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Abstract   We propose an extended variant of the reformulation and decomposition algorithm for 

solving a special class of mixed-integer bilevel linear programs (MIBLPs) where continuous and 

integer variables are involved in both upper- and lower-level problems. In particular, we consider 

MIBLPs with upper-level constraints that involve lower-level variables. We assume that the 

inducible region is nonempty and all variables are bounded. By using the reformulation and 

decomposition scheme, an MIBLP is first converted into its equivalent single-level formulation, 

then computed by a column-and-constraint generation based decomposition algorithm. The 

solution procedure is enhanced by a projection strategy that does not require the relatively 

complete response property. To ensure its performance, we prove that our new method converges 

to the global optimal solution in a finite number of iterations. A large-scale computational study 

on random instances and instances of hierarchical supply chain planning are presented to 

demonstrate the effectiveness of the algorithm.  
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1. Introduction 
We present an algorithm for solving a special class of mixed-integer bilevel linear programs 

(MIBLPs) of the following form. 

 

(P0) 
0 0

0 0

, , ,
min   

u u l l

t u t u t l t l
R Z R Z

x y x y
c x c y d x d y+ + +                 (1) 

             s.t.     0 0u u l l
R Z R ZA x A y B x B y r+ + + ≤                (2) 

            0 0, , ,R Z R Zm m n nu u l lx y x y+ + + +∈ ∈ ∈ ∈                  (3) 

           ( )
( )

{0 0

,
, argmax   :

l l

l l t l t l
R Z

x y
x y w x w y∈ +                (4) 

                                               l l u u
R Z R ZP x P y s Q x Q y+ ≤ − −              (5) 

                                               },R Zn nl lx y+ +∈ ∈                (6) 

In formulation (P0), there is an ambiguity when multiple lower-level optimal solutions exist 

[1]. In the optimistic (or strong) formulation, the lower-level decision maker selects ( )0 0,l lx y  from 

his optimal solution set according to the interests of the upper-level decision maker [2]. On the 

contrary, in the pessimistic (or weak) formulation, the lower-level decision maker select one 

optimal solution to against the upper level decision maker’s interest [3]. In this paper, the 

optimistic formulation is treated. Without loss of generality, the lower-level program in (P0) can 

be converted into a minimization problem by changing the sign of the lower-level objective 

function. 

Bilevel programs [4], including MIBLPs, are frequently utilized to model Stackelberg games 

in game theory [5,6]. MIBLPs are intrinsically challenging to solve, and the use of mixed-integer 

linear programming (MILP) algorithms for solving MIBLPs is not straightforward [7-9]. Although 

MIBLPs can be solved using some general-purpose mixed-integer bilevel nonlinear program 

(MIBNLP) algorithms, most of them only have small-scale applications reported in the literature 

[10-12]. For example, the global MIBNLP algorithm proposed by Mitsos [13] was applied by 

Fliscounakis et al. to solve a specific large-scale MIBLP problem for a power system [14]. 

However, the detailed model formulation and the resulting problem size of this MIBLP are not 

reported. Most existing MIBLP algorithms are proposed to handle special classes of (P0), such as 

integer bilevel linear programs [15], MIBLPs with special constraint structures [16], MIBLPs 

without continuous upper-level variables [7,17,18], and/or MIBLPs without continuous lower-

level variables [19,20]. Fischetti et al. [21,22] introduced a new general-purpose algorithm for 
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MIBLPs based on a branch-and-cut framework, where new classes of valid inequalities and 

effective preprocessing procedures are introduced. We mention that Zeng and An [23] proposed 

the reformulation and decomposition method  to solve MIBLPs with continuous and integer 

variables in both upper- and lower-level programs, which provides a rather general strategy and 

framework to attack those difficult problems. In a capacity expansion planning problem [24], this 

new method demonstrates a very strong solution capacity. Nevertheless, the original reformulation 

and decomposition method did not consider MIBLPs with upper-level constraints involving lower-

level variables (called connecting constraints [25] in what follows).  

In this work, we extend the original reformulation and decomposition scheme in [23] to solve 

MIBLPs in a more general form, i.e., the form of (P0) that has connecting constraints. Specifically, 

the decomposition algorithm, i.e., the master and subproblems are modified or updated according 

to the structure of (P0).  Also, the finite convergence proof is generalized to guarantee that our 

new development derives (P0)’s global optimal solutions. We point out that a new feature based 

on a novel projection-based formulation is introduced to handle the case where the relatively 

completely response property does not hold. This enhancement could be of a critical value as many 

real problems may not have that property. To verify this new development of the reformulation 

and decomposition method, a large-scale computational study on two types of random instances 

and instances of hierarchical supply chain planning are presented. Similarly to [24], our algorithm 

demonstrates a desirable computational capacity on more general MIBLP’s.  

The rest of the paper is organized as follows. A brief literature review is given in Section 2. 

We provide the preliminaries in Section 3. We describe the reformulation procedure, especially 

the projection-based formulation, in Section 4. The decomposition algorithm is presented in 

Section 5. We discuss several implementation issues in Section 6. A rather comprehensive 

computational study are presented in Section 7. We conclude the article in Section 8. 

2. Literature review 
A variety of approaches have been proposed to solve MIBLP problems in the literature. Moore 

and Bard [8,26] proposed the first branch-and-bound algorithms for MIBLPs. Dempe [19] and 

Hemmati and Smith [16] proposed a cutting plane approach. Saharidis and Ierapetritou [27] 

proposed an algorithm based on Benders decomposition. DeNegre and Ralphs [15] presented a 

branch-and-cut algorithm. Köppe et al. [20] proposed a parametric integer programming algorithm. 

Recently, Xu and Wang [7] developed an exact algorithm based on the branch-and-bound 
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framework. Fischetti et al. [21,22] introduced new classes of linear inequalities in a branch-and-

cut framework. Poirion et al. [28] proposed a cut-generation algorithm and row-and-column 

generation framework. As mentioned, Zeng and An [23] proposed the original reformulation-and-

decomposition scheme. These algorithms have been proposed to handle different classes of 

MIBLP problems. This work contributes to solving a class of MIBLPs in the form of (P0). 

The relevant literature also includes studies on bilevel nonlinear programs (BNLP) and 

MIBNLP. Edmunds and Bard [29] proposed a branch-and-bound algorithm for MIBNLPs. Gümüş 

and Floudas [10] proposed a vertex polyhedral convex hull representation. Faísca et al. [30] and 

Domínguez and Pistikopoulos [11] employed parametric programming approaches. Mitsos et al. 

[31] and Mitsos [13] proposed bounding algorithms for global optimization of BNLP and MIBNLP 

problems. Kleniati and Adjiman [32,12] proposed branch-and-sandwich algorithms for solving 

BNLP and MIBNLP problems. Based on the computational performances reported in the literature 

mentioned above, the computational performance of existing MIBNLP algorithms in solving 

medium to large MIBLP problems needs to be further tested. 

Algorithms have also been proposed for solving other types of relevant programs, including 

min-max programs [33,34,9], semi-infinite programs [35-37], and generalized semi-infinite 

programs [38-40]. However, there is no direct relationship between the proposed algorithm and 

these algorithms. It is worth mentioning that there is a large body of literature on heuristic and 

meta-heuristic algorithms for bilevel optimization problems [41,42], which is out of the scope of 

this work. 

3. Preliminaries 
In this section, we introduce some definitions and an assumption that will be used in the 

algorithm. 

Definition 1  We denote Ω : 

 ( )0 0 0 0

0 0

0 0

, , , : ,
,

, , ,R Z R Z

u u l l u u l l
R Z R Z

u u l l
R Z R Z

m m n nu u l l

x y x y A x A y B x B y r
Q x Q y P x P y s

x y x y+ + + +

 Ω = + + + ≤
 

+ + + ≤ 
 ∈ ∈ ∈ ∈   

  (7) 

the MIBLP constraint region. 

Definition 2  For any given ( ), R Zm mu ux y + +∈ ×  , we denote ( ),u ux y
Ω : 
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 ( ) ( ){ }0 0 0 0 0 0
,

, : , ,R Z
u u

n nl l l l u u l l
R Z R Zx y

x y P x P y s Q x Q y x y+ +Ω = + ≤ − − ∈ ∈    (8) 

the lower-level feasible region.    

Definition 3  For any given ( ), R Zm mu ux y + +∈ ×  , we denote ( ),u ux y
M : 

 ( ) ( )
( ) ( ){ }

0 0

0 0 0 0
, ,

,
arg max : ,u u u u

l l

t l t l l l
R Zx y x y

x y
M w x w y x y= + ∈Ω   (9) 

the lower-level rational reaction set. 

Definition 4  We denote IR: 

 ( ) ( ) ( ) ( ){ }0 0 0 0 0 0
,

, , , : , , , ,  , u u
u u l l u u l l l l

x y
IR x y x y x y x y x y M= ∈Ω ∈   (10) 

the inducible region, which represents the feasible region at the upper-level program. 

Hence, a more general definition for (P0) can be: 

(P1) ( )
0 0

0 0 0 0

, , ,
min     : , , ,

u u l l

t u t u t l t l u u l l
R Z R Z

x y x y
c x c y d x d y x y x y IR+ + + ∈    

Assumption 1  The inducible region IR is nonempty and all variables have finite bounds. 

Assumption 1 ensures that the feasible set of MIBLP problem (P0) or (P1) is nonempty. We 

note that the connecting constraints (2) in the upper level problem can make the inducible region 

empty even if the lower level problem has an optimal solution for the selection in the upper level 

problem. In cases that an optimal solution does not exist due to open inducible region or non-

lower-semi-continuous optimal value function [43-45], we are interested in the infimum of the 

objective function and ϵ-optimal solutions as shown in [23]. In this work, we do not explicitly 

consider the cases of unboundedness and infeasibility.  

4. Reformulations 

4.1. Optimal value reformulation 

First, we follow the convention to reformulate the optimistic MIBLP (P0) using the optimal 

value transformation [46], as given below. 

(P2)
0 0

0 0

, , ,
min   

u u l l

t u t u t l t l
R Z R Z

x y x y
c x c y d x d y+ + +                    (11) 

           s.t. 0 0u u l l
R Z R ZA x A y B x B y r+ + + ≤               (12) 

                0 0u u l l
R Z R ZQ x Q y P x P y s+ + + ≤                     (13) 
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                0 0

,
max :

,

l l

R Z

t l t l t l t l
R Z R Z

x y
u u l l

R Z R Z
n nl l

w x w y w x w y
Q x Q y P x P y s
x y+ +

 + ≥ +
 

+ + + ≤ 
 ∈ ∈  

                (14)                   

    0 0, , ,R Z R Zm m n nu u l lx y x y+ + + +∈ ∈ ∈ ∈                (15) 

Because the lower-level program is a maximization problem, constraint (14) ensures that 

( )0 0,l lx y  is an optimal solution to the lower-level problem, for any given ( ),u ux y . Furthermore, 

(P2) corresponds to the optimistic formulation because ( )0 0,l lx y  are controlled for the benefits of 

the upper-level program. 

4.2. Projection-based single-level formulation 

It is a standard approach to reduce bilevel programs to equivalent single-level programs [47-

50]. In the case that the lower-level program is a linear program (LP), one can replace the lower-

level program with its corresponding Karush-Kuhn-Tucker (KKT) conditions. However, the 

discrete variables 𝑦𝑦𝑙𝑙  in (P2) renders the lower level problem non-convex and hence cannot be 

replaced by its KKT conditions. To deeply analyze their impact, we introduce the following 

projection concept.  

Definition 5 We denote Proj ly
Ω : 

( ) ( ){ }Proj : , ,  with , , ,Z R Z R
l

n m m nl u u l u u l l
y

y x y x x y x y+ + + +Ω = ∈ ∃ ∈ × × ∈Ω            (16) 

the projection of the constraint region on the space of lower-level integer variables, which 

represents the collection of all admissible ly . 

Following the idea in [23], we can separate the continuous and integer variables in the lower-

level program and restructure the right-hand-side of (14): 

{ }( )0 0

Proj
max max : , R

l l
ly

nt l t l t l t l l l u u l
R Z Z R R Z R Z

y x
w x w y w y w x P x s P y Q x Q y x +

∈ Ω
+ ≥ + ≤ − − − ∈              (17) 

As pointed in [23], because the second maximization problem in (17) is an LP, we can replace 

it with the KKT-conditions, thus having the following equivalent form: 
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0 0

Proj
max

l
ly

t l t l t l t l
R Z Z R

y
w x w y w y w x

∈ Ω
+ ≥ +                (18) 

                            s.t. ( )
( )

( )
,

,

,R L

l u u l
R R Z Z

t t l t t
R R R Rl

u u l l
R Z R Z

n nl

P x s Q x Q y P y

P w x P w
x

s Q x Q y P x P y

x

π π
π

π

π+ +

 ≤ − − −
 

≥ ⊥ −  ∈ 
⊥ − − − − 

 
∈ ∈   

          (19) 

where the ⊥  (perpendicular) operator enforces the perpendicularity condition between the vectors 

on the left- and right-hand sides, i.e., their element-by-element product is equal to zero. According 

to Assumption 1, all lower-level integer variables are bounded. Hence, Proj ly
Ω  is a finite set. For 

ease of exposition, we let { },1 ,2 ,, ,...,L l l l JY y y y=  (indexed by j) represents the finite set of all ly  

such that Proj l
l

y
y ∈ Ω .  

Then, following the strategy of [23], by enumerating ,l j Ly Y∈  and introducing corresponding 

primal and dual variables ( ), ,l j jx π   and their related KKT-conditions, we have the next 

formulation (P3). Though finite, the set LY could be extremely large and cannot be bounded by a 

polynomial in the dimension of the problem. 

(P3)
0 0

, ,

0 0

, , ,
    ,

min   
u u l l

l j l j

t u t u t l t l
R Z R Z

x y x y
x

c x c y d x d y
π

+ + +               (11) 

             s.t.     (12), (13), and (15) 
               0 0 , , ,,   t l t l t l j t l j l j L

R Z R Zw x w y w x w y y Y+ ≥ + ∀ ∈            (20) 
               , , ,,   l j u u l j l j L

R R Z ZP x s Q x Q y P y y Y≤ − − − ∀ ∈             (21) 

              ( ), ,, ,   t j t l j t j t l j L
R R R RP w x P w y Yπ π≥ ⊥ − ∀ ∈             (22) 

               ( ), , ,,   j u u l j l j l j L
R Z R Zs Q x Q y P x P y y Yπ ⊥ − − − − ∀ ∈            (23) 

               , ,, ,   R Ln nl j j l j Lx y Yπ+ +∈ ∈ ∀ ∈               (24) 

We mention that it may seem that (P3) is equivalent to (P2). However, this is not always true. 

As epitomized by the following example, (P3) can be infeasible even when (P2) is feasible. 

(Q0) 
0 0

0

, ,
min    

u l l

u l

y x y
y y− −                 (25) 

                s.t.    { } { }0 00,1 , , 0,1u l ly x y+∈ ∈ ∈              (26) 

              ( )0 0

,
, arg max    

l l

l l l l

x y
x y x y∈ − −              (27) 

                                        s.t.   l l ux y y− ≤ −              (28) 
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                         { }, 0,1l lx y+∈ ∈            (29) 

It is easy to see that the upper-level optimal solution is ( ) ( )* 0* 0*, , 1,0,1u l ly x y =  with an 

optimal value of – 2. Now, let ,1 1ly =  and ,2 0ly = . If we reformulate (Q0) according to the 

formulation in (P3), we then have: 

(Q1)
0 0

,1 1 ,2 2

0

, ,
, , ,

min
u l l

l l

u l

y x y
x x

y y
π π

− −                 (25) 

               s.t.  (26) 
                      0 0 0u l ly x y+ − ≤                 (30) 
                      0 0 ,1 1l l lx y x− − ≥ − −                (31) 
                      ,1 1l ux y≤ − +                 (32) 
                      ( )1 ,1 11,   1lxπ π≥ − ⊥ +                      
(33) 
                      ( )1 ,1 1u ly xπ ⊥ − − +                (34) 

                      ,1 1,lx π +∈                       (35) 
                      0 0 ,2l l lx y x− − ≥ −                (36) 
                      ,2l ux y≤ −                 (37) 
                      ( )2 ,2 21,   1lxπ π≥ − ⊥ +               (38) 

                      ( )2 ,2u ly xπ ⊥ − −                (39) 

                      ,2 2,lx π +∈                 (40) 

where (31) – (35) correspond to ,1 1ly =  and (36) – (39) correspond to ,2 0ly = . It is interesting to 

note that ( ) ( )* 0* 0*, , 1,0,1u l ly x y =  is infeasible to (Q1) because constraint (37) indicates ,2 1lx ≤ − , 

which contradicts with ,2lx +∈  in (40). Hence, formulation (P3) is not equivalent to (P2). As 

noted in [23], this issue is caused by the lack of relatively complete response property in (Q0). 

Definition 6 We denote ( ),
Proj u ux y

Ω : 

( ) ( ) ( ) ( ){ }0 0 0 0
,

Proj , : ,  with , , ,R Z R Z
u u

m m n nu u l l u u l l
x y

x y x y x y x y+ + + +Ω = ∈ × ∃ ∈ × ∈Ω         (41) 

the projection of the constraint region on the space of upper-level variables. 

Next, we re-define the relatively complete response property in [23] using our projection concepts. 
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Definition 7 An MIBLP in the form of (P0) has the relatively complete response property if for 

any 3-tuple ( ), ,u u lx y y  such that ( ) ( ),
, Proj u u

u u
x y

x y ∈ Ω  and Proj l
l

y
y ∈ Ω , the following LP is 

feasible and has a finite optimal value. 

max     
l

t l
R

x
w x                  (42) 

  s.t.    l u u l
R R Z ZP x s Q x Q y P y≤ − − −               (43) 

       Rnlx +∈                  (44) 

 Taking (Q0) as example, since there is no upper-level continuous variable, we have 

{ }Proj 0,1uy
Ω =  and { }Proj 0,1ly

Ω = . When the couple ( ),u ly y  is fixed at ( )1,1 , ( )0,1  or ( )0,0 , 

the related LP (27) – (29)  is feasible and has a finite optimal value. However, when the couple 

( ),u ly y  is fixed at ( )1,0  the related LP (27) – (29) becomes infeasible. Hence, problem (Q0) does 

not have the relatively complete response property. 

In formulation (Q1), constraints (36) – (40) corresponding to ,2 0ly =  are imposed regardless 

of the value of uy , which excludes any 3-tuple ( )0 0, ,u l ly x y  such that 1uy = . This is incorrect 

according to the previous analysis. A straightforward approach to fix this issue is not to impose 

constraints (36) – (40) when 1uy = , thus having 

(Q2)
0 0

,1 1 ,2 2

0

, ,
, , ,

min
u l l

l l

u l

y x y
x x

y y
π π

− −                 (25) 

             s.t.  (26) and (30) 
                  { }0,1uy ∈ ⇒  [ (31) – (35) ]             (45) 

                  0uy = ⇒  [ (36) – (40) ]                    (46) 

Next, we generalize the equivalent reformulation from (Q0) to (Q2). 

Definition 8 For any given ,l j Ly Y∈ , we denote ( ),l jP y  

 ( ) ( ) ,
, , , : ,

                    , ,R Z R

u u l u u l l j
R Z R Zl j

m m nu u l

x y x Q x Q y P x s P y
P y

x y x+ + +

 + + ≤ − =  
∈ ∈ ∈   

                 (47) 

Definition 9 For any given ,l j Ly Y∈ , we denote ( ) ( ),
,

Proj u u
l j

x y
P y  

( ) ( ) ( ) ( ) ( ){ }, ,
,

Proj , :  with , ,R Z R
u u

m m nl j u u l u u l l j
x y

P y x y x x y x P y+ + += ∈ × ∃ ∈ ∈             (48) 
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With Definitions 8 and 9, we propose a projection-based formulation (P4), which is equivalent 

to (P0), even when (P0) does not have the relatively complete response property. Hence, it extends 

the scope investigated in [23] to a more general situation, which actually has an important value 

as many real problems may not have that property. Notably, although the formulation of (P4) may 

seem similar to the subroutine 1 adopted in [13], the concepts and approaches of these two ideas 

are essentially different. The subroutine 1 in [13] is iteratively deriving a bound box on upper level 

variables based on a complete lower level solution, while (P4) is built on the projection of a feasible 

discrete variable ,l jy  on upper level variables. 

(P4)
0 0

, ,

0 0

, , ,
    ,

min   
u u l l

l j l j

t u t u t l t l
R Z R Z

x y x y
x

c x c y d x d y
π

+ + +               (11) 

             s.t.   (12), (13), and (15) 

              

( ) ( ) ( )

( )
( )

,
,

0 0 , ,

, ,

, ,

, ,

,

, Proj

                 , ,   

,

u u

R L

u u l j
x y

t l t l t l j t l j
R Z R Z

l j u u l j
R R Z Z

t j t l j t j t l j L
R R R R

j u u l j l j
R Z R Z

n nl j j

x y P y

w x w y w x w y
P x s Q x Q y P y

P w x P w y Y

s Q x Q y P x P y

x

π π

π

π+ +

 ∈  
 + ≥ +
 
 ≤ − − −
 

⇒ ≥ ⊥ − ∀ ∈ 
 

⊥ − − − − 
 

∈ ∈   

          (49) 

In formulation (P4), constraint (49) indicates that constraints (20) – (24) corresponding to any 

given ,l j Ly Y∈  will only be imposed if ( ) ( ) ( ),
,

, Proj u u
u u l j

x y
x y P y∈ . In the following, a formal 

argument is presented to show equivalence between our projection-based formulation and (P0). 

Theorem 1  The projection-based single-level formulation (P4) is equivalent to the original 

MIBLP problem (P0). 

Proof Since it has been shown that (P0) is equivalent to (P2) [23,31], we now prove (P4) is also 

equivalent to (P2). It is sufficient to show constraint (49) is equivalent to (14) since the other 

constraints and the objectives are the same in both problems. 

Let ( )0 0, , ,u u l lx y x y     be a feasible solution to (P2), we then have 

{ }0 0

,
max : , ,R Z

l l

n nt l t l t l t l l l u u l l
R Z R Z R Z R Z

x y
w x w y w x w y P x P y s Q x Q y x y+ ++ ≥ + + ≤ − − ∈ ∈   

          (50) 
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0 0 , ,

, ,

,

max :
                           s.t. ,
                                

                                                     

R

t l t l t l j t l j
R Z R Z

l j u u l j
R R Z Z

nl j

w x w y w x w y
P x s Q x Q y P y
x +

 + ≥ +
 

⇔ ≤ − − − 
 ∈ 

 

 



( ) ( )

,

,

:
          

 with ,

Z

R
u u

nl

l j
nl l l

x y

y
y

x x y
+

+

 ∈ ∀ ∈ ∃ ∈ ∈Ω   




         (51) 

( )
( )

( ) ( )

0 0 , ,

, ,

, ,

,, ,

,

:
, ,   

 with ,

,

Z

R
u u

R L

t l t l t l j t l j
R Z R Z

l j u u l j
nlR R Z Z

t j t l j t j t l j
nl l lR R R R

x yj u u l j l j
R Z R Z

n nl j j

w x w y w x w y
P x s Q x Q y P y

y
P w x P w y

x x y
s Q x Q y P x P y

x

π π

π

π

+

+

+ +

 + ≥ +
 
 ≤ − − −

 ∈  ⇔ ≥ ⊥ − ∀ ∈  ∃ ∈ ∈Ω  ⊥ − − − − 
 

∈ ∈  

 

 

 



 

 

 



        (52) 

Only the constraints (49) corresponding to ( ) ( ){ },
,

:  with ,Z R
u u

n nl j l l l l
x y

y y x x y+ +∈ ∈ ∃ ∈ ∈Ω
 

  

will be imposed in problem (P4) when ( ) ( ), ,u u u ux y x y=   . Hence, ( )0 0, , ,u u l lx y x y     is also feasible 

to problem (P4). Now let ( )0 0, , ,u u l lx y x y     be a feasible solution to (P4). Following the reverse 

order from (52) to (50), we can show that ( )0 0, , ,u u l lx y x y     is also feasible to (P2) because KKT 

conditions are both necessary and sufficient for optimality for LPs. We have shown above that any 

feasible solution to (P2) is feasible to (P4), and vice versa. In addition, the objectives of (P2) and 

(P4) are the same. Hence, problems (P2) and (P4) are equivalent to each other.    

We mention that, instead of utilizing ( ) ( ),
,

Proj u u
l j

x y
P y , i.e., the actual feasible set for the upper 

level when ,l l jy y= , a different strategy that penalizes lower level constraint violations caused by 

any infeasible ( ),, ,u u l jx y y  is proposed in [23].  Through using Big-M penalty coefficients, such 

infeasible solution will incur a large objective function value, which could make it ineligible for 

an optimal solution. Nevertheless, we note that selecting an appropriate Big-M is very subjective. 

Also, a very large M, which is desired, may seriously affect the computational performance. On 

the other hand, our projection-based reformulation (P4), together with the implementation method 

in Section 6.2, provides a rather analytical approach when the relatively complete response 

property is missing. Hence, it is a novel feature to the reformulation and decomposition scheme. 
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5. Algorithm 
A drawback of the single-level formulation (P4) is the size of set LY  grows exponentially as 

the number and bound of lower-level integer variables increase. Consequently, the number of 

constraints (49) could be intractably large and applications to large-scale MIBLP problems may 

be limited. In [23], a decomposition approach based column-and-constraint generation method is 

developed that tries to ameliorate this issue via partial enumeration [51]. In this section, we extend 

that decomposition algorithm in the projection formulation context by modifying and updating the 

master and subproblems according to the structure of (P4), or equivalently (P0).  Specifically, the 

algorithm always deals with a partial enumeration, where only a subset of LY (denoted as L
kY ) is 

considered in each iteration k. Starting from an empty set 0
LY = ∅ , we expand this subset by adding 

a new ,l j Ly Y∈  at the end of each iteration. This decomposition algorithm involves one master 

problem and two subproblems, which are presented below. As argued in [23], the master problem 

provides a lower bound, and the two subproblems select important ,l j Ly Y∈  that help the 

algorithm converge as early as possible. 

5.1. Master problem 

Let *
kΘ  be the optimal objective value of the master problem in iteration k. The master 

problem (P5) is formulated as 

(P5)  
0 0

, ,

* 0 0

, , ,
    ,

min   
u u l l

l j l j

t u t u t l t l
k R Z R Z

x y x y
x

c x c y d x d y
π

Θ = + + +              (53) 

                        s.t.   (12), (13), and (15) 

                               

( ) ( ) ( )

( )
( )

,
,

0 0 , ,

, ,

, ,

, ,

,

, Proj

          , ,

,

u u

R L

u u l j
x y

t l t l t l j t l j
R Z R Z

l j u u l j
R R Z Z

Lt j t l j t j t l j L
kR R R R

j u u l j l j
R Z R Z

n nl j j

x y P y

w x w y w x w y
P x s Q x Q y P y

P w x P w y Y Y

s Q x Q y P x P y

x

π π

π

π+ +

 ∈  
 + ≥ +
 
 ≤ − − −
 

⇒ ≥ ⊥ − ∀ ∈ ⊆ 
 

⊥ − − − − 
 

∈ ∈   

          (54) 

Proposition 1  At any given iteration k, *
kΘ  provides a lower bound to problem (P4). 
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Proof  Because L L
kY Y⊆ , problem (P5) is a relaxation of problem (P4). Since this is a minimization 

problem, *
kΘ  is a valid lower bound to problem (P4).    

5.2. Subproblem 1 

Let ( ),* ,*,u u
k kx y  be the optimal solution of (P5) in iteration k, we follow [23] and employ 

problem (P6) to find an optimal solution to the lower-level program at ( ),* ,*,u u
k kx y . 

(P6) ( ),* ,*

,
, max  

l l

u u t l t l
k k k R Z

x y
x y w x w yθ = +               (55) 

                           s.t. ,* ,*l l u u
R Z R k Z kP x P y s Q x Q y+ ≤ − −                   

(56) 
                                 ,R Zn nl lx y+ +∈ ∈               (57) 

where ( ),* ,*,u u
k k kx yθ  denotes the optimal lower-level objective value at ( ),* ,*,u u

k kx y . Let ( )ˆ ˆ,l l
k kx y  

denote the optimal solution to (P6) in iteration k. 

5.3. Subproblem 2 

As mentioned in [23], in case where multiple optimal solutions to the lower-level program 

exist for a given ( ),* ,*,u u
k kx y , the first subproblem (P6) may not provide the one that is desired by 

the upper-level objective function. Moreover, due to the existence of upper-level connecting 

constraint (2), ( )ˆ ˆ,l l
k kx y  may not even be feasible. Therefore, we modify the second subproblem 

presented in [23] to (P7), which either produces an optimal solution or detects an infeasible 

situation with ( ),* ,*,u u
k kx y . It is worth pointing out that the proposition of (P7) follows a similar 

idea as the upper bounding program in [13] to provide an upper bound. However, we note that (P7) 

is a Pareto version of the lower level problem that guarantees to be optimistic, which is well-

defined and provides an upper bound. Meanwhile, the upper bounding problem in [13] could be a 

relaxed problem due to the introduced epsilon. 

(P7) ( ),* ,*
,

,
, min  

l l

u u t l t l
o k k k R Z

x y
x y d x d yΘ = +               (58) 

                                        s.t.   (56) and (57) 
                                   ,* ,*l l u u

R Z R k Z kB x B y r A x A y+ ≤ − −            (59) 

                                    ( ),* ,*,t l t l u u
R Z k k kw x w y x yθ+ ≥             (60) 
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where ( ),* ,*
, ,u u

o k k kx yΘ  denotes the optimal objective value of problem (P7) if it is feasible. It is 

easy to see that ( ),* ,* ,* ,*
, ,t u t u u u

R k Z k o k k kc x c y x y+ + Θ  provides an upper bound to problem (P4). 

5.4. Decomposition algorithm 

Based on the master problem (P5) and the two subproblems (P6) and (P7), the proposed 

decomposition algorithm, which implements the column-and-constraint generation (CCG) method 

[52], is summarized below.  

 

Algorithm. Projection-based reformulation and decomposition through CCG method 

1 Step 1 (Initialization) 
2 Set LB = −∞ , UB = +∞ , 0ξ = , 0k = , and 0

LY ←∅ . 
3 Step 2 (Lower Bounding) 
4 Solve problem (P5). 
5     Denote the optimal solution as ( ),* ,* 0,* 0,*, , ,u u l l

k k k kx y x y . 

6     Set LB to the optimal objective value *
kΘ . 

7 Step 3 (Termination) 
8 if UB LB ξ− < , then Terminate and return optimal solution. 
9 Step 4 (Subproblem 1) 

10 Solve problem (P6) at ( ),* ,*,u u
k kx y . 

11 Denote the optimal solution as ( )ˆ ˆ,l l
k kx y  and optimal objective value as ( ),* ,*,u u

k k kx yθ . 
12 Step 5 (Subproblem 2) 
13 Solve problem (P7) at ( ),* ,*,u u

k kx y  and ( ),* ,*,u u
k k kx yθ  

14 if Feasible then 
15 Denote the optimal solution as ( ),* ,*,l l

k kx y  

16 Set ( ){ },* ,* ,* ,*
,min , ,t u t u u u

R k Z k o k k kUB UB c x c y x y= + + Θ . 

17 Set ,*l l
k ky y= . 

18 else (Infeasible Problem) 
19 Set ˆl l

k ky y= . 
20 end 
21 Step 6 (Tightening the Master Problem) 
22 Create new variables ( ), ,l j jx π  and constraint (54) corresponding to ,l j l

ky y=   . 

23     Set { }1 1
L L l
k k kY Y y+ += ∪   and 1k k= + . 

24 Step 7 (Loop) 
25 if UB LB ξ− < , then  
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26 Terminate and return the optimal solution. 
27 else  
28 Go to step 2. 
29 end 

    

Remark 1  Assumption 1 ensures that MIBLP (P0) is feasible. Because the master problem (P5) 

is a relaxation of problem (P0) in all iterations, (P5) is guaranteed to be feasible. 

Remark 2  The first subproblem (P6) is always feasible. We know that at any given iteration k, 

the optimal solution to (P5) ( )0,* 0,*,l l
k kx y  will be feasible to (P6). 

Remark 3  The decomposition algorithm through column-and-constraint generation provides a 

series of non-decreasing lower bounds. For any given iteration k, 1
L L
k kY Y +⊆ . Hence, the master 

problem (P5) in iteration k is a relaxation of that in iteration k+1. 

5.5. Convergence 

In this subsection, we generalize the convergence proof in [23] to our new algorithm development, 

noting that we consider a more general MIBLP (i.e., (P0)) and employ modified master and 

subproblems. 

Theorem 2  If an MIBLP satisfies Assumption 1, 0ξ =  and LY  is finite, then the presented 

algorithm converges to the global optimal objective value of MIBLP problem (P0) within LY  

iterations.    

Proof  It is sufficient to show that if none of the stopping criteria are met, a new ,l j Ly Y∈  would 

be generated in each iteration. This is equivalent to showing that a repeated ,l j Ly Y∈ leads to either 

LB UB=  or an infeasible master problem (P5). Assume that the current iteration index is 1k l=  

and ( )1 1 1 1

,* ,* 0,* 0,*, , ,u u l l
l l l lx y x y  is obtained in step 2 with 0UB LB− > . From Remark 2 we know that 

the first subproblem is feasible. However, the second subproblem could be infeasible.  

We first consider the case where the second subproblem (P7) is feasible, so that
1

,*l
ly  is obtained 

in step 5. The proof for this case is similar to that in [23]. We further assume that 
1

,*l
ly  was also 

derived in a previous iteration ( )0 1k l l= <  and included in 
0 1
L
lY + . Because 0UB LB− >  in iteration 

1l , new variables ( ), ,l j jx π  and constraints (54) corresponding to 
1

, ,*l j l
ly y=  will be added to the 
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master problem (P5) in iteration 1 1l +  (Note that 
1 1

,*l l
l ly y= ). Since these variables and constraints 

are the same as those created and included in step 6 in iteration 0l , step 6 in iteration 1l  essentially 

does not change problem (P5). Consequently, it yields the same optimal values in iteration 1 1l +  

as that of iteration 1l , i.e., ( ) ( )1 1 1 1 1 1 1 1

,* ,* 0,* 0,* ,* ,* 0,* 0,*
1 1 1 1, , , , , ,u u l l u u l l

l l l l l l l lx y x y x y x y+ + + += . Hence, LB does not change 

when the algorithm proceeds from iteration 1l  to 1 1l + . In the following, we show that LB UB≥  

in iteration 1 1l + . 

1 1 1 1

,* ,* 0,* 0,*
1 1 1 1 t u t u t l t l

R l Z l R l Z lLB c x c y d x d y+ + + += + + +              (61) 

0 01 1

,* ,* 0 0
1 1

,
    min

l l

t u t u t l t l
R l Z l R Z

x y
c x c y d x d y+ +≥ + + +              (62) 

                        s.t. 
1 1

0 0 ,* ,*
1 1

l l u u
R Z R l Z lB x B y r A x A y+ ++ ≤ − −            (63) 

       
1 1

0 0 ,* ,*
1 1

l l u u
R Z R l Z lP x P y s Q x Q y+ ++ ≤ − −            (64) 

     ( )
( )

1 1

1 1

0 0 , ,

, ,* ,* ,
1 1

,

,* ,* , ,
1 1

,

,

,R L

t l t l t l j t l j
R Z R Z

l j u u l j
R R l Z l Z

t j t l j t j t
R R R R

j u u l j l j
R l Z l R Z

n nl j j

w x w y w x w y
P x s Q x Q y P y

P w x P w

s Q x Q y P x P y

x

π π

π

π

+ +

+ +

+ +

 + ≥ +
 

≤ − − − 
 

≥ ⊥ − 
 

⊥ − − − − 
 

∈ ∈   

 for 
1

, ,*l j l
ly y=          (65) 

0 01 1

,* ,* 0 0

,
    min

l l

t u t u t l t l
R l Z l R Z

x y
c x c y d x d y≥ + + +              (66) 

                        s.t. 
1 1

0 0 ,* ,*l l u u
R Z R l Z lB x B y r A x A y+ ≤ − −            (67) 

       
1 1

0 0 ,* ,*l l u u
R Z R l Z lP x P y s Q x Q y+ ≤ − −                   (68) 

       ( )1 1 1

0 0 ,* ,*,t l t l u u
R Z l l lw x w y x yθ+ ≥             (69) 

( )1 1 1 1 1

,* ,* ,* ,*
,     ,t u t u u u

R l Z l o l l lc x c y x y= + + Θ               (70) 
     UB≥                   (71) 

Inequality (62) follows from ( ) ( )1 1 1

,* ,* ,*
1 1,u u l

l l lx y P y+ + ∈  and 
11

,*
1

Ll
lly Y +∈  . Inequality (66) follows 

from
1

,*l
ly  is optimal to ( )1 1 1

,* ,*,u u
l l lx yθ , and ( )1 1 1

, , ,* ,*,t l j t l j u u
R Z l l lw x w y x yθ+ =  for 

1

, ,*l j l
ly y=  due to the 

KKT conditions. Inequality (71) follows from ( ){ }1 1 1 1 1

,* ,* ,* ,*
,min , ,t u t u u u

R l Z l o l l lUB UB c x c y x y= + + Θ . 

Consequently, we have LB UB≥  in iteration 1 1l + , which terminates the algorithm.  

Now we consider the case where the second subproblem is infeasible, so that 
1

ˆ l
ly  is obtained 

in step 4 of iteration 1l  and 
1 1

ˆl l
l ly y= . We further assume that 

1
ˆ l

ly  was also derived in a previous 
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iteration ( )0 1k l l= <  and included in 
0 1
L
lY + . In the following, we show that master problem (P5) in 

iteration 1 1l +  is infeasible. As aforementioned, step 6 in iteration 1l  essentially does not change 

problem (P5). If we assume that the master problem (P5) in iteration 1 1l +  is feasible, then we 

have ( ) ( )1 1 1 1 1 1 1 1

,* ,* 0,* 0,* ,* ,* 0,* 0,*
1 1 1 1, , , , , ,u u l l u u l l

l l l l l l l lx y x y x y x y+ + + += . Because ( ) ( )1 1 1

,* ,*
1 1 ˆ,u u l

l l lx y P y+ + ∈ , the following 

constraint will be imposed in problem (P5) in iteration 1 1l + . 

     ( )
( )

1 1

1 1

0 0 , ,

, ,* ,* ,
1 1

,

,* ,* , ,
1 1

,

,

,R L

t l t l t l j t l j
R Z R Z

l j u u l j
R R l Z l Z

t j t l j t j t
R R R R

j u u l j l j
R l Z l R Z

n nl j j

w x w y w x w y
P x s Q x Q y P y

P w x P w

s Q x Q y P x P y

x

π π

π

π

+ +

+ +

+ +

 + ≥ +
 

≤ − − − 
 

≥ ⊥ − 
 

⊥ − − − − 
 

∈ ∈   

 for 
1

, ˆl j l
ly y=          (72) 

Because 
1

ˆ l
ly  is optimal to ( )1 1 1

,* ,*,u u
l l lx yθ , and ( )1 1 1

, , ,* ,*,t l j t l j u u
R Z l l lw x w y x yθ+ =  for 

1

, ˆl j l
ly y=  due 

to the KKT conditions. Hence, constraint (72) is equivalent to (69). However, we know from step 

5 of iteration 1l  that there does not exist a tuple ( )1 1 1 1

,* ,* 0,* 0,*
1 1 1 1, , ,u u l l

l l l lx y x y+ + + +  that simultaneously satisfy 

constraints (63), (64) and (69), which are imposed in (P5) in iteration 1 1l + . This is contradictory 

to that the same problem is solved in iteration 1l . Hence, the master problem (P5) in iteration 1 1l +  

is infeasible. In consideration of the two cases above, we know a new ,l j Ly Y∈  would be generated 

in each iteration, if none of the stopping criteria are met. 

Similar to that in [23], since a repeated ,l j Ly Y∈  leads to convergence of the algorithm and 

the fact that set LY  is finite, the algorithm will converge within LY  iterations.     

6. Implementation 

6.1. KKT-condition-based tightening constraints 

As suggested by [23,13], the master problem (P5) can be tightened by introducing the 

following KKT-conditions related to the lower-level program at given ( )0, ,u u lx y y . Hence, we 

have 
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(P8)  
0 0

, ,

0 0

, , ,
, , ,

min   
u u l l

l j l j l

t u t u t l t l
R Z R Z

x y x y
x x

c x c y d x d y
π π

+ + +
 

                    (73) 

              s.t.      (12), (13), (15), and (54) 
             0t l t l

R Rw x w x≥                  (74) 
             0 ,l u u l t t

R R Z Z R RP x s Q x Q y P y P wπ≤ − − − ≥             (75) 

             ( ) ( )0,l t t u u l l
R R R Z R Zx P w s Q x Q y P x P yπ π⊥ − ⊥ − − − −             (76) 

  ,R Ln nlx π+ +∈ ∈ 
                (77) 

Given that ux , uy  and 0ly  are variables, (P8) provides lower bound information that is 

parametric not only to ux , uy  but also to 0ly . The value of 0t l t l
R Zw x w y+  provides a valid lower 

bound support to 0 0t l t l
R Zw x w y+ , which might not be available from any fixed ,l j Ly Y∈ . As 

mentioned in [23,13], the KKT-condition-based tightening constraints (74) – (77) help reduce the 

number of iterations and computational time. Therefore, unless otherwise stated, we consider 

KKT-condition-based tightening constraints in the decomposition algorithm for all numerical 

studies in this work. 

6.2. Projection and indicator constraint  

To practically handle our new projection-based formulation, we present an alternative 

representation for ( ) ( ) ( ),
,

, Proj u u
u u l j

x y
x y P y∈  in (54) in this subsection. Specifically, we use the 

following LP to check whether ( ) ( ) ( ),
,

, Proj u u
u u l j

x y
x y P y∈  or not.  

For any given ,l j Ly Y∈  

(P9) 
, ,

min   
l j j

t j

x t
e t                  (78) 

   s.t.  , ,l j j u u l j
R R Z ZP x t s Q x Q y P y− ≤ − − −              (79) 

         , ,R Ln nl j jx t+ +∈ ∈                 (80) 

where e is a vector with all elements equal to 1; jt  represents the relaxation variables for each 

constraint. The dimension of vector jt  is equal to the number of lower-level constraints. 

Remark 4  Given ( ) ( ),
, Proj u u

u u
x y

x y ∈ Ω  and ,l j Ly Y∈ , if the optimal value of problem (P9) 

,* 0t je t = , then ( ) ( ) ( ),
,

, Proj u u
u u l j

x y
x y P y∈ ; otherwise, ( ) ( ) ( ),

,
, Proj u u

u u l j
x y

x y P y∉ . 
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Noting that LP (P9) can be equivalently replaced by its corresponding KKT-conditions, we 

can replace (54) in problem (P8) with the following constraints based on Remark 4. Thus, we have 

(P9)
0 0

, ,

0 0

, , ,
, , , , ,

min   
u u l l

l j l j l j j

t u t u t l t l
R Z R Z

x y x y
x x t

c x c y d x d y
π π λ

+ + +
 

             (81) 

              s.t.   (12), (13), (15), (54), (74) – (77), (79) and (80) 

               ( )
( )

0 0 , ,

, ,

, ,

, ,

,

0 , ,

,R L

t l t l t l j t l j
R Z R Z

l j u u l j
R R Z Z

Lt j t j t l j t j t l j L
kR R R R

j u u l j l j
R Z R Z

n nl j j

w x w y w x w y
P x s Q x Q y P y

e t P w x P w y Y Y

s Q x Q y P x P y

x

π π

π

π+ +

 + ≥ +
 
 ≤ − − −
 

 = ⇒ ≥ ⊥ − ∀ ∈ ⊆  
 

⊥ − − − − 
 

∈ ∈   

         (82) 

          , ,0, , Lj l j j l j L
kR RP x P y Y Yλ λ≥ ⊥ ∀ ∈ ⊆              (83) 

          ( ) ,0, , Lj j j l j L
ke t e y Y Yλ λ− ≥ ⊥ − ∀ ∈ ⊆             (84) 

         ( ), , ,, Lj u u l j l j j l j L
kR Z Z Rs Q x Q y P y P x t y Y Yλ ⊥ − − − − + ∀ ∈ ⊆           (85) 

6.3. Approximations 

6.3.1. Indicator constraint 

Constraint (82) cannot be computed by off-the-shelf solvers directly. In this work, we take 

advantage of the special language feature – indicator constraints 1  in GAMS 24.4 [53]. We 

introduce a binary variable jψ  to denote whether 0t je t =  or not. Hence, we have 

(P10)
0 0

, ,

0 0

, , ,
, , ,
, ,

min   
u u l l

l j l j l

j j j

t u t u t l t l
R Z R Z

x y x y
x x

t

c x c y d x d y
π π
λ ψ

+ + +
 

                    (86) 

              s.t.   (12), (13), (15), (54), (74) – (77), (79), (80), (83) – (85) 

               ( )
( )

0 0 , ,

, ,

, ,

, ,

,

, ,

,R L

t l t l t l j t l j
R Z R Z

l j u u l j
R R Z Z

Lj t j t l j t j t l j L
kR R R R

j u u l j l j
R Z R Z

n nl j j

w x w y w x w y
P x s Q x Q y P y

P w x P w y Y Y

s Q x Q y P x P y

x

ψ π π

π

π+ +

 + ≥ +
 
 ≤ − − −
 

⇒ ≥ ⊥ − ∀ ∈ ⊆ 
 

⊥ − − − − 
 

∈ ∈   

                 (87) 

          ( ) { } ,1 , 0,1 ,   Lj t j j l j L
ke t y Y Yε ψ ψ− ≤ ∈ ∀ ∈ ⊆             (88) 

                                                 
1 An indicator constraint is a way of expressing relationships among variables by specifying a binary variable to 
control whether or not a constraint takes effect. 
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where ε  is a very small positive number (e.g., 10-4). Constraint (88) indicates that if ,* 0t je t =   

then jψ  is forced to 1. If ,*t je t ε≥ , at optimality jψ  will equal 0 as less constraints will be 

imposed. Note that the case 0 T je t ε< <  is excluded. Hence, formulation (P10) is an 

approximation of (P9). 

6.3.2. Linearization of complementary constraints 

In this work, we linearize all complementary constraints in KKT conditions by using the big-

M formulation and introducing a binary variable for each complementary constraint [1]. For 

example,  

 ( )
{ }

0
0 0 0 1

0,1

f M
f g g M

δ
δ

δ

 ≤ ≤
 

≤ ⊥ ≥ ⇔ ≤ ≤ − 
 ∈ 

  (89) 

where f and g are two arbitrary equations; M is a large positive number; and δ  is the binary 

variable for complementary constraint 0 0f g≤ ⊥ ≥ . It is noted that there are other approaches in 

handling such complementarity constraints [54-58]. We choose the big-M formulation because 

applying it to (P10) results in a single-level MILP with indicator constraints, which can be handled 

by CPLEX 12.  

Assuming that ε  is chosen sufficiently small and M is chosen sufficiently large, the proposed 

algorithm will converge to the optimal solution in finite iterations. In case that the infimum may 

not be attainable [20], the proposed algorithm converges to ε -optimal solutions. Interested readers 

are referred to [23] for more details. 

7. Computational examples 
To systematically test and evaluate our algorithm development, a very comprehensive 

computational study is performed on three set of examples. Specifically, we employ Example 1 to 

verify our algorithm by computing and comparing with the only publicly accessible MIBLP library 

at the time of writing this paper. We further observe that obtained results cannot reflect the full 

features of the proposed algorithm, given that these instances do not include upper-level 

continuous variables and the parameters are all assumed to be integral. We then employ Example 

2 to test our algorithm on MIBLPs in the general form of (P0), which cannot be computed by the 

original reformulation-and-decomposition method. To demonstrate the applicability of our 
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algorithm in solving practical problems, we employ Example 3, which is a case study on 

hierarchical supply chain planning. Also, a few illustrative examples are provided in the Appendix 

for easy understanding.  

All computational experiments are performed on a PC with an Intel® Core™ i5-2400 CPU @ 

3.10GHz and 8.00 GB RAM. All models and solution procedures are coded in GAMS 24.4 [59]. 

The resulting MILP problems are solved with CPLEX 12. The indicator constraints are 

programmed using the GAMS/CPLEX option files [53]. The CPLEX solver options are set as 

follows: epint2= 0, eprhs3 = 10-8. The optimality tolerances for the solver are set to 0, i.e., optcr = 

0; optca = 0.0. The big-M coefficients are all set to 104, and the ε  coefficients are set to 10-4. The 

tolerance of the relative gap between UB and LB (ξ ) is set to 10-3. 

7.1. Example 1 

In this example, we test the proposed algorithm on the small- and medium-size instances in 

[7]. The computational results are presented in Table 1, where Rm , Zm , Rn , and Zn  are the 

numbers of upper-level continuous variables, upper-level integer variables, lower-level continuous 

variables, and lower-level integer variables. The total number of variables is 

T R Z R Zn m m n n= + + + . The numbers of upper-level constraints ( Un ) and lower-level constraints 

( Ln ) are both set to 0.2 Tn .  

The instances are put in the same order as that in [7]. The smallest instances have 0 upper-

level continuous variables, 10 upper-level binary variables, an average of 5 lower-level continuous 

variables, an average of 5 lower-level binary variables, 4 upper-level constraints, and 4 lower-level 

constraints. The largest instances tested have 0 upper-level continuous variables, 110 upper-level 

binary variables, an average of 55 lower-level continuous variables, an average of 55 lower-level 

binary variables, 44 upper-level constraints, and 44 lower-level constraints. The proposed 

algorithm obtained the same objective function values as that in [7] for all instances. As expected, 

the computational time of the proposed algorithm increases as the problem dimension grows. For 

example, (Xu_Wang _20) instances take an average of 1 second to solve, while (Xu_Wang_220) 

                                                 
2 epint: integrality tolerance (a CPLEX option), which specifies the amount by which an integer variable can be 
different than an integer and still be considered feasible. 
3 eprhs: feasibility tolerance (a CPLEX option), which specifies the degree to which a problem's basic variables may 
violate their bounds. This tolerance influences the selection of an optimal basis and can be reset to a higher value 
when a problem is having difficulty maintaining feasibility during optimization. 
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instances take about an average of 100 seconds to solve. Furthermore, we observe that the 

computational time varies significantly even for problems of the same scale. For example, instance 

(Xu_Wang_220_1) takes 3 seconds to solve, while instance (Xu_Wang_220_10) takes about 937 

seconds to solve. Another observation is that the proposed algorithm usually converges in a few 

number of iterations. We can see that all instances are solved within 4 iterations. From Table 1, 

we can see that the proposed algorithm is comparable with the branch-and-bound algorithm in [7]. 

For certain instances the proposed algorithm is faster, e.g., Xu_Wang _120_10; but for some 

instances the branch-and-bound algorithm in [7] is faster, e.g., Xu_Wang_220_10. This is because 

different MILP subproblems are solved, and different solution approaches are used. 

 

Table 1  Computational performance of the proposed algorithm on instances in [7]. 

Instance Rm  Zm  Rn  Zn  Proposed Alg. Alg. in [7] 
CPUs # Iterations CPUs 

Xu_Wang_20_1 0 10 6 4 1 1 0 
Xu_Wang_20_2 0 10 5 5 1 2 0 
Xu_Wang_20_3 0 10 6 4 1 2 0 
Xu_Wang_20_4 0 10 4 6 1 2 1 
Xu_Wang_20_5 0 10 6 4 1 2 1 
Xu_Wang_20_6 0 10 4 6 1 3 1 
Xu_Wang_20_7 0 10 5 5 1 4 1 
Xu_Wang_20_8 0 10 6 4 1 2 2 
Xu_Wang_20_9 0 10 7 3 1 2 4 
Xu_Wang_20_10 0 10 5 5 1 2 4 
Xu_Wang_120_1 0 60 31 29 10 3 1 
Xu_Wang_120_2 0 60 25 35 5 2 2 
Xu_Wang_120_3 0 60 34 26 1 1 7 
Xu_Wang_120_4 0 60 28 32 1 1 8 
Xu_Wang_120_5 0 60 27 33 26 2 25 
Xu_Wang_120_6 0 60 33 27 1 1 30 
Xu_Wang_120_7 0 60 32 28 1 1 63 
Xu_Wang_120_8 0 60 30 30 20 3 81 
Xu_Wang_120_9 0 60 34 26 6 3 85 
Xu_Wang_120_10 0 60 35 25 3 2 154 
Xu_Wang_220_1 0 110 60 50 3 1 2 
Xu_Wang_220_2 0 110 65 45 5 2 9 
Xu_Wang_220_3 0 110 55 55 4 1 14 
Xu_Wang_220_4 0 110 60 50 1 1 15 
Xu_Wang_220_5 0 110 58 52 1 1 19 
Xu_Wang_220_6 0 110 55 55 35 2 35 
Xu_Wang_220_7 0 110 49 61 6 2 62 
Xu_Wang_220_8 0 110 56 54 21 2 75 
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Xu_Wang_220_9 0 110 52 58 1 1 168 
Xu_Wang_220_10 0 110 47 63 937 4 720 

 

7.2. Example 2 

In this subsection, we test the proposed algorithm on randomly generated instances. 

Parameters for these instances are generated as follows. The number of upper-level variables is set 

equal to that of lower-level variables, i.e. R Z R Zm m n n+ = + . The numbers of continuous and 

integer variables are randomly determined with equal probability. The total number of variables 

( T R Z R Zn m m n n= + + +  ) is set to five levels ranging from 20 to 400. The numbers of upper-level 

constraints ( Un ) and lower-level constraints ( Ln ) are set to 0.2 Tn . We use the same notations as 

those of problem (P0). The upper bounds of ux  and lx  are set to 10. The integer variables uy  and 
ly  are all assumed to be binary variables. Elements of the following matrices and vectors are real 

numbers randomly generated following uniform distribution. Rc , Zc , Rd , Zd , Rw , and Zw  are 

within [–50, 50]. RA , ZA , RB , ZB , RQ , ZQ , RP , and ZP  are within [0, 10]. r  is within [30, 130]. 

s  is within [10, 110]. For each level of Tn , ten random instances are generated. The detailed inputs 

to the GAMs code for generating computational instances are provided in the Appendix D. Note 

that they are in the general form of (P0) and cannot be computed by the original reformulation-

and-decomposition method. 

The model statistics and computational performances corresponding to the 50 instances are 

summarized in Table 2. The instances that have the same total number of variables are sorted in 

the ascending order of computational time. The smallest instances have an average of 5 upper-

level continuous variables, an average of 5 upper-level binary variables, an average of 5 lower-

level continuous variables, an average of 5 lower-level binary variables, 4 upper-level constraints, 

and 4 lower-level constraints. The largest instances have an average of 100 upper-level continuous 

variables, an average of 100 upper-level binary variables, an average of 100 lower-level continuous 

variables, an average of 100 lower-level binary variables, 80 upper-level constraints, and 80 lower-

level constraints. As expected, the computational time increases rapidly as the problem dimension 

grows. For example, (miblp_20) instances take an average of 1 second to solve, while (miblp_400) 

instances take about an average of 1 hour to solve. Furthermore, we observe that the computational 

time varies significantly even for problems of the same scale. For example, instance (miblp_300_1) 
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takes 2 seconds to solve, while instance (miblp_300_10) takes about 50 minutes to solve. Another 

observation is that the algorithm usually converges in a few number of iterations. We can see that 

49 out of the 50 instances are solved within 3 iterations, demonstrating the efficiency of the KKT-

condition-based inequalities. The exception is instance (miblp_20_10) which is solved in 10 

iterations due to its complexity.  

 

Table 2 Computational performance of the proposed algorithm on random instances. 

Instance Rm  Zm  Rn  Zn  CPUs # Iterations 
miblp_20_1 6 4 4 6 1 1 
miblp_20_2 7 3 6 4 1 1 
miblp_20_3 3 7 5 5 1 1 
miblp_20_4 6 4 5 5 1 3 
miblp_20_5 2 8 4 6 1 2 
miblp_20_6 9 1 3 7 1 2 
miblp_20_7 6 4 4 6 1 3 
miblp_20_8 3 7 6 4 1 2 
miblp_20_9 5 5 7 3 1 3 
miblp_20_10 5 5 2 8 2 10 
miblp_100_1 25 25 20 30 1 1 
miblp_100_2 26 24 26 24 1 1 
miblp_100_3 27 23 23 27 1 2 
miblp_100_4 25 25 24 26 1 2 
miblp_100_5 21 29 27 23 1 2 
miblp_100_6 30 20 28 22 1 2 
miblp_100_7 32 18 20 30 2 2 
miblp_100_8 19 31 17 33 7 2 
miblp_100_9 21 29 25 25 9 3 
miblp_100_10 22 28 28 22 13 3 
miblp_200_1 53 47 51 49 1 1 
miblp_200_2 48 52 45 55 1 1 
miblp_200_3 48 52 46 54 7 2 
miblp_200_4 40 60 58 42 19 2 
miblp_200_5 42 58 57 43 19 2 
miblp_200_6 55 45 49 51 87 2 
miblp_200_7 53 47 51 49 243 2 
miblp_200_8 51 49 49 51 268 2 
miblp_200_9 52 48 52 48 349 2 
miblp_200_10 48 52 51 49 595 2 
miblp_300_1 73 77 83 67 2 1 
miblp_300_2 80 70 68 82 2 1 
miblp_300_3 69 81 73 77 17 2 
miblp_300_4 76 74 79 71 209 2 
miblp_300_5 74 76 77 73 264 2 
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miblp_300_6 79 71 75 75 290 2 
miblp_300_7 78 72 73 77 432 2 
miblp_300_8 82 68 68 82 437 2 
miblp_300_9 75 75 79 71 1,713 2 
miblp_300_10 73 77 70 80 3,016 2 
miblp_400_1 95 105 99 101 2 1 
miblp_400_2 94 106 107 93 6 1 
miblp_400_3 97 103 100 100 75 2 
miblp_400_4 98 102 104 96 93 1 
miblp_400_5 104 96 92 108 189 2 
miblp_400_6 103 97 98 102 779 2 
miblp_400_7 111 89 95 105 896 2 
miblp_400_8 99 101 97 103 8,285 2 
miblp_400_9 104 96 106 94 14,232 3 
miblp_400_10 98 102 108 92 16,573 2 

 

7.3. Example 3 

This problem is modified from the capacitated plant selection problem by Cao and Chen [60]. 

While most facility selection and production planning approaches assume centralized decision 

making using monolithic models, the authors addressed the problem in a decentralized 

manufacturing environment, where the principal firm and the auxiliary plants operate 

independently in an organizational hierarchy. A bilevel optimization model was proposed to 

separate the decision making of plant selection and production planning. Changes to the original 

problem include: 1) a constraint on resource limitation (e.g., capital, labor, emission cap) is added 

to the upper-level program; 2) a continuous capacity variable is considered as an upper-level 

decision variable; and 3) a fixed cost for opening a certain production line is considered. The 

hierarchical planning problem is formulated into an MIBLP problem which involves continuous 

and binary variables in both the upper- and lower-level programs. A detailed mathematical model 

formulation can be found in Appendix E. 

We test the proposed algorithm on a total of 35 instances. By varying the number of plants 

and products, we consider 7 levels, each including 5 cases: (6,6), (6,8), (8,8), (8,10), (10,10), 

(10,12), and (12,12), where the first number denotes the number of plants and the second number 

denotes the number of products. The parameters are randomly generated. The demands of product 

j (d(j)) are uniformly generated on 5 [8,12]U× . The opening cost of plant i (f(i)) is uniformly 

distributed on 5 [20,80]U× , and the opportunity cost (p(i)) is generated uniformly on 
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0.1 [4,10]U× . The resource quota (q) is determined in each instance varying from 230 to 650. The 

unit production cost (w(i)) equals the summation of p(i) and a random parameter uniformly 

generated on 0.1 [ 2,2]U× − . The upper bound for capacity (cu(i)) is uniformly distributed on 

50 [2,9]U× . The capacity consumption ratio (a(i,j)) is generated as a ratio of two uniformly 

generated parameters, given as 0.1 [7,12] / [0,1]U U× . The transportation cost (r(i,j)) is given as a 

summation of three uniformly generated parameters 0.1 [0,5] 0.1 [0,5] 0.01 [1,3]U U U× + × + × . 

The setup cost in the upper level problem (s(i,j)) and the lower level problem (g(i,j)) are given as 

( )0.5 [20,80] 2 [ 3,3]round U U× + × −  and ( )0.5 [20,80] 2 [ 3,3] 2 [ 2,2]round U U U× + × − + × − , 

respectively. The resource demand for producing unit product (e(i,j)) is given as  

0.1 [0,5] 0.1 [0,5] 0.1 [1,3]U U U× + × + × . The trivial instances that can be solved in one iteration 

are intentionally excluded. The detailed inputs to GAMS code for generating instances are 

provided in the Appendix D.  

The model statistics and computational performances corresponding to the 35 instances are 

summarized in Table 3. The instances that have the same number of plants and products are sorted 

in ascending order of computational time. The smallest instances have up to 6 upper-level 

continuous variables, 6 upper-level binary variables, 36 lower-level continuous variables, 36 

lower-level binary variables, 7 upper-level constraints, and 54 lower-level constraints. The largest 

instances have up to 12 upper-level continuous variables, 12 upper-level binary variables, 144 

lower-level continuous variables, 144 lower-level binary variables, 13 upper-level constraints, and 

180 lower-level constraints. From the model statistics, we can see that the lower-level programs 

are more difficult than the upper-level programs. As expected, the computational time increases 

as the numbers of plants and products increase. For example, (hscp_6_6) instances take an average 

of 1 second to solve, while (hscp_12_12) instances take an average of 16 minutes. We also observe 

that the computational time varies significantly even for instances with the same numbers of plants 

and products. For example, instance (hscp_10_10_1) takes 1 second to solve, while instance 

(hscp_10_10_5) takes about 4 minutes. It is noted that all instances are solved within 4 iterations. 

Specifically, 26 instances are solved in 2 iterations, 6 instances in 3 iterations, and 3 instances in 

4 iterations. 
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Table 3 Computational performance of the proposed algorithm on hierarchical supply chain 

planning instances. 

Instance # plants # products CPUs # Iterations 
hscp_6_6_1 6 6 1 2 
hscp_6_6_2 6 6 1 2 
hscp_6_6_3 6 6 2 2 
hscp_6_6_4 6 6 2 2 
hscp_6_6_5 6 6 3 3 
hscp_6_8_1 6 8 1 2 
hscp_6_8_2 6 8 1 2 
hscp_6_8_3 6 8 1 2 
hscp_6_8_4 6 8 2 2 
hscp_6_8_5 6 8 102 3 
hscp_8_8_1 8 8 1 2 
hscp_8_8_2 8 8 1 2 
hscp_8_8_3 8 8 2 2 
hscp_8_8_4 8 8 2 2 
hscp_8_8_5 8 8 2 2 
hscp_8_10_1 8 10 2 2 
hscp_8_10_2 8 10 3 2 
hscp_8_10_3 8 10 5 2 
hscp_8_10_4 8 10 6 3 
hscp_8_10_5 8 10 39 4 
hscp_10_10_1 10 10 1 2 
hscp_10_10_2 10 10 7 2 
hscp_10_10_3 10 10 18 2 
hscp_10_10_4 10 10 22 3 
hscp_10_10_5 10 10 214 3 
hscp_10_12_1 10 12 4 2 
hscp_10_12_2 10 12 8 2 
hscp_10_12_3 10 12 9 2 
hscp_10_12_4 10 12 9 2 
hscp_10_12_5 10 12 117 3 
hscp_12_12_1 12 12 18 2 
hscp_12_12_2 12 12 36 2 
hscp_12_12_3 12 12 1,016 4 
hscp_12_12_4 12 12 1,214 2 
hscp_12_12_5 12 12 2,625 4 

 

8. Conclusions 
In this paper, an extended variant of the reformulation and decomposition algorithm was 

proposed and developed for solving a broad class of MIBLP problems. We assumed that the 
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inducible region was nonempty and all variables had finite bounds, which guaranteed that an 

MIBLP is feasible and has an optimal solution. A novel projection-based single-level formulation 

was proposed, which accounts for MIBLPs that do not have the relatively complete response 

property. Based on this formulation, a decomposition algorithm through column-and-constraint 

generation was developed, which progressively generated stronger lower and upper bounds by 

iteratively solving master and subproblems. We also proved that the algorithm converges to global 

optimal solutions in finite iterations.  

The computational performance of the proposed MIBLP solution algorithm has been 

comprehensively evaluated by three types of computational examples, including 30 literature 

instances, 50 randomly-generated numerical instances, and 35 hierarchical supply chain planning 

problems, formulated as MIBLPs. We conclude from the computational results that our algorithm 

can solve small to large scale MIBLP problems very efficiently in most cases. The future work 

should investigate the potential opportunity to further boost the computational performance 

especially when facing large number of lower-level integer variables. The exploration of MIBNLP 

will be another interesting direction for further exploration.  
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Appendix A: Toy example 1 
The following example is adapted from [8] and is a classical MIBLP problem. We use toy 

example 1 to verify the results of the proposed algorithm and demonstrate the solution procedure. 
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This problem does not have lower-level continuous variables, so the reformulation (P4) can 

be simplified and the KKT conditions are not required. In addition, since there is no upper-level 

constraint, the second subproblem (P7) is always feasible. Thus, it is guaranteed that a bilevel 

feasible solution can be obtained in each iteration. The solution procedure of the proposed 

algorithm is presented below, and a graphical illustration is shown in Fig. A1. 

In iteration 0l =  we solve master problem (P5) to obtain ( ) ( ),* 0,*, 2,4u ly y =  and 42LB = − ; given 

,* 2uy = , we solve subproblems (P6) and (P7) to obtain ,*
0 2ly =  and 22UB = − ; at step 6, we add 

the following constraint to master problem(P5): 01 6 2u ly y   ≤ ≤ ⇒ ≤    .      

In iteration 1l =  we solve master problem (P5) to obtain ( ) ( ),* 0,*, 6,2u ly y =  and 26LB = − ; given 

,* 6uy = , we solve subproblems (P6) and (P7) to obtain ,*
1 1ly =  and { }min 22, 16 22UB = − − = − ; 

at step 6, we add the following constraint to master problem (P5): 02.5 8 1u ly y   ≤ ≤ ⇒ ≤    .  

In iteration 2l =  we solve master problem (P7) to obtain ( ) ( ),* 0,*, 2,2uy y =  and 22LB = − ; now 

we have UB LB=  so that the algorithm terminates in step 3.  
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Fig. A1  The solution procedure of toy example 1. 

 

Appendix B: Toy example 2 
The following example is adapted from [25]. We use toy example 2 to demonstrate how the 

proposed algorithm solves an MIBLP problem with upper-level connecting constraints. Note that 

this toy example and following ones in Appendices C and E cannot be computed by the original 

reformulation-and-decomposition method. 
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This problem does not have lower-level continuous variables either, so the reformulation (P4) 

can be simplified and the KKT conditions are not required. However, there are two upper-level 

constraints that involve lower-level variables. Thus, the second subproblem (P7) could be 

infeasible. The solution procedure of the proposed algorithm is presented below, and a graphical 

illustration is shown in Fig. B1.  

In iteration 0l =  we solve master problem (P5) to obtain ( ) ( ),* 0,*, 6,8u ly y =  and 22LB = − ; given 

,* 6uy = , we solve the first subproblem (P6) and obtain 0ˆ 12ly = . As the second subproblem (P7) 

is infeasible, at step 6 we add the following constraint to master problem (P5): 
05 6 12u ly y   ≤ ≤ ⇒ ≥    . 

In iteration 1l =  we solve master problem (P5) to obtain ( ) ( ),* 0,*, 7,7u ly y =  and 21LB = − ; given 

,* 7uy = , we solve the first subproblem (P6) and obtain 1ˆ 9ly = ; but we find that the second 

subproblem (P7) is still infeasible; at step 6, we add the following constraint to master problem 

(P5): 04 7 9u ly y   ≤ ≤ ⇒ ≥    . 

In iteration 2l =  we solve master problem (P5) to obtain ( ) ( ),* 0,*, 8,6u ly y =  and 20LB = − ; given 

,* 8uy = , we solve subproblems (P6) and (P7) to obtain ,*
2 6ly =  and 20UB = − ; now we have 

UB LB= , so the algorithm terminates in step 7. 
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Fig. B1  The solution procedure of toy example 2 

 

Appendix C: Toy example 3 
The two examples above represent a special class of MIBLPs, which include merely an upper-

level integer variable and a lower-level integer variable. To show all features of the proposed 

algorithm while ensuring simplicity for demonstration, we propose the following illustrative 

example. 
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This problem includes continuous and integer variables in both upper- and lower-level 

programs. There are two upper-level constraints involving lower-level variables. Thus, the second 

subproblem (P7) could be infeasible. The solution procedure of the proposed algorithm is 

presented below. 
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In iteration 0l =  we solve master problem (P5) to obtain ( ) ( ),* ,* 0,* 0,*, , , 2.844,8,1.200,0u u l lx y x y =  

and 245.911LB = − ; given ( ) ( ),* ,*, 2.844,8u ux y = , we solve the first subproblem (P6) and obtain 

( ) ( )0 0ˆ ˆ, 0.200,2l lx y = ; the second subproblem (P7) is infeasible; at step 6 we add a set of KKT-

condition-based inequalities to master problem (P5). 

In iteration 1l =  we solve master problem (P5) to obtain ( ) ( ),* ,* 0,* 0,*, , , 2.889,8,1.000,0u u l lx y x y =  

and 245.222LB = − ; given ( ) ( ),* ,*, 2.889,8u ux y = , we solve the first subproblem (P6) and obtain

( ) ( )1 1ˆ ˆ, 0.500,1l lx y = ; we find that the second subproblem (P7) is still infeasible; at step 6, we add 

another set of KKT-condition-based inequalities to master problem (P5). 

In iteration 2l =  we solve master problem (P5) to obtain ( ) ( ),* ,* 0,* 0,*, , , 3.000,8,0.500,0u u l lx y x y =

and 243.500LB = − ; given ( ) ( ),* ,*, 3.000,8u ux y = , we solve subproblems (P6) and (P7) to obtain 

( ) ( ),* ,*
2 2, 0.500,0l lx y =  and 243.500UB = − ; now we have UB LB= , so the algorithm terminates 

in step 7. 

The solution procedure above takes a total of 3 iterations. If the KKT-condition-based 

tightening constraints (74) – (77) are not used, the algorithm takes a total of 5 iterations. Therefore, 

it is shown that the KKT-condition-based tightening constraints help reduce the number of 

iterations and computational time. 

Appendix D: Inputs for generating computational examples 
The following Table 4 provides the inputs to the GAMS code for generating computational 

instances corresponding to example 2. We note that seed is the factor used to generate random 

parameters, std. stands for the standard deviation used when generating Rm , Zm , Rn , and Zn . 

 

Table 4 Inputs to the GAMS code for generating computational instances in example 2. 

Instance seed 0.5nT std. 
miblp_20_1 1 10 2 
miblp_20_2 4 10 2 
miblp_20_3 1000 10 2 
miblp_20_4 7 10 2 
miblp_20_5 20 10 2 
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miblp_20_6 84 10 2 
miblp_20_7 96 10 2 
miblp_20_8 5678 10 2 
miblp_20_9 79 10 2 
miblp_20_10 892 10 2 
miblp_100_1 34 50 5 
miblp_100_2 689 50 5 
miblp_100_3 1 50 5 
miblp_100_4 572 50 5 
miblp_100_5 694 50 5 
miblp_100_6 4 50 5 
miblp_100_7 42 50 5 
miblp_100_8 99 50 5 
miblp_100_9 1000 50 5 
miblp_100_10 789 50 5 
miblp_200_1 7 100 5 
miblp_200_2 377 100 5 
miblp_200_3 1065 100 5 
miblp_200_4 29 100 5 
miblp_200_5 89 100 5 
miblp_200_6 95 100 5 
miblp_200_7 232 100 5 
miblp_200_8 46 100 5 
miblp_200_9 48 100 5 
miblp_200_10 693 100 5 
miblp_300_1 10 150 5 
miblp_300_2 2 150 5 
miblp_300_3 236 150 5 
miblp_300_4 36 150 5 
miblp_300_5 25 150 5 
miblp_300_6 867 150 5 
miblp_300_7 999 150 5 
miblp_300_8 777 150 5 
miblp_300_9 239 150 5 
miblp_300_10 388 150 5 
miblp_400_1 965 200 5 
miblp_400_2 479 200 5 
miblp_400_3 374 200 5 
miblp_400_4 69 200 5 
miblp_400_5 988 200 5 
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miblp_400_6 999 200 5 
miblp_400_7 111 200 5 
miblp_400_8 389 200 5 
miblp_400_9 7374 200 5 
miblp_400_10 10 200 5 

 

In the following Table 5, we provide the inputs to GAMS for generating instances in example 

3 from (hscp_6_6_1) through (hscp_12_12_5). 

 

Table 5. Inputs to GAMS for generating instances in example 3. 

Instance # plants # products seed q 
hscp_6_6_1 6 6 41257601 230 
hscp_6_6_2 6 6 9782 230 
hscp_6_6_3 6 6 18654 230 
hscp_6_6_4 6 6 3342 250 
hscp_6_6_5 6 6 22 260 
hscp_6_8_1 6 8 22555 320 
hscp_6_8_2 6 8 3611 350 
hscp_6_8_3 6 8 527 300 
hscp_6_8_4 6 8 91 300 
hscp_6_8_5 6 8 19123 360 
hscp_8_8_1 8 8 8688 250 
hscp_8_8_2 8 8 9651 300 
hscp_8_8_3 8 8 1752 280 
hscp_8_8_4 8 8 87422 250 
hscp_8_8_5 8 8 436 250 
hscp_8_10_1 8 10 57275355 400 
hscp_8_10_2 8 10 7296453 450 
hscp_8_10_3 8 10 72964 430 
hscp_8_10_4 8 10 288174 500 
hscp_8_10_5 8 10 2 450 
hscp_10_10_1 10 10 796 300 
hscp_10_10_2 10 10 8910 400 
hscp_10_10_3 10 10 23 350 
hscp_10_10_4 10 10 294 370 
hscp_10_10_5 10 10 7955 320 
hscp_10_12_1 10 12 89765 500 
hscp_10_12_2 10 12 47 400 
hscp_10_12_3 10 12 9364875 450 
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hscp_10_12_4 10 12 76563 500 
hscp_10_12_5 10 12 3254336 400 
hscp_12_12_1 12 12 818 650 
hscp_12_12_2 12 12 97 350 
hscp_12_12_3 12 12 2689 500 
hscp_12_12_4 12 12 9434 480 
hscp_12_12_5 12 12 463 290 

 

Appendix E: Hierarchical supply chain planning model 
In this section, we present the bilevel model formulation of the hierarchical supply chain 

planning problem adapted from [60]. Before the model is presented, we first give the notations 

used in the model. 

Parameters 

ija   capacity consumption ratio for processing product j in plant i 

U
ic   upper bound of production capacity in plant i 

jd   customer demand of product j 

ije   resource factor for processing product j in plant i 

if   opening cost for plant i 

ijg   fixed cost for opening production line j in plant i 

ip   opportunity cost for unused production capacity of plant i after it is opened 

q   resource availability 

ijr   transportation cost for transferring product j from plant i to the principal firm 

ijs   fixed operation cost for processing product j in plant i  

iw   cost to use production capacity in plant i 

n   number of product types 

 

Continuous variables 

iCap   designated production capacity in plant i 

ijX   fraction of demand of product j produced in plant i 
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Binary variables 

iY   1 if plant I is selected and opened; 0 otherwise 

ijZ   1 if production line for product j in plant i is used; 0 otherwise 

With the above notations, the model for the hierarchical supply chain planning problem is 

formulated as follows. 

min 1
i i

i i ij ij i i j ij ij
i i j IS i j IS

z f Y g Z p Cap d a X
∈ ∈

 
= + + − 

 
∑ ∑∑ ∑ ∑   (E.1) 

s.t. 
i

j ij ij
i j IS

d e X q
∈

≤∑ ∑   (E.2) 

    U
i iCap c i≤ ∀   (E.3) 

 { }0,1 ,i iY Cap +∈ ∈   (E.4) 

min ( )2
i i

i j ij ij ij ij j ij ij
i j IS i j IS

z w d a X s Z d r X
∈ ∈

 
= + + 

 
∑ ∑ ∑∑   (E.5) 

s.t. 1,   
j

ij
i JS

X j
∈

= ∀∑  (E.6) 

 ,   
i

j ij ij i
j IS

d a X Cap i
∈

≤ ∀∑  (E.7) 

 ,   
i

ij i
j IS

X nY i
∈

≤ ∀∑  (E.8) 

 ,   ,ij ij iX Z i j IS≤ ∀ ∈  (E.9) 

 { }, 0,1ij ijX Z+∈ ∈   (E.10) 

The principal firm’s objective (E.1) is to minimize the sum of the plant opening cost, the 

production line opening cost, and the opportunity cost of over-setting production capacities. 

Constraint (E.2) enforces that the use of resources does not exceed their availabilities. Although 

only one type of resource is considered in this model, it can be easily extended to include multiple 

types of resources by adding an index for resources. Constraint (E.3) imposes a limitation on plant 

capacity. The lower-level objective function (E.5) is to minimize the operational costs, including 

the cost related to production capacity consumption, the fixed charge cost, and transportation costs 

for shipping products from auxiliary plants to the principal firm. Constraint (E.6) indicates that the 

demands must be fully satisfied. Constraint (E.7) indicates that production should not exceed 

capacity. Constraint (E.8) suggests that no product can be produced if the plant is not opened. 

Constraint (E.9) indicates that no product can be produced if the production line is not opened. 
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Constraints (E.4) and (E.10) are non-negative and binary constraints for upper- and lower-level 

decision variables. In this problem setting, the principal firm first determines which plant to open 

( iY ) and the capacity to install ( iCap ). Then the auxiliary plants determine which production line 

to use ( ijZ ) and the production level of each product ( ijX ). 
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