∅ ⇐⇒ F 6= ∅ (28)

and from [2, Lemma 2.2(i)&(iv)] that

a = PAb and b = PBa =⇒ g = b − a. (29)

Recall from [5, Definition 4.1 and 4.33] that a single-valued operator T : X → X is nonexpansive
if it is Lipschitz continuous with constant 1, i.e.,

∀x, y ∈ X, ‖T x − T y‖ ≤ ‖x − y‖, (30)

and is α-averaged if α ∈ ]0, 1[ and T = (1 − α) Id +αR for some nonexpansive operator R : X → X.

Fact 2.11. Let C be a nonempty closed convex subset of X, let x ∈ X and p = PCx. Then the
following hold:

(i) For every λ ∈ R+, PC(p + λ(x − p)) = PC((1 − λ)p + λx) = p.
(ii) For every λ ∈ ]0, 2[, P λ

C is λ/2-averaged. Consequently, for every λ ∈ ]0, 2], P λ
C is nonexpansive.

Proof. (i): See [5, Proposition 3.21]. (ii): Combine Proposition 4.16, Corollary 4.41, Remark 4.34(i),
and Corollary 4.18 in [5]. �

Hereafter, whenever dealing with the harmonic-like quantity β :=
( 1

β1
+ 1

β2
+ · · · + 1

βk

)−1
of non-

negative numbers βi ∈ R+, we make a convention that β = 0 if at least one βi equals 0.

Lemma 2.12. Let λ, µ ∈ ]0, 2]. Then the following hold:

(i) For every α ∈ R+, T α
λ,µ is continuous and single-valued.

(ii) For every α ∈
]
0, 1 + β̂

[
where β̂ :=

( λ
2−λ + µ

2−µ

)−1
, T α

λ,µ is α/(1 + β̂)-averaged.

Proof. By Fact 2.11(ii), P λ
A and P µ

B is nonexpansive, hence, continuous and single-valued. Thus, (i)

follows. To prove (ii), we first have that P µ
BP λ

A is nonexpansive. If λ = 2 or µ = 2, then β̂ = 0 and
α ∈

]
0, 1

[
, so T α

λ,µ = (1 − α) Id +αP µ
BP λ

A is α-averaged. If λ, µ < 2, then P λ
A and P µ

B are respectively

λ/2- and µ/2-averaged due to Fact 2.11(ii). We derive from [5, Proposition 4.44] that P µ
BP λ

A is ξ-

averaged with ξ := 2(λ + µ − λµ)/(4 − λµ) = 1/(1 + β̂), and then from [5, Proposition 4.40] that T α
λ,µ

is α/(1 + β̂)-averaged. �
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Lemma 2.13 (fixed points of convex gDR operators). Let λ, µ ∈ ]0, 2] and α ∈ R++. Then the
following hold:

(i) If E 6= ∅ when min{λ, µ} < 2, and A ∩ B 6= ∅ when λ = µ = 2, then PA Fix T α
λ,µ ⊆ E and

Fix T α
λ,µ =

{
E + µ

λ+µ−λµg if min{λ, µ} < 2,

A ∩ B + NA−B(0) if λ = µ = 2.
(31)

(ii) If A ∩ B 6= ∅ when min{λ, µ} < 2, and 0 ∈ int(B − A) when λ = µ = 2, then Fix T α
λ,µ = A ∩ B.

(iii) If ri A ∩ ri B 6= ∅, then Fix T α
λ,µ ∩ aff(A ∪ B) = A ∩ B.

Proof. (i): First, it is straightforward to see that Fix T α
λ,µ = Fix P µ

BP λ
A = Fix T

1/2
λ,µ . If λ = µ = 2, then

the conclusion follows from [6, Corollary 3.9].

Now assume that min{λ, µ} < 2. Since λ, µ ∈ ]0, 2], we have λ + µ − λµ = 1 − (1 − λ)(1 − µ) > 0.
Let x ∈ Fix P µ

BP λ
A, that is, x = P µ

BP λ
Ax. Set a = PAx, r = (1 − λ)x + λa, and b = PBr. It follows that

x = (1 − µ)r + µb and hence

b = 1
µx − 1−µ

µ r = 1
µx − 1−µ

µ

(
(1 − λ)x + λa

)
= a + λ+µ−λµ

µ (x − a). (32)

Since λ+µ−λµ
µ > 0, Fact 2.11(i) implies that PAb = a. Similarly, PBa = b. We then use (29) to deduce

g = b − a. Combining with (32) yields

x = a + µ
λ+µ−λµ(b − a) ∈ E + µ

λ+µ−λµg. (33)

Conversely, take x ∈ E + µ
λ+µ−λµg. It suffices to show that x ∈ Fix P µ

BP λ
A and PAx ∈ E. By

assumption, there exist a ∈ A and b ∈ B such that a = b − g ∈ E, a = PAb, b = PBa, and that
x = a + µ

λ+µ−λµg = PBb + µ
λ+µ−λµ(b − PAb). Again, Fact 2.11(i) yields PAx = PAb = a ∈ E. In turn,

r := P λ
Ax = (1 − λ)

(
a + µ

λ+µ−λµg
)

+ λa = b − λ
λ+µ−λµg = b + λ

λ+µ−λµ(a − b) (34)

and, by Fact 2.11(i), PBr = b. It follows that

P µ
BP λ

Ax = P µ
Br = (1 − µ)

(
b − λ

λ+µ−λµg
)

+ µb = a + g − (1−µ)λ
λ+µ−λµg = x, (35)

which completes the proof.

(ii): This follows from (i) by noting that if A ∩ B 6= ∅, then g = 0 and E = A ∩ B, and from, e.g.,
[9, Proposition 2.10(ii)] that if 0 ∈ int(B − A), then NA−B(0) = 0.

(iii): If min{λ, µ} < 2, then the conclusion follows from (ii). If λ = µ = 2, then the conclusion
follows from [14, Proposition 4.1(iii)]. �

Theorem 2.14 (convex possibly inconsistent case). Let λ, µ ∈ ]0, 2] and α ∈
]
0, 1 + β̂

[
where

β̂ :=
( λ

2−λ + µ
2−µ

)−1
. Suppose that E 6= ∅ when min{λ, µ} < 2, and A ∩ B 6= ∅ when λ = µ = 2. Then

the gDR sequence (xn)n∈N generated by T α
λ,µ weakly converges to a point x ∈ Fix T α

λ,µ with PAx ∈ E.

Proof. According to Lemma 2.12(ii), T α
λ,µ = (1 − α) Id +αP µ

BP λ
A is α/(1 + β̂)-averaged. Now use

Lemma 2.13(i) and apply [5, Proposition 5.16] with all λn = 1. �

In the light of Theorem 2.14, if the gDR algorithm involves at most one reflection, then it is weakly
convergent even in the inconsistent case.
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3. Quasi firm Fejér monotonicity

In this section, we further refine some results on quasi firm Fejér monotonicity, which were partly
developed in [19]. Let C and U be nonempty subsets of X, let γ ∈ [1, +∞[, and let β ∈ R+. Recall
from [19, Definition 3.1] that a set-valued operator T : X ⇒ X is (C, γ, β)-quasi firmly Fejér monotone
on U if

∀x ∈ U, ∀x+ ∈ T x, ∀x ∈ C, ‖x+ − x‖2 + β‖x − x+‖2 ≤ γ‖x − x‖2. (36)

Here, when β = 0, we simply say that T is (C, γ)-quasi Fejér monotone on U .

Lemma 3.1 (averaged quasi firmly Fejér monotone operators). Let C and U be nonempty
subsets of X, γ ∈ [1, +∞[, β ∈ R+, λ ∈ ]0, 1 + β], and let T : X ⇒ X be a set-valued operator. Then
the following are equivalent:

(i) T is (C, γ, β)-quasi firmly Fejér monotone on U .
(ii) T λ := (1 − λ) Id +λT is (C, 1 − λ + λγ, 1−λ+β

λ )-quasi firmly Fejér monotone on U .

(iii) T = β
1+β Id + 1

1+β T 1+β with T 1+β := (1+β)T −β Id being (C, γ +β(γ −1))-quasi Fejér monotone
on U .

Proof. If (i) holds, then so does (ii) due to [19, Lemma 3.2]. Conversely, if (ii) holds, applying [19,
Lemma 3.2] to T = (1 − 1

λ) Id − 1
λT λ and noting that 0 < 1

λ ≤ 1 + 1−λ+β
λ , we get (i). So (i) and (ii)

are equivalent, which implies the equivalence of (i) and (iii) by taking λ = 1 + β. �

Lemma 3.2 (composition of quasi firmly Fejér monotone operators). Let m be a positive
integer, set I := {1, . . . , m}, and for every i ∈ I, let Ci and Ui be a nonempty subset of X, γi ∈
[1, +∞[, βi ∈ R+, and Ti a (Ci, γi, βi)-quasi firmly Fejér monotone operator on Ui. Set C :=

⋂
i∈I Ci,

γ := γ1 · · · γm,

β′ :=
( 1

β1γ2 · · · γm
+

1

β2γ3 · · · γm
+ · · · +

1

βm−1γm
+

1

γm

)−1
, and β :=

( ∑

i∈I

1

βi

)−1
. (37)

Let x0, x1, . . . , xm be such that for every i ∈ I, xi ∈ Tixi−1. Then β′ ≥ β ≥ 0 and, if xi−1 ∈ Ui for
every i ∈ I, it holds that

∀x ∈ C, γ‖x0 − x‖2 ≥ ‖xm − x‖2 + β′
( ∑

i∈I

‖xi−1 − xi‖
)2

≥ ‖xm − x‖2 + β′‖x0 − xm‖2.

(38a)

(38b)

Consequently, if TiUi ⊆ Ui+1 for every i ∈ Ir{m}, then Tm · · · T1 is (C, γ, β′)- and also (C, γ, β)-quasi
firmly Fejér monotone on U1.

Proof. Because γi ≥ 1 and βi ≥ 0 for every i ∈ I, we have β′ ≥ β ≥ 0. Next, let x ∈ C. For every
i ∈ I, since xi−1 ∈ Ui and Ti is (C, γi, βi)-quasi firmly Fejér monotone on Ui, we derive that

‖x1 − x‖2 + β1‖x0 − x1‖2 ≤ γ1‖x0 − x‖2,

‖x2 − x‖2 + β2‖x1 − x2‖2 ≤ γ2‖x1 − x‖2,

...

‖xm − x‖2 + βm‖xm−1 − xm‖2 ≤ γm‖xm−1 − x‖2.

(39a)

(39b)

(39c)

(39d)

Using telescoping techniques yields

(γ1 · · · γm)‖x0 − x‖2 ≥ ‖xm − x‖2 +
(
β1γ2 · · · γm‖x0 − x1‖2 + β2γ3 · · · γm‖x1 − x2‖2

+ · · · + βm−1γm‖xm−2 − xm−1‖2 + βm‖xm−1 − xm‖2)
.

(40)
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By the coordinate version of Cauchy–Schwarz inequality,

( 1

β1γ2 · · · γm
+ · · · +

1

βm

)(
β1γ2 · · · γm‖x0 − x1‖2 + · · · + βm‖xm−1 − xm‖2)

≥
( ∑

i∈I

‖xi−1 − xi‖
)2

.
(41)

Combining with (40), we obtain (38).

Now assume that TiUi ⊆ Ui+1 for every i ∈ I r {m}. Let x ∈ U1 and x+ ∈ (Tm · · · T1)x. Then
there exist x0, x1, . . . , xm such that x0 = x, xm = x+, and xi ∈ T xi−1 for every i ∈ I. We derive that
xi−1 ∈ Ui for every i ∈ I and, by (38),

∀x ∈ C, γ‖x − x‖2 ≥ ‖x+ − x‖2 + β′‖x − x+‖2 ≥ ‖x+ − x‖2 + β‖x − x+‖2. (42)

The proof is complete. �

Lemma 3.3 (quasi firm Fejér monotonicity of relaxed projectors). Let C be a nonempty
subset of X and L be an affine subspace of X containing C. Let also w ∈ C, ε ∈ [0, 1[, δ ∈ R++, and
λ ∈ ]0, 2]. Set

Ω := C ∩ IB(w; δ), γ := 1 + λε
1−ε , and β := 2−λ

λ . (43)

Suppose that C is (ε, δ)-regular at w. Then P λ
C is (Ω + (L − L)⊥, γ, β)-quasi firmly Fejér monotone

and, in particular, RC is (Ω + (L − L)⊥, 1+ε
1−ε)-quasi Fejér monotone on IB(w; δ/2) ∩ L.

Proof. Let x ∈ IB(w; δ/2) ∩ L ⊆ IB(w; δ/2), let p ∈ PCx, and let x ∈ Ω + (L − L)⊥. By Fact 2.3(i),
p ∈ Ω . Writing x = u + v with u ∈ Ω and v ∈ (L − L)⊥, we note that x, p, u ∈ L, so 〈x − p, v〉 = 0 and
‖p − x‖2 = ‖p − u‖2 + ‖v‖2 ≥ ‖p − u‖2. Since C is (ε, δ)-regular at w and x − p ∈ Nprox

C (p), we have

〈x − p, p − x〉 = 〈x − p, p − u〉 ≥ −ε‖x − p‖‖p − u‖
≥ − ε

2

(
‖x − p‖2 + ‖p − u‖2)

≥ − ε
2

(
‖x − p‖2 + ‖p − x‖2)

.

(44a)

(44b)

Therefore,

‖x − x‖2 = ‖x − p‖2 + ‖p − x‖2 + 2 〈x − p, p − x〉
≥ ‖x − p‖2 + ‖p − x‖2 − ε

(
‖x − p‖2 + ‖p − x‖2)

= (1 − ε)
(
‖x − p‖2 + ‖p − x‖2)

,

(45a)

(45b)

(45c)

which yields
1

1−ε‖x − x‖2 ≥ ‖x − p‖2 + ‖p − x‖2, (46)

i.e., PC is
(
Ω + (L − L)⊥, 1

1−ε , 1
)
-quasi firmly Fejér monotone on IB(w; δ/2) ∩ L. In turn, Lemma 3.1

implies that P λ
C is

(
Ω + (L − L)⊥, γ, β

)
-quasi firmly Fejér monotone on IB(w; δ/2) ∩ L with γ and β as

in (43). In the case when λ = 2, since γ = 1+ε
1−ε and β = 0, the conclusion follows. �

Proposition 3.4 (quasi firm Fejér monotonicity of gDR operators). Let A and B be closed
subsets of X such that A∩B 6= ∅ and L be an affine subspace of X containing A∪B. Let also w ∈ A∩B,
ε1 ∈ [0, 1/3], ε2 ∈ [0, 1[, δ ∈ R++, λ, µ ∈ ]0, 2], and α ∈

]
0, 1 + β̂

]
where β̂ :=

( λ
2−λ + µ

2−µ

)−1
. Set

Ω := A ∩ B ∩ IB(w; δ),

γ := 1 − α + α
(
1 + λε1

1−ε1

) (
1 + µε2

1−ε2

)
, and β := 1−α+β̂

α . (47)

Suppose that A and B are (ε1, δ)- and (ε2,
√

2δ)-regular at w, respectively. Then the following hold:
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(i) T α
λ,µ is

(
Ω + (L − L)⊥, γ, β

)
-quasi firmly Fejér monotone on IB(w; δ/2) ∩ L.

(ii) T α
λ,µ is

(
Ω, γ, β

)
-quasi firmly Fejér monotone on IB(w; δ/2).

(iii) T α
2,2 is

(
Ω + (L − L)⊥, γ, β

)
-quasi firmly Fejér monotone on IB(w; δ/2).

Proof. (i): We first derive from Lemma 3.3 that P λ
A is

(
Ω+(L−L)⊥, γ1, β1

)
-quasi firmly Fejér monotone

on IB(w; δ/2)∩L and that P µ
B is

(
Ω+(L−L)⊥, γ2, β2

)
-quasi firmly Fejér monotone on IB(w; δ/

√
2)∩L,

where

γ1 := 1 + λε1

1−ε1
, γ2 := 1 + µε2

1−ε2
, β1 := 2−λ

λ , and β2 := 2−µ
µ . (48)

Now let x ∈ IB(w; δ/2) ∩ L. On the one hand, Fact 2.3(ii) yields P λ
Ax ⊆ IB(w; δ/

√
2). On the other

hand, P λ
Ax = (1 − λ)x + λPAx ⊆ L since x ∈ L, PAx ⊆ A ⊆ L, and L is an affine subspace.

We deduce that P λ
A(IB(w; δ/2) ∩ L) ⊆ IB(w; δ/

√
2) ∩ L. Noting that β̂ = ( 1

β1
+ 1

β1
)−1, we apply

Lemma 3.2 to (P λ
A, P µ

B) to obtain the (Ω + (L − L)⊥, γ1γ2, β̂)-quasi firm Fejér monotonicity of P µ
BP λ

A

on IB(w; δ/2) ∩ L. The conclusion follows from Lemma 3.1(i)–(ii) applied to the operators P µ
BP λ

A and
T α

λ,µ = (1 − α) Id +αP µ
BP λ

A.

(ii): Apply (i) with L = X.

(iii): Let x ∈ IB(w; δ/2) and x+ ∈ T α
2,2x. Define y = PLx and y+ = PLx+. Then by Lemma 2.1(iii),

y ∈ IB(w; δ/2) ∩ L and by Lemma 2.9(i)–(ii), y+ ∈ T α
2,2y and v := x+ − y+ = x − y. Applying (i) to

T α
2,2 yields

∀y ∈ Ω + (L − L)⊥, ‖y+ − y‖2 + β‖y − y+‖2 ≤ γ‖y − y‖2. (49)

Now let x ∈ Ω+(L−L)⊥. From Lemma 2.1(i), we observe that v ∈ (L−L)⊥, hence x−v ∈ Ω+(L−L)⊥.
Substituting y = x − v = x − (x+ − y+) = x − (x − y) into (49) completes the proof. �

4. Quasi coercivity

Let C and U be nonempty subsets of X and let ν ∈ R++. Recall from [19, Definition 3.3] that an
operator T : X ⇒ X is (C, ν)-quasi coercive on U if

∀x ∈ U, ∀x+ ∈ T x, ‖x − x+‖ ≥ νdC(x), (50)

and C-quasi coercive around w ∈ X if it is (C, ν)-quasi coercive on IB(w; δ) for some ν ∈ R++ and
δ ∈ R++.

In this section, we show quasi coercivity of gDR operators under different assumptions on the
system of sets. In particular, under affine-hull regularity assumption, Proposition 4.5 improves some
existing results on quasi coercivity (see Remark 4.8), while under linear regularity assumption and
some parameter restriction, Proposition 4.12 proves the quasi coercivity of gDR operators.

Lemma 4.1 (averaged quasi coercive operators). Let C and U be nonempty subsets of X,
ν ∈ R++, λ ∈ R++, and let T : X ⇒ X be a set-valued operator. Then T is (C, ν)-quasi coercive on U
if and only if T λ := (1 − λ) Id +λT is (C, λν)-quasi coercive on U .

Proof. Assume that T is (C, ν)-quasi coercive on U . Let x ∈ U and let x+ ∈ T λx. Then there exists
s ∈ T x such that x+ = (1 − λ)x + λs. We obtain that ‖x − x+‖ = λ‖x − s‖ ≥ λνdC(x), and T λ is thus
(C, λν)-quasi coercive on U . Conversely, note that T = (1 − 1

λ) Id + 1
λT λ. �

Lemma 4.2 (global quasi coercivity). Let C be a nonempty subset of X, L a closed subset of X,
and T : X → X a continuous single-valued operator. Suppose that Fix T ∩ L ⊆ C and that, for every
w ∈ C, T is C-quasi coercive on IB(w; δ) ∩ L for some δ ∈ R++. Then T is C-quasi coercive on S ∩ L
for every bounded set S of X.
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Proof. Let S be a bounded set of X and suppose on the contrary that T is not C-quasi coercive on
S ∩ L. Then there exist sequences εn ↓ 0 and xn ∈ S ∩ L such that

∀n ∈ N, 0 ≤ ‖xn − T xn‖ < εndC(xn). (51)

Since (xn)n∈N is bounded, so is (dC(xn))n∈N, and hence xn − T xn → 0. Extracting a convergent
subsequence without relabeling, we can assume xn → x. It follows from the continuity of T and the
closedness of L that x ∈ Fix T ∩ L ⊆ C. In turn, there exist ν ∈ R++ and δ ∈ R++ such that T is
(C, ν)-quasi coercive on IB(x; δ) ∩ L. Thus, for all n sufficiently large,

εndC(xn) > ‖xn − T xn‖ ≥ νdC(xn), (52)

which is a contradiction since εn ↓ 0 and dC(xn) > 0. �

4.1. In the presence of affine-hull regularity

In this section, we aim to improve the estimate for quasi coercivity constant previously obtained in
[19]. To proceed, we need the following technical lemma.

Lemma 4.3. Let θ ∈ [0, 1[, µ ∈ ]0, 2], and let u, v ∈ X be such that 〈u, v〉 ≥ −θ‖u‖‖v‖. Then

‖u + µv‖2 ≥ max
{

µ2(1 − θ2)‖v‖2,
4µ2(1 − θ2)

(
|1 − µ| +

√
(1 − µ)2 + 4µ(1 − θ2)

)2 ‖u + v‖2
}

. (53)

Proof. First, it follows from 〈u, v〉 ≥ −θ‖u‖‖v‖ that

‖u + µv‖2 ≥ ‖u‖2 + µ2‖v‖2 − 2µθ‖u‖‖v‖
= (‖u‖ − µθ‖v‖)2 + µ2(1 − θ2)‖v‖2 ≥ µ2(1 − θ2)‖v‖2.

(54a)

(54b)

Next, we show that

‖u + µv‖2 ≥ ξ‖u + v‖2, where ξ :=
4µ2(1 − θ2)

(
|1 − µ| +

√
(1 − µ)2 + 4µ(1 − θ2)

)2 . (55)

Observe that |1 − µ| +
√

(1 − µ)2 + 4µ(1 − θ2) ≥
√

4µ(1 − θ2) > 0, so

ξ =
4µ2(1 − θ2)

(
|1 − µ| +

√
(1 − µ)2 + 4µ(1 − θ2)

)2 ≤ 4µ2(1 − θ2)

4µ(1 − θ2)
= µ. (56)

Now (55) is equivalent to

(1 − ξ)‖u‖2 + (µ2 − ξ)‖v‖2 + 2(µ − ξ) 〈u, v〉 ≥ 0. (57)

Since µ − ξ ≥ 0 and 〈u, v〉 ≥ −θ‖u‖‖v‖, it suffices to prove that

∀u ∈ X, ∀v ∈ X, (1 − ξ)‖u‖2 + (µ2 − ξ)‖v‖2 − 2θ(µ − ξ)‖u‖‖v‖ ≥ 0. (58)

The latter one can be written as

∀u ∈ X, ∀v ∈ X,
[
‖u‖ ‖v‖

]
M

[
‖u‖
‖v‖

]
≥ 0 with M :=

[
1 − ξ θ(ξ − µ)

θ(ξ − µ) µ2 − ξ

]
, (59)

which is equivalent to positive semidefiniteness of M . Because M is a symmetric 2 × 2 matrix whose
trace (1−ξ)+(µ2 −ξ) = (1−µ)2 +2(µ−ξ) ≥ 0, it is positive semidefinite if and only if its determinant

(1 − ξ)(µ2 − ξ) − θ2(µ − ξ)2 = (1 − θ2)ξ2 − (1 + µ2 − 2µθ2)ξ + µ2(1 − θ2) ≥ 0. (60)

Finally, one can directly check that ξ in (55) is a solution of (60). The proof is complete. �

13



Lemma 4.4. Let A and B be closed subsets of X with A ∩ B 6= ∅, U a nonempty subset of X,
λ, µ ∈ ]0, 2], α ∈ R++, and ν ∈ R++. Suppose that T α

λ,µ is (A ∩ B, ν)-quasi coercive on U ∩ L with

L := aff(A ∪ B). Then T α
λ,µ is

(
(A ∩ B) + (L − L)⊥, ν

)
-quasi coercive on P −1

L (U ∩ L). Moreover, if

min{λ, µ} < 2, then T α
λ,µ is also (A ∩ B, ν ′)-quasi coercive on P −1

L (U ∩ L) with ν ′ := min{ν, α(λ + µ −
λµ)}.

Proof. Let x ∈ P −1
L (U ∩ L) and x+ ∈ T α

λ,µx. Define y = PLx and y+ = PLy, then y ∈ U ∩ L and, by
Lemma 2.9(i), y+ ∈ T α

λ,µy . By assumption,

‖y − y+‖ ≥ νdA∩B(y). (61)

Setting η := (1 − α) + α(1 − λ)(1 − µ), we obtain from Lemma 2.9(iii) that

‖x − x+‖2 = ‖y − y+‖2 + (1 − η)2‖x − y‖2 ≥ ‖y − y+‖2. (62)

By Lemma 2.1(i), x − y = x − PLx ∈ (L − L)⊥ and then, by Lemma 2.2(v),

dA∩B(y) = d(A∩B)+(L−L)⊥ (y) = d(A∩B)+(L−L)⊥ (y + (x − y)) = d(A∩B)+(L−L)⊥ (x). (63)

This together with (61) and (62) yields

‖x − x+‖ ≥ ‖y − y+‖ ≥ νdA∩B(y) = νd(A∩B)+(L−L)⊥ (x), (64)

i.e., T α
λ,µ is

(
(A ∩ B) + (L − L)⊥, ν

)
-quasi coercive on P −1

L (U ∩ L).

Now assume that min{λ, µ} < 2. Then η < 1. Combining (61), (62), and Lemma 2.2(iv), we
deduce that

‖x − x+‖2 ≥ ν2d2
A∩B(y) + (1 − η)2d2

L(x)

≥ min{ν2, (1 − η)2}
(
d2

A∩B(y) + d2
L(x)

)
= (ν ′)2d2

A∩B(x),

(65a)

(65b)

which means that T α
λ,µ is (A ∩ B, ν ′)-quasi coercive on P −1

L (U ∩ L). �

Proposition 4.5 (quasi coercivity of gDR operators under affine-hull regularity). Let A and
B be closed subsets of X such that A ∩ B 6= ∅. Let also w ∈ A ∩ B, ε ∈ [0, 1/3], δ ∈ R++, κ ∈ R++,
λ, µ ∈ ]0, 2], and α ∈ R++. Suppose that A is (ε, δ)-regular at w, that {A, B} is κ-linearly regular on
IB(w; δ/2), and that the CQ-number θ := θA,B,L(w,

√
2δ) < 1 with L := aff(A ∪ B). Define

ν :=
α

√
1 − θ2

κ
min

{
λ,

2µ

|1 − µ| +
√

(1 − µ)2 + 4µ(1 − θ2)

}
. (66)

Then the following hold:

(i) T α
λ,µ is

(
A ∩ B, ν

)
-quasi coercive on IB(w; δ/2) ∩ L.

(ii) T α
λ,µ is

(
(A ∩ B) + (L − L)⊥, ν

)
-quasi coercive on IB(w; δ/2).

(iii) If min{λ, µ} < 2, then T α
λ,µ is (A ∩ B, ν ′)-quasi coercive on IB(w; δ/2) with ν ′ := min{ν, α(λ +

µ − λµ)}.

Additionally, if λ 6= 1, A is an affine subspace of X, and {A, B} is κ-linearly regular on IB(w;
√

2δ/2),
then we can choose

ν =
α

√
1 − θ2

κ
min{λ, µ|1 − λ|}. (67)
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Proof. First, it follows from the definition of the CQ-number θ that

a ∈ A ∩ IB(w;
√

2δ), b ∈ B ∩ IB(w;
√

2δ),

u ∈ Nprox
A (a) ∩ (L − a), v ∈ Nprox

B (b) ∩ (L − b)

}
=⇒ 〈u, v〉 ≥ −θ‖u‖‖v‖. (68)

To prove (i), in view of Lemma 4.1, it suffices to prove that P µ
BP λ

A is (A ∩ B, ν/α)-quasi coercive on
IB(w; δ/2) ∩ L. Let x ∈ IB(w; δ/2) ∩ L and s ∈ P µ

BP λ
Ax. Then there exist a ∈ PAx, r ∈ P λ

Ax, and
b ∈ PBr such that

x − r = λ(x − a) and r − s = µ(r − b). (69)

We note that r ∈ P λ
A(L) ⊆ L due to Lemma 2.2(i). By Fact 2.3(i), a ∈ PAx ⊆ A ∩ IB(w; δ). Since

ε ∈ [0, 1/3], Fact 2.3(ii) yields r ∈ IB(w;
√

2δ/2). Again by Fact 2.3(i), b ∈ PBr ⊆ B ∩ IB(w;
√

2δ). Now
as x − r = λ(x − a) ∈ Nprox

A (a) ∩ (L − a) and r − s = µ(r − b) ∈ Nprox
B (b) ∩ (L − b), it follows from (68)

that
〈x − a, r − s〉 ≥ −θ‖x − a‖‖r − s‖ and 〈x − r, r − b〉 ≥ −θ‖x − r‖‖r − b‖. (70)

Applying Lemma 4.3 with (u, v) = (r − s, x − a), we obtain

‖x − s‖2 = ‖(x − r) + (r − s)‖2 = ‖λ(x − a) + (r − s)‖2

≥ λ2(1 − θ2)‖x − a‖2 = λ2(1 − θ2)d2
A(x);

(71a)

(71b)

and with (u, v) = (x − r, r − b), we obtain

‖x − s‖2 = ‖(x − r) + µ(r − b)‖2 ≥ max{µ2(1 − θ2)‖r − b‖2, ξ‖x − b‖2}
≥ max{µ2(1 − θ2)d2

B(r), ξd2
B(x)},

(72a)

(72b)

where ξ := 4µ2(1−θ2)(
|1−µ|+

√
(1−µ)2+4µ(1−θ2)

)2 . Combining with the κ-linear regularity of {A, B} yields

‖x − s‖ ≥ min
{

λ
√

1 − θ2,
√

ξ
}

max{dA(x), dB(x)}

≥
√

1 − θ2

κ
min

{
λ,

2µ

|1 − µ| +
√

(1 − µ)2 + 4µ(1 − θ2)

}
dA∩B(x) =

ν

α
dA∩B(x),

(73a)

(73b)

and (i) is proved. Now applying Lemma 4.4 and noting from Lemma 2.1(iii) that IB(w; δ/2) ⊆
P −1

L (IB(w; δ/2) ∩ L), we get (ii) and (iii).

In addition, suppose that λ 6= 1, that A is an affine subspace of X, and that {A, B} is κ-linearly
regular on IB(w;

√
2δ/2). Then x − a = 1

1−λ(r − a) and, by (71),

‖x − s‖2 ≥ λ2(1 − θ2)‖x − a‖2 =
λ2(1 − θ2)

(1 − λ)2
‖r − a‖2 ≥ λ2(1 − θ2)

(1 − λ)2
d2

A(r). (74)

Together with (72) and the κ-linear regularity of {A, B} on IB(w;
√

2δ/2), we get

‖x − s‖ ≥
√

1 − θ2 min
{ λ

|1 − λ| , µ
}

max{dA(r), dB(r)}

≥
√

1 − θ2

κ
min

{ λ

|1 − λ| , µ
}

dA∩B(r).

(75a)

(75b)

By applying Lemma 2.2(iv) (with C = A ∩ B and L = A),

d2
A∩B(r) = d2

A∩B(PAx) + (1 − λ)2d2
A(x)

≥ (1 − λ)2(
d2

A∩B(PAx) + d2
A(x)

)
= (1 − λ)2d2

A∩B(x),

(76a)

(76b)

and the conclusion follows. �

15



Corollary 4.6. Let A and B be closed subsets of X such that A ∩ B 6= ∅. Let also w ∈ A ∩ B,
λ, µ ∈ ]0, 2], and α ∈ R++. Suppose that A is superregular at w and {A, B} is affine-hull regular at w.
Define L := aff(A ∪ B). Then the following hold:

(i) T α
λ,µ is (A ∩ B)-quasi coercive on IB(w; δ) ∩ L for some δ ∈ R++.

(ii) T α
λ,µ is

(
(A ∩ B) + (L − L)⊥)

-quasi coercive around w.
(iii) If min{λ, µ} < 2, then T α

λ,µ is (A ∩ B)-quasi coercive around w.

Proof. By superregularity, affine-hull regularity, Proposition 2.5(i), and Proposition 2.8, we can find
ε ∈ [0, 1/3], δ ∈ R++, and κ ∈ R++ such that A is (ε, δ)-regular at w, that {A, B} is κ-linearly
regular on IB(w; δ/2), and that the CQ-number θA,B,L(w,

√
2δ) < 1. The conclusion then follows from

Proposition 4.5. �

Remark 4.7. In Proposition 4.5 and Corollary 4.6, the term (L − L)⊥ is indeed indispensable when
λ = µ = 2. For instance, suppose A and B are two arbitrary closed sets in X = R3 with w ∈ A ∩ B
and L = aff(A ∪ B) = R2 × {0}. Then (L − L)⊥ = {(0, 0, ξ)

∣∣ ξ ∈ R}. For any ν, δ ∈ R++, taking
x = w + (0, 0, δ), we have x+ = x = T α

2,2x due to Lemma 2.10(ii), and dA∩B(x) = dL(x) = δ. Hence,
0 = ‖x+ − x‖ < νdA∩B(x) = νδ, i.e., T α

2,2 fails to be (A ∩ B, ν)-quasi coercive on IB(w; δ).

Remark 4.8 (improved quasi coercivity constant for DR operator). As we will see in the
next part (see Remark 5.5), larger quasi coercivity constant will improve the linear convergence rate.
In this aspect, Proposition 4.5 indeed subsumes [32, Lemma 4.2] and [24, Lemma 3.14]; and moreover,
provides larger (local) quasi coercivity constant for the classical DR operator (λ = µ = 2 and α = 1/2).

To see this, we consider the DR operator T := T
1/2
2,2 for the pair (A, B) of closed subsets of X and

w ∈ A ∩ B. Assume that A is superregular at w and that {A, B} is strongly regular at w, i.e.,
the limiting CQ-number θA,B(w) < 1 (due to Proposition 2.8). Then for any θ ∈

]
θ, 1

[
, there exist

ε ∈ [0, 1/4[, δ ∈ R++, and κ ∈ R+ such that

(i) A is (ε, 2δ)-regular at w;
(ii) θ is the CQ-number at w associated with (A, B) and 3δ, which implies that

{
a ∈ A ∩ IB(w; 3δ), b ∈ B ∩ IB(w; 3δ),

u ∈ Nprox
A (a), v ∈ Nprox

B (b)
=⇒ 〈u, v〉 ≥ −θ‖u‖.‖v‖; (77)

(iii) {A, B} is κ-linearly regular on IB(w; 2δ).

Now, on the one hand, [32, Lemma 4.2] derives that T is (A ∩ B, ν̂)-quasi coercive on IB(w; δ) with

ν̂ =
√

1−θ
κ

√
5

. On the other hand, Proposition 4.5 derives that T is (A ∩ B, ν)-quasi coercive on IB(w; δ)

with ν =
√

1−θ2

κ
2

1+
√

1+8(1−θ2)
. It is clear that ν ≥

√
1−θ2

κ
2

1+
√

9
>

√
1−θ
κ

1√
5

= ν̂ regardless of θ ∈ ]0, 1[.

In addition, if A is an affine subspace, then Proposition 4.5 also improves the estimate in [24,
Lemma 3.14]. Indeed, under the assumptions made, on the one hand, [24, Lemma 3.14] implies that

T is (A ∩ B, ν̂)-quasi coercive on IB(w; δ) with ν̂ =
√

1−θ
κ . On the other hand, Proposition 4.5 yields

that T is (A ∩ B, ν)-quasi coercive on IB(w; δ) with ν =
√

1−θ2

κ > ν̂.

Similarly, we can show that Proposition 4.5 also improves quasi coercivity constant derived in [19,
Proposition 3.8] for gDR operators.

The following global version of Proposition 4.5 is an extension of [14, Lemma 4.3].

Proposition 4.9 (global quasi coercivity of convex gDR operators). Let λ, µ ∈ ]0, 2] and
α ∈ R++. Then the following hold:
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(i) If A and B are closed convex subsets of X such that ri A ∩ ri B 6= ∅, then T α
λ,µ is

(
(A ∩ B) +

(L − L)⊥)
-quasi coercive on every bounded set S of X with L := aff(A ∪ B), and if additionally

min{λ, µ} < 2, then T α
λ,µ is (A ∩ B)-quasi coercive on every bounded set S of X.

(ii) If A and B are polyhedral subsets of X such that A ∩ B 6= ∅, then T α
λ,µ is Fix T α

λ,µ-quasi coercive
on every bounded set S of X.

Proof. First, by Lemma 2.12(i), T α
λ,µ is continuous and single-valued.

(i): Set L := aff(A ∪ B). Since A and B are convex with ri A ∩ ri B 6= ∅, Lemma 2.13(iii) yields
Fix T α

λ,µ ∩ L = A ∩ B. Now for every w ∈ A ∩ B, we derive from [11, Remark 8.2(v)] that A is
superregular at w, from [11, Example 7.2(i)–(ii) and Proposition 7.5] that {A, B} is affine-hull regular
at w, and then from Corollary 4.6 that T α

λ,µ is (A∩B)-quasi coercive on IB(w; δ)∩L for some δ ∈ R++.
In turn, Lemma 4.2 implies that T α

λ,µ is (A ∩ B)-quasi coercive on S ∩ L for every bounded set S of

X. Finally, apply Lemma 4.4 and note from Lemma 2.1(ii) that IB(0; δ) ⊆ P −1
L (IB(0; δ) ∩ L).

(ii): By [35, Example 12.31(a)&(d)], PA and PB are piecewise linear in the sense of [35, Defini-
tion 2.47(a)]. Notice that compositions of piecewise linear operators are also piecewise linear (see [36,
Corollary 2.3]), and that linear combinations of piecewise linear operators are also piecewise linear.
Thus, Q := Id −T α

λ,µ = α(Id −P µ
BP λ

A) is piecewise linear. By [35, Example 2.48], Q is also polyhedral

(i.e., the graph of Q is a union of finitely many polyhedral sets). Noting that Q−1(0) = Fix T α
λ,µ and

dQx(0) = ‖Qx‖ = ‖x − T α
λ,µx‖, and using [33, Corollary of Proposition 1], there exists ν ∈ R++ and

ε ∈ R++ such that

‖x − T α
λ,µx‖ ≥ νdFix T α

λ,µ
(x) whenever ‖x − T α

λ,µx‖ < ε. (78)

Now for every w ∈ Fix T α
λ,µ, since T α

λ,µ is continuous, there exists δ ∈ R++ such that ‖x − T α
λ,µx‖ < ε

for all x ∈ IB(w; δ). It follows that T α
λ,µ is (Fix T α

λ,µ, ν)-quasi coercive on IB(w; δ). Applying Lemma 4.2
with C = Fix T α

λ,µ and L = X completes the proof. �

4.2. In the presence of linear regularity

Corollary 4.6 shows that superregularity and affine-hull regularity assumption is sufficient for quasi
coercivity of gDR operators. We will show in Proposition 4.12 that if min{λ, µ} < 2, then affine-hull
regularity can be replaced by linear regularity, a milder assumption (see Remark 2.6). This is a new
result that obtains quasi coercivity for gDR operators via linear regularity and operator parameters.

For x, y, z ∈ X, we denote x̂yz the angle between two vectors x − y and z − y, i.e.,

x̂yz ∈ [0, π] such that cos x̂yz =
〈x − y, z − y〉

‖x − y‖ · ‖z − y‖ , (79)

with the convention that x̂yz = 0 if x = y or z = y. The following two lemmas are crucial for our
analysis.

Lemma 4.10. Let (εn)n∈N be a sequence in R+ convergent to 0. Let (xn)n∈N, (rn)n∈N, (sn)n∈N and
(pn)n∈N be sequences in X such that, for all n ∈ N, rn /∈ {xn, sn, pn}, and that

‖xn − sn‖ ≤ εn(‖xn − rn‖ + ‖sn − rn‖). (80)

Then x̂nrnsn → 0 and cos x̂nrnpn − cos ŝnrnpn → 0 as n → +∞.
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Proof. By assumption and Cauchy–Schwarz inequality,

2 〈xn − rn, sn − rn〉 = ‖xn − rn‖2 + ‖sn − rn‖2 − ‖xn − sn‖2

≥ ‖xn − rn‖2 + ‖sn − rn‖2 − ε2
n(‖xn − rn‖ + ‖sn − rn‖)2

≥ (2 − 4ε2
n)‖xn − rn‖‖sn − rn‖.

(81a)

(81b)

(81c)

It follows that

cos x̂nrnsn =
〈xn − rn, sn − rn〉

‖xn − rn‖‖sn − rn‖ ≥ 1 − 2ε2
n → 1 as n → +∞, (82)

hence cos x̂nrnsn → 1 and x̂nrnsn → 0 as n → +∞. Now we compute

∥∥∥∥
xn − rn

‖xn − rn‖ − sn − rn

‖sn − rn‖

∥∥∥∥
2

= 2 − 2
〈xn − rn, sn − rn〉

‖xn − rn‖‖sn − rn‖ = 2(1 − cos x̂nrnsn) → 0, (83)

and again by Cauchy–Schwarz inequality,

| cos x̂nrnpn − cos ŝnrnpn| =

∣∣∣∣
〈

xn − rn

‖xn − rn‖ − sn − rn

‖sn − rn‖ ,
pn − rn

‖pn − rn‖

〉∣∣∣∣

≤
∥∥∥∥

xn − rn

‖xn − rn‖ − sn − rn

‖sn − rn‖

∥∥∥∥ · 1 → 0,

(84a)

(84b)

which completes the proof. �

Lemma 4.11. Let x, r, s and p be in X and set u := PL1
p and v := PL2

p with L1 := aff{x, r} and
L2 := aff{s, r}. Suppose that r /∈ {x, s, u, v}. Then ‖u − v‖ ≤ ‖p − r‖ sin ûrv = ‖p − r‖ sin x̂rs.

Proof. First, since u ∈ aff{x, r} and v ∈ aff{s, r}, we have

| cos ûrv| =

∣∣∣∣
〈

u − r

‖u − r‖ ,
v − r

‖v − r‖

〉∣∣∣∣ =

∣∣∣∣
〈

x − r

‖x − r‖ ,
s − r

‖s − r‖

〉∣∣∣∣ = | cos x̂rs|, (85)

which yields sin ûrv = sin x̂rs.

Set q := 1
2(p + r). Then ‖q − r‖ = 1

2‖p − r‖. Using Lemma 2.1(i), 〈p − u, r − u〉 = 0 and
〈p − v, r − v〉 = 0. We compute

‖q − u‖2 = 1
4‖(p − u) + (r − u)‖2 = 1

4‖(p − u) − (r − u)‖2 = 1
4‖p − r‖2 (86)

and get ‖q − u‖ = 1
2‖p − r‖. By the same argument for ‖q − v‖2, we obtain

‖q − r‖ = ‖q − u‖ = ‖q − v‖ = 1
2‖p − r‖. (87)

Now define q̂ := PLq with L := aff{r, u, v}. By Lemma 2.1(iii),

‖q − r‖ ≥ ‖q̂ − r‖ = ‖q̂ − u‖ = ‖q̂ − v‖, (88)

i.e., q̂ is the center of the circumcircle passing r, u, and v. Applying the law of sines, we get

‖u − v‖ = 2‖q̂ − r‖ sin ûrv ≤ 2‖q − r‖ sin ûrv = ‖p − r‖ sin ûrv. (89)

The lemma is proved. �
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We now ready to prove our new result on quasi coercivity of gDR operators under linear regularity
assumption.

Proposition 4.12 (quasi coercivity of gDR operators under linear regularity). Let A and B
be closed subsets of X such that A ∩ B 6= ∅. Let also w ∈ A ∩ B, λ, µ ∈ ]0, 2], and α ∈ R++. Suppose
that {A, B} is superregular at w and linearly regular around w and that min{λ, µ} < 2. Then T α

λ,µ is
(A ∩ B)-quasi coercive around w.

Proof. By assumption, there exist κ ∈ R++ and δ ∈ R++ such that

∀x ∈ IB(w; δ), dA∩B(x) ≤ κ max{dA(x), dB(x)}. (90)

Now suppose on the contrary that T α
λ,µ is not (A ∩ B)-quasi coercive around w. By Lemma 4.1, P µ

BP λ
A

is not (A ∩ B)-quasi coercive around w, which means that there exist sequences ζn ↓ 0, xn → w,
sn ∈ P µ

BP λ
Axn such that

0 ≤ ‖xn − sn‖ < ζndA∩B(xn). (91)

We find an ∈ PAxn, rn ∈ P λ
Axn, and bn ∈ PBrn such that

xn − rn = λ(xn − an) and sn − rn = µ(bn − rn). (92)

Without loss of generality, we assume that ζn < min{ 1
κ , λ

κ , µ
κ } and xn ∈ IB(w; δ/(1 + λ)) ⊂ IB(w; δ) for

all n ∈ N. It then follows from (90) and (91) that

∀n ∈ N, ‖xn − sn‖ < ζndA∩B(xn) ≤ ζnκ max{dA(xn), dB(xn)}. (93)

Let n ∈ N. Since an ∈ A and bn ∈ B, we have dA(xn) ≤ ‖xn − an‖ = 1
λ‖xn − rn‖ and

dB(xn) ≤ ‖xn − bn‖ ≤ ‖xn − rn‖ + ‖bn − rn‖ = ‖xn − rn‖ + 1
µ‖sn − rn‖. (94)

Therefore,

∀n ∈ N, ‖xn − sn‖ < εn(‖xn − rn‖ + ‖sn − rn‖), where εn := ζnκ max{1, 1
λ , 1

µ} → 0. (95)

Noting that ‖xn − sn‖ ≥ ‖xn − rn‖ − ‖sn − rn‖ and that εn < 1, we obtain

‖xn − rn‖ ≤ 1+εn

1−εn
‖sn − rn‖, (96)

which combined with (92) yields

∀n ∈ N, ‖an − rn‖ = |λ−1|
λ ‖xn − rn‖ ≤ σn‖bn − rn‖, where σn := µ|λ−1|

λ · 1+εn

1−εn
. (97)

Next, let pn ∈ PA∩Brn. Since xn → w, Fact 2.3(i) implies that an, rn, bn, sn, pn → w. In turn,
xn − an ∈ Nprox

A (an) and rn − bn ∈ Nprox
B (bn). By the superregularity of A and B at w, taking

subsequences if necessary and without relabeling, we can assume that

〈xn − an, pn − an〉 ≤ εn‖xn − an‖‖pn − an‖, and

〈rn − bn, pn − bn〉 ≤ εn‖rn − bn‖‖pn − bn‖.

(98a)

(98b)

Now we divide the proof into several parts.
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Part 1: We claim that

∀n ∈ N, xn /∈ {rn, an} and rn /∈ {sn, bn, pn} (99)

and that

ŝnrnxn → 0 and cos x̂nrnpn − cos ŝnrnpn → 0 as n → +∞. (100)

Indeed, if xn = rn or xn = an for some n, then xn = an = rn ∈ A and, by (91),

ζndA∩B(xn) > ‖xn − sn‖ = ‖rn − sn‖ = µ‖rn − bn‖
= µdB(rn) = µdB(xn) = µ max{dA(xn), dB(xn)} ≥ µ

κdA∩B(xn),

(101a)

(101b)

which contradicts the fact that ζn < µ
κ . Similarly, if rn = sn or rn = bn for some n, then rn = bn =

sn ∈ B and, by (91),

ζndA∩B(xn) > ‖xn − sn‖ = ‖xn − rn‖ = λ‖xn − an‖
= λdA(xn) = λ max{dA(xn), dB(xn)} ≥ λ

κdA∩B(xn),

(102a)

(102b)

which contradicts the fact that ζn < λ
κ . So we complete (99) due to ‖pn − rn‖ ≥ dB(rn) = ‖bn − rn‖ =

1
µ‖sn − rn‖. Now combining (95) and Lemma 4.10, we arrive at (100).

Part 2: Let σn := max{1, σn}. Since εn → 0, the sequence (σn)n∈N is bounded, and so is (σn)n∈N.
We claim that

∀n ∈ N, ‖pn − rn‖ ≤ σnκ‖bn − rn‖,

max{‖pn − an‖, ‖pn − bn‖} ≤ σn(κ + 1)‖bn − rn‖.

(103a)

(103b)

Let n ∈ N. Since xn ∈ IB(w; δ/(1 + λ)) and rn ∈ P λ
Axn, Fact 2.3(i) yields rn ∈ IB(w; δ). Using linear

regularity and (97), we estimate

‖pn − rn‖ = dA∩B(rn) ≤ κ max{dA(rn), dB(rn)}
≤ κ max{‖an − rn‖, ‖bn − rn‖}
≤ κ max{σn‖bn − rn‖, ‖bn − rn‖} = κσn‖bn − rn‖.

(104a)

(104b)

(104c)

So (103a) holds. Combining with (97) gives

‖pn − an‖ ≤ ‖pn − rn‖ + ‖an − rn‖ ≤
(
κσn + σn

)
‖bn − rn‖,

‖pn − bn‖ ≤ ‖pn − rn‖ + ‖bn − rn‖ ≤ (κσn + 1)‖bn − rn‖.

(105a)

(105b)

Thus, (103b) holds.

Part 3: We claim that λ > 1 and that there exists σ ∈ ]0, 1[ satisfying

σn ≤ σ < 1 and σn = 1 for all n sufficiently large. (106)

Let σ be an upper bound of the bounded sequence (σn)n∈N. Using (98b) and (103b), we have

cos ŝnrnpn =
〈sn − rn, pn − rn〉

‖sn − rn‖‖pn − rn‖ =
〈bn − rn, pn − rn〉

‖bn − rn‖‖pn − rn‖

=
〈bn − rn, pn − bn〉 + ‖bn − rn‖2

‖bn − rn‖‖pn − rn‖

≥ −εn‖bn − rn‖‖pn − bn‖ + ‖bn − rn‖2

‖bn − rn‖‖pn − rn‖

≥ 1 − εnσ(κ + 1)

κσ
→ 1

κσ
> 0.

(107a)

(107b)

(107c)

(107d)
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It follows that

cos ŝnrnpn >
1

2κσ
> 0 for all n sufficiently large. (108)

Combining with (100) yields

cos x̂nrnpn >
1

4κσ
> 0 for all n sufficiently large. (109)

Suppose that λ ≤ 1. Using (98a), (103b) and noting that ‖pn − rn‖ = dA∩B(rn) ≥ dB(rn) = ‖rn − bn‖,
we obtain that

cos x̂nrnpn =
〈xn − rn, pn − rn〉

‖xn − rn‖‖pn − rn‖ =
〈xn − an, pn − rn〉

‖xn − an‖‖pn − rn‖

=
〈xn − an, pn − an〉 + (λ − 1)‖xn − an‖2

‖xn − an‖‖pn − rn‖

≤ εn
‖pn − an‖
‖pn − rn‖ + (λ − 1)

‖xn − an‖
‖pn − rn‖ ≤ εnσ(κ + 1) → 0,

(110a)

(110b)

(110c)

which contradicts (109). We must therefore have λ > 1. Now notice that |λ−1|
λ = λ−1

λ ≤ 1
2 and µ ≤ 2,

where only one equality can happen. Thus,

σn = µ(λ−1)
λ · 1+εn

1−εn
→ µ(λ−1)

λ < 1. (111)

The claim then follows.

Part 4: Define lines L1,n := aff{xn, rn}, L2,n := aff{rn, sn} and projections un := PL1,n
pn,

vn := PL2,n
pn. We have that

un := an + η1
xn − an

‖xn − an‖ with η1 :=
〈xn − an, pn − an〉

‖xn − an‖ ≤ εn‖pn − an‖ (112)

and that

vn := bn + η2
rn − bn

‖rn − bn‖ , with η2 :=
〈rn − bn, pn − bn〉

‖rn − bn‖ ≤ εn‖pn − bn‖, (113)

where the upper bound for η1 and η2 follows from (98). By using (97), (103b), and (106), for all n
sufficiently large,

‖un − rn‖ ≤ ‖an − rn‖ + η1 ≤ ‖an − rn‖ + εn‖pn − an‖ ≤
(
σ + εn(κ + 1)

)
‖bn − rn‖,

‖vn − rn‖ = |‖bn − rn‖ − η2| ≥ ‖bn − rn‖ − εn‖pn − bn‖ ≥
(
1 − εn(κ + 1)

)
‖bn − rn‖,

(114a)

(114b)

and so

‖un − vn‖ ≥ ‖vn − rn‖ − ‖un − rn‖ ≥ 1−σ
2 ‖bn − rn‖, (115)

which together with (99), (103a), and (106) yields

‖un − vn‖ ≥ 1−σ
2κ ‖pn − rn‖ > 0. (116)

On the other hand, for all n sufficiently large, rn /∈ {un, vn} due to (108) and (109). Noting also from
(99) that rn /∈ {xn, sn}, we then apply Lemma 4.11 to get ‖un − vn‖ ≤ ‖pn − rn‖ sin x̂nrnsn, hence

0 < 1−σ
2κ ‖pn − rn‖ ≤ ‖pn − rn‖ sin x̂nrnsn. (117)

Using (100), we derive that

0 < 1−σ
2κ ≤ sin x̂nrnsn → 0, (118)

which is a contradiction. �
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Remark 4.13. In Proposition 4.12, the parameter condition min{λ, µ} < 2 cannot be removed. For
example, we consider two convex (hence, superregular) sets A := epi | · | = {(s, t) ∈ R2

∣∣ s ≤ |t|} and
B := R × {0} in R2. Clearly, {A, B} is linearly regular at (0, 0) ∈ A ∩ B. Consider the DR operator
T := T α

2,2 for some α ∈ ]0, 1] and x = (0, t) for t < 0. In this case λ = µ = 2, and we check that
x = T x, while dA∩B(x) = |t|. Therefore, T is not (A ∩ B)-quasi coercive at (0, 0).

We also obtain a global version of Proposition 4.12.

Proposition 4.14 (global quasi coercivity of convex gDR operators). Let A and B be closed
convex subsets of X such that A∩B 6= ∅ and that {A, B} is boundedly linearly regular. Let λ, µ ∈ ]0, 2]
be such that min{λ, µ} < 2, and let α ∈ R++. Then T α

λ,µ is (A ∩ B)-quasi coercive on every bounded
set S of X.

Proof. On the one hand, by assumption, T α
λ,µ is a continuous single-valued operator and Fix T α

λ,µ =
A ∩ B due to Lemma 2.12(i) and Lemma 2.13(ii). On the other hand, for every w ∈ A ∩ B, {A, B} is
superregular at w (see [11, Remark 8.2(v)]) and linearly regular around w, hence, by Proposition 4.12,
T α

λ,µ is (A ∩ B)-quasi coercive around w. Applying Lemma 4.2 with L = X, we obtain that T α
λ,µ is

(A ∩ B)-quasi coercive on every bounded set S of X. �

As a supplement for the above result, we refer to [4, Corollary 5] for the most common sufficient
condition that guarantees bounded linear regularity for finite systems of convex sets.

5. Convergence rate analysis

In this section, let m be a positive integer, set I := {1, . . . , m}, and let {Ci}i∈I be a system of closed
(possibly nonconvex) subsets of X with C :=

⋂
i∈I Ci 6= ∅. Given an ordered tuple (Ti)i∈I of set-valued

operators from X to X, the cyclic algorithm associated with (Ti)i∈I generates cyclic sequences (xn)n∈N

by

∀n ∈ N, xn+1 ∈ Tn+1xn, where x0 ∈ X. (119)

Here we adopt the convention that

∀n ∈ N, ∀i ∈ I, Tmn+i := Ti. (120)

Recall that a sequence (xn)n∈N is said to converge to a point x with R-linear rate ρ ∈ [0, 1[ if there
exists a constant σ ∈ R+ such that

∀n ∈ N, ‖xn − x‖ ≤ σρn. (121)

In what follows, we denote [ρ]+ := max{0, ρ} for ρ ∈ R.

Theorem 5.1 (sufficient condition for linear convergence). Let w ∈ C, δ ∈ R++, and ν ∈ ]0, 1].
For every i ∈ I, let γi ∈ [1, +∞[ and βi ∈ R++. Let (xn)n∈N be a cyclic sequence generated by (Ti)i∈I .
Suppose that

(a) {Ci}i∈I is κ-linearly regular on IB(w; δ/2) for some κ ∈ R++.
(b) For every i ∈ I, Ti is (Ci ∩ IB(w; δ), γi , βi)-quasi firmly Fejér monotone and (Ci, ν)-quasi coercive

on IB(w; δ/2).

Set Γ := (γ1 · · · γm)1/2, δ0 := δ
2Γγ

1/2
m , and

ρ :=

[
Γ2 − ν2

κ2

( ∑

i∈I

1

βi

)−1
]1/2

+

. (122)

Then the following hold:
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(i) ∀x0 ∈ IB(w; δ0), dC(xm) ≤ ρdC(x0).

(ii) If ρ < 1, then whenever (xmn)n∈N ⊂ IB(w; δ0) or x0 ∈ IB
(
w; δ0(1−ρ)

2+Γ−ρ

)
, the sequence (xn)n∈N

converges R-linearly to a point x ∈ C with rate ρ1/m.
(iii) If γi = 1 for every i ∈ I, then whenever x0 ∈ IB(w; δ/2), the sequence (xn)n∈N converges R-

linearly to a point x ∈ C with rate

[
1 − ν2

κ2

( ∑

i∈I

1

βi

)−1
]1/2m

+

. (123)

Proof. (i)&(ii): This follows from [19, Theorem 4.5].

(iii): Assume that γi = 1 for every i ∈ I. Then Γ = 1, δ0 = δ/2, and

ρ =

[
1 − ν2

κ2

( ∑

i∈I

1

βi

)−1
]1/2m

+

< 1. (124)

Let x0 ∈ IB(w; δ/2). Since for every i ∈ I, Ti is (Ci ∩ IB(w; δ), 1, βi)-quasi firmly Fejér monotone and
hence (Ci ∩ IB(w; δ), 1)-quasi Fejér monotone on IB(w; δ/2), we obtain from [19, Lemma 3.4(ii)] that
(xn)n∈N ⊂ IB(w; δ/2). Now apply (ii). �

From now on, let ℓ be a positive integer and set J := {1, . . . , ℓ}. For every j ∈ J , let

λj , µj ∈ ]0, 2] , β̂j :=
( λj

2 − λj
+

µj

2 − µj

)−1
, αj ∈

]
0, 1 + β̂j

[
, and

sj, tj ∈ I such that sj 6= tj and {sj}j∈J ∪ {tj}j∈J = I.

(125a)

(125b)

Setting

∀j ∈ J, Tj := (1 − αj) Id +αjP
µj

Ctj
P

λj

Csj
, (126)

we study the cyclic generalized Douglas–Rachford algorithm defined by (Tj)j∈J , which includes several
algorithms in the literature, for example, the cyclically anchored DR algorithm [14] and the cyclic DR
algorithm [17]; see [19, Section 5.3] for more details. We also say that the cyclic gDR algorithm is
connected if for every i, k ∈ I, there exists a path

{(i1, i2), (i2, i3), . . . , (iq−1, iq)} ⊆ {(sj , tj), (tj , sj)}j∈J such that i1 = i, iq = k; (127)

in other words, I = {1, . . . , m} and {(sj , tj)}j∈J respectively represent the vertices and edges of a
connected undirected graph. Here, a graph is undirected if every edge is bidirectional, and is connected
if every two vertices can be linked by some path composed by the edges. It is clear that the cyclically
anchored DR algorithm and the cyclic DR algorithm are connected.

Next, for every j ∈ J , we define

Lj := aff(Csj
∪ Ctj

) and Zj :=

{
(Csj

∩ Ctj
) + (Lj − Lj)

⊥ if λj = µj = 2,

Csj
∩ Ctj

otherwise
(128)

and note from Lemma 2.10(iii) that Zj ⊆ Fix Tj. A relationship between {Zj}j∈J and {Ci}i∈I is given
as follows.

Lemma 5.2 ({Zj}j∈J vs. {Ci}i∈I). Let w ∈ ⋂
i∈I Ci. Suppose that {Csj

, Ctj
} is strongly regular at

w whenever λj = µj = 2. Then
⋂

j∈J

Zj =
⋂

i∈I

Ci. (129)

If, in addition, {Ci}i∈I is κ-linearly regular around w, then so is {Zj}j∈J .
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Proof. By assumption and Proposition 2.5, Lj = X whenever λj = µj = 2. Thus, (128) implies that
Zj = Csj

∩ Ctj
for every i ∈ J . So it follows from (125b) that

⋂

j∈J

Zj =
⋂

j∈J

(Csj
∩ Ctj

) =
⋂

i∈I

Ci. (130)

Next, we note that

∀j ∈ J, ∀x ∈ X, max{dCsj
(x), dCtj

(x)} ≤ dZj
(x). (131)

Taking the maximum over all j ∈ J and using (125b) yield

∀x ∈ X, max
i∈I

dCi
(x) ≤ max

j∈J
dZj

(x). (132)

Now suppose in addition that {Ci}i∈I is κ-linearly regular around w. Then combining with (130) and
(132), we deduce that {Zj}j∈J is also κ-linearly regular around w. �

Lemma 5.3 (shadows of common fixed points). Suppose that the cyclic gDR algorithm is con-
nected. Then

∀x ∈
⋂

j∈J

Zj , PC1
x = · · · = PCmx = PCx ∈ C. (133)

Proof. Let x ∈ ⋂
j∈J Zj . By Lemma 2.10(ii), PCsj

x = PCtj
x ∈ Csj

∩ Ctj
for every j ∈ J . Since the

algorithm is connected, in view of (125b) and (127), we conclude that PC1
x = · · · = PCmx ∈ C, which

also implies that PCi
x = PCx for every i ∈ I. �

We note from Propositions 2.5 and 2.8 that {Csj
, Ctj

} is affine-hull regular at w if and only if the
CQ-number θCsj

,Ctj
,Lj

(w, δ) < 1 for some δ ∈ R++, in which case {Csj
, Ctj

} is linearly regular around
w. This perspective supports the use of our assumptions in the following.

Theorem 5.4 (linear convergence under affine-hull regularity). Let w ∈ C :=
⋂

i∈I Ci, ε ∈
[0, 1/3], δ ∈ R++, κ ∈ R++, and κj ∈ R++ for every j ∈ J . Suppose that

(a) {Zj}j∈J is κ-linearly regular on IB(w; δ/2) and for every j ∈ J , {Csj
, Ctj

} is κj-linearly regular
on IB(w; δ/2).

(b) For every i ∈ I, Ci is (ε,
√

2δ)-regular at w.
(c) For every j ∈ J , the CQ-number θj := θCsj

,Ctj
,Lj

(w,
√

2δ) < 1.

(d) Setting for every j ∈ J ,

γj := 1 − αj + αj
(
1 +

λjε
1−ε

)(
1 +

µjε
1−ε

)
,

νj :=
αj

√
1−θ2

j

κ min
{

λj ,
2µj

|1−µj |+
√

(1−µj )2+4µj(1−θ2
j
)

}
, and

ν ′
j :=

{
νj if λj = µj = 2 or Lj = X,

min{νj , αj(λj + µj − λjµj)} otherwise,

(134a)

(134b)

(134c)

it holds that

ρ :=


Γ2 − ν2

κ2

( ∑

j∈J

αj

1 − αj + β̂j

)−1




1

2ℓ

+

< 1, (135)

where Γ := (γ1 · · · γℓ)
1/2 and ν := min

j∈J
{ν ′

j, 1}.
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Then if either (xℓn)n∈N ⊂ IB(w; δ0) or x0 ∈ IB(w; δ0(1−ρ)
2+Γ−ρ ), where δ0 := δ

2Γγ
1/2
ℓ , the cyclic sequence

(xn)n∈N generated by (Tj)j∈J converges R-linearly with rate ρ to a point

x ∈
⋂

j∈J

Zj ⊆
⋂

j∈J

Fix Tj . (136)

Additionally, if the cyclic gDR algorithm is connected, then PC1
x = · · · = PCmx ∈ C.

Proof. Let j ∈ J . We have that w ∈ Csj
∩Ctj

and, by Proposition 4.5, that Tj is (Zj , ν ′
j)- and therefore

(Zj , ν)-quasi coercive on IB(w; δ/2). Noting that

(
Csj

∩ Ctj
+ (Lj − Lj)⊥)

∩ IB(w; δ) ⊆
(
Csj

∩ Ctj
∩ IB(w; δ)

)
+ (Lj − Lj)⊥ (137)

and using Proposition 3.4(ii)–(iii), we derive that Tj is (Zj ∩ IB(w; δ), γj ,
1−αj+β̂j

αj
)-quasi firmly Fejér

monotone on IB(w; δ/2). Thus, applying Theorem 5.1(ii) to (Tj)j∈J and the corresponding sets (Zj)j∈J ,
we obtain R-linear convergence of the cyclic sequence (xn)n∈N to a point x satisfying (136). Now
Lemma 5.3 completes the proof. �

Remark 5.5 (sharper convergence rate). Theorem 5.4 indeed generalizes [19, Theorem 5.21], and
moreover, provides sharper convergence rate under the same assumptions. To see this, let w ∈ ⋂

i∈I Ci

and suppose all assumptions [19, Theorem 5.21] are fulfilled. By Proposition 2.5, Proposition 2.8, and
Lemma 5.2, all assumptions in Theorem 5.4 are also satisfied on some neighborhood of w. It can be
seen that the linear convergence rate ρ in Theorem 5.4 is smaller than the one obtained in the proof of
[19, Theorem 5.21] because its corresponding quasi coercivity constant ν is better (see Remark 4.8).

Remark 5.6 (shadows of common fixed points). As shown in Theorem 5.4, the cyclic gDR algo-
rithm converges (locally) to the set of common fixed points. However, without additional conditions,
one shoud not expect the limit points or their projections (or “shadows”) onto Ci’s to lie in the inter-
section C :=

⋂
i∈I Ci, which means that those points might not solve the feasibility problem! We will

illustrate this phenomenon in the following example.

Suppose that C1 = R+ ×R×{0}, C2 = R×R+ ×{0}, C3 = {(ξ, ζ, ζ)
∣∣ ξ, ζ ∈ R}, and C4 = R+ ×R2

in X = R3. Consider J = {1, 2}, λ1 = µ1 = 2, min{λ2, µ2} < 2, (s1, t1) = (1, 2), and (s2, t2) = (3, 4).
So T1 := T α1

2,2 and T2 := T α2

λ2,µ2
are the gDR operators for (C1, C2) and (C3, C4), respectively. Then

L1 = aff(C1 ∪ C2) = R2 × {0}, Z1 = (C1 ∩ C2) + (L1 − L1)⊥ = R2
+ × R,

L2 = aff(C3 ∪ C4) = R3, Z2 = (C3 ∩ C4) = {(ξ, ζ, ζ)
∣∣ ξ, ζ ∈ R+}.

(138a)

(138b)

Now take x = (1, 1, 1) ∈ Z1 ∩ Z2 ⊆ Fix T1 ∩ Fix T2. Then PC1
x = PC2

x = (1, 1, 0) 6= (1, 1, 1) =
PC3

x = PC4
x. So these projections are not identical and neither of them lies in the intersection

C1 ∩ C2 ∩ C3 ∩ C4 = R+ × {0} × {0}.

Remark 5.7 (on linear regularity moduli). To the best of our knowledge, there is no known
results on the relationship between the linear regularity modulus κ of the entire system {Ci}i∈I and
those of its subsystems. So we present here two simple examples showing that one modulus can be
arbitrarily large while others remain bounded.

We will need the following formula whose proof is elementary: For two intersecting hyperplanes A
and B of X with two nonparallel unit normal vectors nA and nB, the system {A, B} is linearly regular
on X with modulus √

2

1 − | 〈nA, nB〉 | . (139)
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(i) Arbitrarily large linear regularity modulus for subsystem: Let ε ∈ R++ and suppose
that C1 = R×{0}, C2 = {ξ(1, ε)

∣∣ ξ ∈ R}, C3 = {0}×R are lines in X = R2. One can check that⋂3
i=1 Ci = {(0, 0)} and that {Ci}i∈{1,2,3} is κ-linearly regular on X with κ =

√
2. As noticed,

{C1, C2} is linearly regular on X. Let κ′ be a linear regularity modulus of {C1, C2} around
w = (0, 0) and take x = (ε, ε2) ∈ C2. Then, as ε is sufficiently small,

√
ε2 + ε4 = dC1∩C2

(x) ≤
κ′ max{dC1

(x), dC2
(x)} = κ′ε2. We deduce that κ′ ≥

√
1 + 1/ε2 and so κ′ can be arbitrarily

large while κ remains constant.
(ii) Arbitrarily large linear regularity modulus for entire system: Let ε ∈ R++ and suppose

that X = R3. Consider the planes C1 = R2 × {0}, C2 = {0} ×R2, C3 being the plane defined by
{(0, 0, 0), (ε, 1, 0), (0, 1, ε)}, and let w = (0, 0, 0) ∈ C := C1 ∩ C2 ∩ C3 = {(0, 0, 0)}. We see that
C1, C2, and C3 respectively have unit normal vectors

n1 = (0, 0, 1), n2 = (1, 0, 0), and n3 = 1√
2+ε2

(1, −ε, 1). (140)

So {Ci, Cj} is κi,j-linearly regular on X, where κi,j is computed by (139) as κ1,2 =
√

2 and

κ1,3 = κ2,3 =
√

2/
√

1 − 1/
√

2 + ε2 ∈
]√

2, 2
[
. Now assume that {C1, C2, C3} is κ-linearly regular

around w for some κ ∈ R+ and let x = (ε2, ε, 0) ∈ C1 ∩ C3. Then, as ε is sufficiently small,

√
ε2 + ε4 = dC(x) ≤ κ max

i∈{1,2,3}
dCi

(x) = κε2, (141)

which yields κ ≥
√

1 + 1/ε2. Hence, κ can be arbitrarily large while κi,j remains bounded.

We note from Proposition 2.8(i)–(ii) that assumption (c) in Theorem 5.4 means that for every
j ∈ J , {Csj

, Ctj
} is affine-hull regular ar w. Nevertheless, in the following linear convergence result,

we only require linear regularity for pairs {Csj
, Ctj

} corresponding to min{λj , µj} < 2.

Theorem 5.8 (linear convergence under linear regularity). Let w ∈ C :=
⋂

i∈I Ci. Suppose
that {Zj}j∈J is linearly regular around w, that {Ci}i∈I is superregular at w, and that for every j ∈ J ,
{Csj

, Ctj
} is linearly regular around w if min{λj , µj} < 2 and affine-hull regular at w otherwise. Then

the cyclic gDR algorithm converges R-linearly locally to a point

x ∈
⋂

j∈J

Zj ⊆
⋂

j∈J

Fix Tj . (142)

Moreover, PC1
x = · · · = PCmx ∈ C provided that the cyclic gDR algorithm is connected.

Proof. Combining Corollary 4.6(ii) and Proposition 4.12, there exist ν ∈ ]0, 1] and δ ∈ R++ such that,
for every j ∈ J , Tj is (Zj , ν)-quasi coercive on IB(w; δ/2). Let ε ∈ ]0, 1/3]. Since {Ci}i∈I is superregular
at w, we shrink δ if necessary so that Ci is (ε,

√
2δ)-regular at w for every i ∈ I. Now let j ∈ J . Then

Csj
and Ctj

are respectively (ε, δ)- and (ε,
√

2δ)-regular at w. Using Proposition 3.4(ii)–(iii) and noting
that (

Csj
∩ Ctj

+ (Lj − Lj)
⊥)

∩ IB(w; δ) ⊆
(
Csj

∩ Ctj
∩ IB(w; δ)

)
+ (Lj − Lj)

⊥, (143)

we have that Tj is (Zj ∩ IB(w; δ), γj ,
1−αj+β̂j

αj
)-quasi firmly Fejér monotone on IB(w; δ/2), where γj :=

1 − αj + αj
(
1 +

λjε
1−ε

)(
1 +

µjε
1−ε

)
. Since γj → 1+ as ε → 0+, we can choose ε sufficiently small so that

ρ :=


γ1 · · · γm − ν2

κ2

( ∑

j∈J

αj

1 − αj + β̂j

)−1




1/2

+

< 1. (144)

Now R-linear convergence of the cyclic sequence (xn)n∈N is obtained by applying Theorem 5.1(ii) to
(Tj)j∈J and the corresponding sets (Zj)j∈J . The rest then follows from Lemma 5.3. �
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In Theorem 5.8, if {Csj
, Ctj

} is strongly regular instead of affine-hull regular at w whenever λj =
µj = 2, then the limit point x ∈ C. In this case, by Lemma 5.2, the linear regularity of {Zj}j∈J is
a consequence of that of {Ci}i∈I . We summarize this observation in the following corollary, which
indeed extends [19, Theorem 5.21].

Corollary 5.9 (linear convergence to a common point). Let w ∈ C :=
⋂

i∈I Ci. Suppose that
{Ci}i∈I is superregular at w and linearly regular around w, and that for every j ∈ J , {Csj

, Ctj
} is

linearly regular around w if min{λj , µj} < 2 and strongly regular at w otherwise. Then the cyclic gDR
algorithm converges R-linearly locally to a point x ∈ C.

Proof. Since strong regularity implies affine-hull regularity, the conclusion follows from Theorem 5.8
and Lemma 5.2. �

We say that the cyclic gDR algorithm is fully connected if there exist positive integers r, q such
that 1 ≤ r ≤ q ≤ ℓ and (not necessarily distinct) indices i1, . . . , iq ∈ I such that {i1, . . . , iq} = I and
that

{(i1, i2), (i2, i3), . . . , (ir−1, ir), (ir, i1)} ∪ {(i1, ir+1), . . . , (i1, iq)} ⊆ {(sj , tj)}j∈J . (145)

Here we adopt the following convention. If r = 1, then (145) reads as

{(i1, i2), . . . , (i1, iq)} ⊆ {(sj , tj)}j∈J , i.e., {(i1, k)}k∈Ir{i1} ⊆ {(sj , tj)}j∈J , (146)

which is a generalization of the cyclically anchored DR algorithm. If r = q, then (145) reads as

{(i1, i2), (i2, i3), . . . , (ir−1, ir), (ir, i1)} ⊆ {(sj, tj)}j∈J , (147)

which is a generalization of the cyclic DR algorithm.

Lemma 5.10 (shadows of common fixed points under convexity). Suppose that Ci is convex
for every i ∈ I. Let TCi,Cj

denote a gDR operator for the pair (Ci, Cj). Let i1, . . . , ir ∈ I (not
necessarily distinct). Then the following hold:

(i) If x ∈ ⋂r
k=2 Fix TCi1

,Cik
, then PCi1

x ∈ ⋂r
k=1 Cik

.
(ii) If x ∈ ⋂r

k=1 Fix TCik
,Cik+1

, where ir+1 := i1, then PCi1
x = · · · = PCir

x ∈ ⋂r
k=1 Cik

.

(iii) If the cyclic gDR algorithm is fully connected and x ∈ ⋂
j∈J Fix Tj , then there exists k ∈ I such

that PCk
x ∈ ⋂

i∈I Ci.

Proof. (i): For every k ∈ {2, . . . , r}, since Ci1
∩Cik

6= ∅, Lemma 2.13(i) implies that PCi1
x ∈ Ci1

∩Cik
.

Hence, PCi1
x ∈ ⋂r

k=1 Cik
.

(ii): This is basically similar to the argument of [17, Theorem 3.1]. For every k ∈
{1, . . . , r}, by Lemma 2.13(i), PCik

x ∈ Cik
∩ Cik+1

⊆ Cik+1
, and then, by [5, Theorem 3.16],〈

x − PCik+1
, PCik

− PCik+1

〉
≤ 0. It follows that

0 ≤
r∑

k=1

‖PCik
− PCik+1

‖2 = 2
r∑

k=1

〈
−PCik+1

, PCik
− PCik+1

〉

= 2
r∑

k=1

〈
x − PCik+1

, PCik
− PCik+1

〉
≤ 0,

(148a)

(148b)

which yields PCik
= PCik+1

for all k ∈ {1, . . . , r}.

(iii): Combine (i) and (ii). �
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As one would hope for, the linear convergence of the cyclic gDR algorithm is global in the convex
case. The next result encompasses [14, Corollary 8.2 and Theorem 8.5].

Theorem 5.11 (global linear convergence under convexity). Suppose that for every i ∈ I, Ci

is convex and that
⋂

i∈Ip
Ci ∩ ⋂

i∈IrIp
ri Ci 6= ∅, where Ip is the set of all i ∈ I such that Ci and Ck are

polyhedral whenever (i, k) ∈ {(sj , tj), (tj , sj)}j∈J . Set

∀j ∈ J, Yj :=





Csj
∩ Ctj

if min{λj , µj} < 2,

(Csj
∩ Ctj

) + (Lj − Lj)
⊥ if λj = µj = 2 and ri Csj

∩ ri Ctj
6= ∅,

Fix Tj otherwise.

(149)

Then the following hold:

(i) Regardless of the starting point x0, the cyclic gDR sequence (xn)n∈N generated by (Tj)j∈J con-
verges R-linearly to a point

x ∈
⋂

j∈J

Yj ⊆
⋂

j∈J

Fix Tj , (150)

while the “shadow sequence” (PCi
xn)n∈N also converges R-linearly to PCi

x for every i ∈ I.
(ii) If 0 ∈ int(Ctj

− Csj
) whenever λj = µj = 2, then the limit point x in (i) even satisfies x ∈ C.

(iii) If the cyclic gDR algorithm is connected and ri Csj
∩ ri Ctj

6= ∅ whenever λj = µj = 2, then the
limit point x in (i) satisfies PC1

x = · · · = PCmx ∈ C.
(iv) If the cyclic gDR algorithm is fully connected, then the limit point x in (i) satisfies PCk

x ∈ C
for some k ∈ I.

Proof. First, it follows from Lemma 2.10(iii) that

∀j ∈ J, Csj
∩ Ctj

⊆ Yj ⊆ Fix Tj. (151)

(i): For every j ∈ J , by the convexity of Csj
and Ctj

and by noting from Lemma 2.13(i) that
Fix Tj = Csj

∩ Ctj
+ NCsj

−Ctj
(0) whenever λj = µj = 2, we have that Yj is convex. Set Jp :=

{j ∈ J
∣∣ Csj

and Ctj
are polyhedral}. Then Yj is polyhedral for every j ∈ Jp.

Let j ∈ J r Jp. Since j /∈ Jp, we must have sj, tj /∈ Ip and, by assumption, ri Csj
∩ ri Ctj

6= ∅,
so Yj = Csj

∩ Ctj
if min{λj , µj} < 2, and Yj = (Csj

∩ Ctj
) + (Lj − Lj)

⊥ otherwise. Using [34,
Corollary 6.6.2],

ri Yj ⊇
{

ri(Csj
∩ Ctj

) if min{λj , µj} < 2,

ri(Csj
∩ Ctj

) + ri(Lj − Lj)
⊥ otherwise,

(152)

thus ri Yj ⊇ ri(Csj
∩ Ctj

) = ri Csj
∩ ri Ctj

due to [34, Theorem 6.5]. By combining with (125b) and
noting that if i ∈ Ip, then i ∈ {sj , tj} for some j ∈ Jp,

⋂

j∈Jp

Yj ∩
⋂

j∈JrJp

ri Yj ⊇
⋂

j∈Jp

(Csj
∩ Ctj

) ∩
⋂

j∈JrJp

(ri Csj
∩ ri Ctj

) ⊇
⋂

i∈Ip

Ci ∩
⋂

i∈IrIp

ri Ci 6= ∅. (153)

Let x0 ∈ X and let (xn)n∈N be the cyclic sequence generated by (Tj)j∈J with starting point x0. Choose
δ ∈ R++ and w ∈ C such that δ ≥ 2‖x0 − w‖ ≥ 2dC(x0). Then x0 ∈ IB(w; δ/2). From (153) and
[4, Corollary 5], there is κ ∈ R++ such that {Yj}j∈J is κ-linearly regular on IB(w; δ/2). Let j ∈ J .
By assumption, either ri Csj

∩ ri Ctj
6= ∅ or Csj

and Ctj
are polyhedral with Csj

∩ Ctj
6= ∅, so we

derive from Proposition 4.9 that Tj is (Yj , νj)-quasi coercive on IB(w; δ/2) for some νj ∈ R++. By

convexity and Lemma 2.12(ii), Tj is αj/(1+ β̂j)-averaged, which implies that Tj is (Fix Tj , 1,
1−αj+β̂j

αj
)-
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and hence (Yj, 1,
1−αj+β̂j

αj
)-quasi firmly Fejér monotone on X. Now Theorem 5.1(iii) yields the R-linear

convergence of the sequence (xn)n∈N to a point x ∈ ⋂
j∈J Yj.

Next, for every i ∈ I, by Fact 2.11(ii), PCi
is nonexpansive, so ‖PCi

xn − PCi
x‖ ≤ ‖xn − x‖ for all

n, and we deduce that PCi
xn converges R-linearly to PCi

x.

(ii): In the case where λj = µj = 2, since 0 ∈ int(Ctj
−Csj

), Lemma 2.13(ii) yields Fix Tj = Csj
∩Ctj

,
and then, by (151), Yj = Csj

∩ Ctj
. We deduce that Yj = Csj

∩ Ctj
for every j ∈ J , which together

with (125b) yields
⋂

j∈J Yj =
⋂

i∈I Ci = C.

(iii): Combine (i) and Lemma 5.3.

(iv): This follows from (i) and Lemma 5.10(iii). �

When specialized to the case of two sets, our results cover Theorems 4.3, 4.7, and 4.14 in [32] where
R-linear convergence is proved for the classical DR algorithm.

Corollary 5.12 (linear convergence of gDR algorithm). Let A and B be closed subsets of X,

L := aff(A ∪ B), and w ∈ A ∩ B 6= ∅. Let λ, µ ∈ ]0, 2], β̂ :=
( λ

2−λ + µ
2−µ

)−1
, α ∈

]
0, 1 + β̂

[
, and T the

gDR operator for (A, B) with parameters (λ, µ, α). Then the gDR algorithm generated by T

(i) locally converges with R-linear rate to a point x in each of the following cases:
(a) {A, B} is superregular and affine-hull regular at w, in which case x ∈ A∩B +(L−L)⊥ with

PAx = PBx ∈ A ∩ B, and if additionally {A, B} is strongly regular at w, then x ∈ A ∩ B.
(b) min{λ, µ} < 2 and {A, B} is superregular at w and linearly regular around w, in which case

x ∈ A ∩ B.
(ii) globally converges with R-linear rate to a point x in each of the following cases:

(a) A and B are convex and ri A ∩ ri B 6= ∅, in which case x ∈ A ∩ B + (L − L)⊥ with
PAx = PBx ∈ A ∩ B, and if additionally 0 ∈ int(B − A), then x ∈ A ∩ B.

(b) A and B are polyhedral, in which case x ∈ Fix T ⊆ A ∩ B + NA−B(0) with PAx ∈ A ∩ B.
(c) min{λ, µ} < 2, A and B are convex and {A, B} is boundedly linearly regular, in which case

x ∈ A ∩ B.

Proof. Applying Theorem 5.8 (noting that affine-hull regularity implies linear regularity due to Propo-
sition 2.5) and Theorem 5.11 with m = 2, ℓ = 1, and (s1, t1) = (1, 2), we get (i) and (ii)(a)–(ii)(b).

We now prove (ii)(c). Let x0 ∈ X and let (xn)n∈N be the cyclic sequence generated by (Tj)j∈J

with starting point x0. Take δ ∈ R++ and w ∈ A ∩ B such that δ ≥ 2‖x0 − w‖ ≥ 2dA∩B(x0). Then
x0 ∈ IB(w; δ/2). Since A and B are convex, Lemma 2.12(ii) implies that T is α/(1 + β̂)-averaged,

hence it is (Fix T, 1, 1−α+β̂
α )- and also (A ∩ B, 1, 1−α+β̂

α )-quasi firmly Fejér monotone on X. According
to Proposition 4.14, T is (A ∩ B, ν)-quasi coercive on IB(w; δ/2) for some ν ∈ R++. Now apply
Theorem 5.1(iii) to T and the corresponding set A ∩ B. �

6. Conclusion

In this paper, we have presented a diverse collection of improvements on the linear convergence of the
(cyclic) generalized Douglas–Rachford algorithm for solving feasibility problems. Our results indicate
that one has great flexibility in choosing suitable parameters and still achieve convergence with linear
rate. For instance, we have proved that the generalized DR algorithm involving at most one reflection
converges R-linearly locally assuming only that the system of superregular sets {A, B} is linearly
regular around the reference point. Interestingly, it remains open even in the convex case whether the
classical DR algorithm (i.e., λ = µ = 2 and α = 1/2) converges with R-linear rate under the same
assumption.
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