Skip to main content
Log in

On maximal monotonicity of bifunctions on Hadamard manifolds

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study some conditions for a monotone bifunction to be maximally monotone by using a corresponding vector field associated to the bifunction and vice versa. This approach allows us to establish existence of solutions to equilibrium problems in Hadamard manifolds obtained by perturbing the equilibrium bifunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Browder, F.E.: Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces. Trans. Am. Math. Soc. 118, 338–351 (1965)

    Article  MathSciNet  Google Scholar 

  2. Kamimura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 13, 226–240 (2000)

    Article  MathSciNet  Google Scholar 

  3. Brezis, H., Lions, P.L.: Produits infinis de resolvants. Israel J. Math. 29, 329–345 (1970)

    Article  Google Scholar 

  4. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MathSciNet  Google Scholar 

  5. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  6. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    Article  MathSciNet  Google Scholar 

  7. Németh, S.Z.: Monotone vector fields. Publ. Math. Debrecen 54, 437–449 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Monotone point-to-set vector fields. Balkan J. Geom. Appl. 5, 69–79 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Ferreira, O.P., Lucambio Pérez, L.R., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Glob. Optim. 31, 133–151 (2005)

    Article  MathSciNet  Google Scholar 

  10. Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Contributions to the study of monotone vector fields. Acta Math. Hungarica 94, 307–320 (2002)

    Article  MathSciNet  Google Scholar 

  11. Wang, J.H., López, G., Martín-Márquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010)

    Article  MathSciNet  Google Scholar 

  12. Cruz Neto, J.X., Ferreira, O.P., Lucâmbio Pérez, L.R., Németh, S.Z.: Convex-and monotone-transformable mathematical programming problems and a proximal-like point algorithm. J. Glob. Optim. 35, 53–69 (2006)

    Article  Google Scholar 

  13. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79, 663–683 (2009)

    Article  MathSciNet  Google Scholar 

  14. Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50(4), 2486–2514 (2012)

    Article  MathSciNet  Google Scholar 

  15. Udriste, C.: Convex functions and optimization Algorithms on Riemannian manifolds. In: Mathematics and its Applications. 297, Kluwer, Dordrecht (1994)

  16. Rapcsák, T.: Smooth Nonlinear Optimization in \({\mathbb{R}}^n\). Kluwer, Dordrecht (1997)

    Book  Google Scholar 

  17. Cruz Neto, J.X., de Lima, L.L., Oliveira, P.R.: Geodesic algorithms in Riemannian geometry. Balkan J. Geom. Appl. 3(2), 89–100 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Ferreira, O.P., Oliveira, P.R.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97, 93–104 (1998)

    Article  MathSciNet  Google Scholar 

  19. Grohs, P., Hosseini, S.: \(\epsilon \)-subgradient algorithms for locally Lipschitz functions on Riemannian manifolds. Adv. Comput. Math. 42(2), 333–360 (2016)

    Article  MathSciNet  Google Scholar 

  20. Ferreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method on Riemannian manifolds. J. Complex. 18, 304–329 (2002)

    Article  MathSciNet  Google Scholar 

  21. Adler, R., Dedieu, J.P., Margulies, J., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22, 359–390 (2002)

    Article  MathSciNet  Google Scholar 

  22. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifold. Optimization. 51, 257–270 (2002)

    Article  MathSciNet  Google Scholar 

  23. Souza, J.C.O., Oliveira, P.R.: A proximal point algorithm for DC functions on Hadamard manifolds. J. Glob. Optim. 63(4), 797–810 (2015)

    Article  Google Scholar 

  24. Wang, J., Li, C., López, G., Yao, J.C.: Proximal point algorithms on hadamard manifolds: linear convergence and finite termination. SIAM J. Optim. 26(4), 2696–2729 (2016)

    Article  MathSciNet  Google Scholar 

  25. Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152(3), 773–785 (2012)

    Article  MathSciNet  Google Scholar 

  26. Wang, X., Li, C., Wang, J., Yao, J.C.: Linear convergence of subgradient algorithm for convex feasibility on Riemannian manifolds. SIAM J. Optim. 25(4), 2334–2358 (2015)

    Article  MathSciNet  Google Scholar 

  27. Németh, S.Z.: Variational inequalities on Hadamard manifolds. Nonlinear Anal. Theory Methods Appl. 52(5), 1491–1498 (2003)

    Article  MathSciNet  Google Scholar 

  28. Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007)

    Article  MathSciNet  Google Scholar 

  29. Li, C., Mordukhovich, B.S., Wang, J., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21, 1523–1560 (2011)

    Article  MathSciNet  Google Scholar 

  30. Smith, S.T.: Optimization techniques on Riemannian manifolds. Fields Inst. Commun. 3, 113–146 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Hadjisavvasa, N., Khatibzadehb, H.: Maximal monotonicity of bifunctions. Optimization 59(2), 147–160 (2010)

    Article  MathSciNet  Google Scholar 

  32. Alizadeh, M.H., Hadjisavvas, N.: Local boundedness of monotone bifunctions. J. Glob. Optim. 53(2), 231–241 (2012)

    Article  MathSciNet  Google Scholar 

  33. Alizadeh, M.H., Bianchi, M., Hadjisavvas, N., Pini, R.: On cyclic and \(n\)-cyclic monotonicity of bifunctions. J. Glob. Optim. 60(4), 599–616 (2014)

    Article  MathSciNet  Google Scholar 

  34. Hadjisavvas, N., Jacinto, F.M., Martínez-Legaz, J.E.: Some conditions for maximal monotonicity of bifunctions. Set-Valued Var. Anal. 24(2), 323–332 (2016)

    Article  MathSciNet  Google Scholar 

  35. Fan, K.: A minimax inequality and applications, Inequalities. In: III (Proceedings of Third Symposium, Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), Academic Press, New York, 103–113 (1972)

  36. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  37. Iusem, A.N., Sosa, W.: New existence results for equilibrium problems. Nonlinear Anal. 52, 621–635 (2003)

    Article  MathSciNet  Google Scholar 

  38. Iusem, A.N., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems. Math. Program. 116(1), 259–273 (2009)

    Article  MathSciNet  Google Scholar 

  39. Martínez-Legaz, J.E., Sosa, W.: Duality for equilibrium problems. J. Glob. Optim. 35(2), 311–319 (2006)

    Article  MathSciNet  Google Scholar 

  40. Burachik, R.S., Kassay, G.: On a generalized proximal point method for solving equilibrium problems in Banach spaces. Nonlinear Anal. 75, 6456–6464 (2012)

    Article  MathSciNet  Google Scholar 

  41. Konnov, I.V.: Application of the proximal method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 119, 317–333 (2003)

    Article  MathSciNet  Google Scholar 

  42. Moudafi, A.: Proximal methods for a class of bilevel monotone equilibrium problems. J. Glob. Optim. 47(2), 287–292 (2010)

    Article  MathSciNet  Google Scholar 

  43. Nguyen, T.T.V., Strodiot, J.J., Nguyen, V.H.: The interior proximal extragradient method for solving equilibrium problems. J. Glob. Optim. 44, 175–192 (2009)

    Article  MathSciNet  Google Scholar 

  44. Kristály, A.: Nash-type equilibria on Riemannian manifolds: a variational approach. J. de Mathé. Pures et Appl. 101(5), 660–688 (2014)

    Article  MathSciNet  Google Scholar 

  45. Colao, V., López, G., Marino, G., Martín-Márquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388, 61–77 (2012)

    Article  MathSciNet  Google Scholar 

  46. Batista, E.E., Bento, G.C., Ferreira, O.P.: An existence result for the generalized vector equilibrium problem on Hadamard manifolds. J. Optim. Theory Appl. 167(2), 550–557 (2015)

    Article  MathSciNet  Google Scholar 

  47. Cruz Neto, J.X., Santos, P.S.M., Soares, P.A.: An extragradient method for equilibrium problems on Hadamard manifolds. Optim. Lett. 10(6), 1327–1336 (2016)

    Article  MathSciNet  Google Scholar 

  48. Do Carmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)

    Book  Google Scholar 

  49. Sakai, T.: Riemannian geometry. Transl. Math. Monogr. 149, American Mathematical Society, Providence, RI (1996)

  50. Bento, G.C., Cruz Neto, J.X., Soares Jr., P.A., Soubeyran, A.: A new regularization of equilibrium problems on Hadamard manifolds. Applications to theories of desires, Preprint (2017)

  51. Iusem, A.N.: On the maximal monotonicity of diagonal subdifferential operators. J. Convex Anal. 18, 489–503 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of the first author was supported in part by CNPq grant 305462/2014-8. The research of the second author was supported in part by CAPES/FAPEAM grant 062.01818/2015 and CAPES grant 88881.123555/2016-01. The authors wish to express their gratitude to the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. O. Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz Neto, J.X., Jacinto, F.M.O., Soares, P.A. et al. On maximal monotonicity of bifunctions on Hadamard manifolds. J Glob Optim 72, 591–601 (2018). https://doi.org/10.1007/s10898-018-0663-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0663-9

Keywords

Navigation