
1

A Projection-Based Reformulation and Decomposition Algorithm for Global

Optimization of a Class of Mixed Integer Bilevel Linear Programs

Dajun Yue  Jiyao Gao  Bo Zeng  Fengqi You*

Accepted in Journal of Global Optimization DOI: 10.1007/s10898-018-0679-1

Journal of Global Optimization, https://doi.org/10.1007/s10898-018-0679-1

Abstract We propose an extended variant of the reformulation and decomposition algorithm for

solving a special class of mixed-integer bilevel linear programs (MIBLPs) where continuous and

integer variables are involved in both upper- and lower-level problems. In particular, we consider

MIBLPs with upper-level constraints that involve lower-level variables. We assume that the

inducible region is nonempty and all variables are bounded. By using the reformulation and

decomposition scheme, an MIBLP is first converted into its equivalent single-level formulation,

then computed by a column-and-constraint generation based decomposition algorithm. The

solution procedure is enhanced by a projection strategy that does not require the relatively

complete response property. To ensure its performance, we prove that our new method converges

to the global optimal solution in a finite number of iterations. A large-scale computational study

on random instances and instances of hierarchical supply chain planning are presented to

demonstrate the effectiveness of the algorithm.

Keywords: Mixed-integer bilevel linear program  global optimization  single-level

reformulation  reformulation and decomposition method  projection  hierarchical supply

chain planning

D. Yue
Northwestern University, Evanston, Illinois 60208, USA.
J. Gao
Cornell University, Ithaca, New York 14853, USA.
B. Zeng
University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
F. You (corresponding author)
Cornell University, Ithaca, New York 14853, USA. Tel: +1 607 882 5530, e-mail: fengqi.you@cornell.edu

2

1. Introduction
We present an algorithm for solving a special class of mixed-integer bilevel linear programs

(MIBLPs) of the following form.

(P0)
0 0

0 0

, , ,
min

u u l l

t u t u t l t l
R Z R Z

x y x y
c x c y d x d y+ + + (1)

 s.t. 0 0u u l l
R Z R ZA x A y B x B y r+ + + ≤ (2)

 0 0, , ,R Z R Zm m n nu u l lx y x y+ + + +∈ ∈ ∈ ∈   (3)

 ()
()

{0 0

,
, argmax :

l l

l l t l t l
R Z

x y
x y w x w y∈ + (4)

 l l u u
R Z R ZP x P y s Q x Q y+ ≤ − − (5)

 },R Zn nl lx y+ +∈ ∈  (6)

In formulation (P0), there is an ambiguity when multiple lower-level optimal solutions exist

[1]. In the optimistic (or strong) formulation, the lower-level decision maker selects ()0 0,l lx y from

his optimal solution set according to the interests of the upper-level decision maker [2]. On the

contrary, in the pessimistic (or weak) formulation, the lower-level decision maker select one

optimal solution to against the upper level decision maker’s interest [3]. In this paper, the

optimistic formulation is treated. Without loss of generality, the lower-level program in (P0) can

be converted into a minimization problem by changing the sign of the lower-level objective

function.

Bilevel programs [4], including MIBLPs, are frequently utilized to model Stackelberg games

in game theory [5,6]. MIBLPs are intrinsically challenging to solve, and the use of mixed-integer

linear programming (MILP) algorithms for solving MIBLPs is not straightforward [7-9]. Although

MIBLPs can be solved using some general-purpose mixed-integer bilevel nonlinear program

(MIBNLP) algorithms, most of them only have small-scale applications reported in the literature

[10-12]. For example, the global MIBNLP algorithm proposed by Mitsos [13] was applied by

Fliscounakis et al. to solve a specific large-scale MIBLP problem for a power system [14].

However, the detailed model formulation and the resulting problem size of this MIBLP are not

reported. Most existing MIBLP algorithms are proposed to handle special classes of (P0), such as

integer bilevel linear programs [15], MIBLPs with special constraint structures [16], MIBLPs

without continuous upper-level variables [7,17,18], and/or MIBLPs without continuous lower-

level variables [19,20]. Fischetti et al. [21,22] introduced a new general-purpose algorithm for

3

MIBLPs based on a branch-and-cut framework, where new classes of valid inequalities and

effective preprocessing procedures are introduced. We mention that Zeng and An [23] proposed

the reformulation and decomposition method to solve MIBLPs with continuous and integer

variables in both upper- and lower-level programs, which provides a rather general strategy and

framework to attack those difficult problems. In a capacity expansion planning problem [24], this

new method demonstrates a very strong solution capacity. Nevertheless, the original reformulation

and decomposition method did not consider MIBLPs with upper-level constraints involving lower-

level variables (called connecting constraints [25] in what follows).

In this work, we extend the original reformulation and decomposition scheme in [23] to solve

MIBLPs in a more general form, i.e., the form of (P0) that has connecting constraints. Specifically,

the decomposition algorithm, i.e., the master and subproblems are modified or updated according

to the structure of (P0). Also, the finite convergence proof is generalized to guarantee that our

new development derives (P0)’s global optimal solutions. We point out that a new feature based

on a novel projection-based formulation is introduced to handle the case where the relatively

completely response property does not hold. This enhancement could be of a critical value as many

real problems may not have that property. To verify this new development of the reformulation

and decomposition method, a large-scale computational study on two types of random instances

and instances of hierarchical supply chain planning are presented. Similarly to [24], our algorithm

demonstrates a desirable computational capacity on more general MIBLP’s.

The rest of the paper is organized as follows. A brief literature review is given in Section 2.

We provide the preliminaries in Section 3. We describe the reformulation procedure, especially

the projection-based formulation, in Section 4. The decomposition algorithm is presented in

Section 5. We discuss several implementation issues in Section 6. A rather comprehensive

computational study are presented in Section 7. We conclude the article in Section 8.

2. Literature review
A variety of approaches have been proposed to solve MIBLP problems in the literature. Moore

and Bard [8,26] proposed the first branch-and-bound algorithms for MIBLPs. Dempe [19] and

Hemmati and Smith [16] proposed a cutting plane approach. Saharidis and Ierapetritou [27]

proposed an algorithm based on Benders decomposition. DeNegre and Ralphs [15] presented a

branch-and-cut algorithm. Köppe et al. [20] proposed a parametric integer programming algorithm.

Recently, Xu and Wang [7] developed an exact algorithm based on the branch-and-bound

4

framework. Fischetti et al. [21,22] introduced new classes of linear inequalities in a branch-and-

cut framework. Poirion et al. [28] proposed a cut-generation algorithm and row-and-column

generation framework. As mentioned, Zeng and An [23] proposed the original reformulation-and-

decomposition scheme. These algorithms have been proposed to handle different classes of

MIBLP problems. This work contributes to solving a class of MIBLPs in the form of (P0).

The relevant literature also includes studies on bilevel nonlinear programs (BNLP) and

MIBNLP. Edmunds and Bard [29] proposed a branch-and-bound algorithm for MIBNLPs. Gümüş

and Floudas [10] proposed a vertex polyhedral convex hull representation. Faísca et al. [30] and

Domínguez and Pistikopoulos [11] employed parametric programming approaches. Mitsos et al.

[31] and Mitsos [13] proposed bounding algorithms for global optimization of BNLP and MIBNLP

problems. Kleniati and Adjiman [32,12] proposed branch-and-sandwich algorithms for solving

BNLP and MIBNLP problems. Based on the computational performances reported in the literature

mentioned above, the computational performance of existing MIBNLP algorithms in solving

medium to large MIBLP problems needs to be further tested.

Algorithms have also been proposed for solving other types of relevant programs, including

min-max programs [33,34,9], semi-infinite programs [35-37], and generalized semi-infinite

programs [38-40]. However, there is no direct relationship between the proposed algorithm and

these algorithms. It is worth mentioning that there is a large body of literature on heuristic and

meta-heuristic algorithms for bilevel optimization problems [41,42], which is out of the scope of

this work.

3. Preliminaries
In this section, we introduce some definitions and an assumption that will be used in the

algorithm.

Definition 1 We denote Ω :

 ()0 0 0 0

0 0

0 0

, , , : ,
,

, , ,R Z R Z

u u l l u u l l
R Z R Z

u u l l
R Z R Z

m m n nu u l l

x y x y A x A y B x B y r
Q x Q y P x P y s

x y x y+ + + +

 Ω = + + + ≤
 

+ + + ≤ 
 ∈ ∈ ∈ ∈   

 (7)

the MIBLP constraint region.

Definition 2 For any given (), R Zm mu ux y + +∈ ×  , we denote (),u ux y
Ω :

5

 () (){ }0 0 0 0 0 0
,

, : , ,R Z
u u

n nl l l l u u l l
R Z R Zx y

x y P x P y s Q x Q y x y+ +Ω = + ≤ − − ∈ ∈  (8)

the lower-level feasible region.

Definition 3 For any given (), R Zm mu ux y + +∈ ×  , we denote (),u ux y
M :

 () ()
() (){ }

0 0

0 0 0 0
, ,

,
arg max : ,u u u u

l l

t l t l l l
R Zx y x y

x y
M w x w y x y= + ∈Ω (9)

the lower-level rational reaction set.

Definition 4 We denote IR:

 () () () (){ }0 0 0 0 0 0
,

, , , : , , , , , u u
u u l l u u l l l l

x y
IR x y x y x y x y x y M= ∈Ω ∈ (10)

the inducible region, which represents the feasible region at the upper-level program.

Hence, a more general definition for (P0) can be:

(P1) ()
0 0

0 0 0 0

, , ,
min : , , ,

u u l l

t u t u t l t l u u l l
R Z R Z

x y x y
c x c y d x d y x y x y IR+ + + ∈

Assumption 1 The inducible region IR is nonempty and all variables have finite bounds.

Assumption 1 ensures that the feasible set of MIBLP problem (P0) or (P1) is nonempty. We

note that the connecting constraints (2) in the upper level problem can make the inducible region

empty even if the lower level problem has an optimal solution for the selection in the upper level

problem. In cases that an optimal solution does not exist due to open inducible region or non-

lower-semi-continuous optimal value function [43-45], we are interested in the infimum of the

objective function and ϵ-optimal solutions as shown in [23]. In this work, we do not explicitly

consider the cases of unboundedness and infeasibility.

4. Reformulations

4.1. Optimal value reformulation

First, we follow the convention to reformulate the optimistic MIBLP (P0) using the optimal

value transformation [46], as given below.

(P2)
0 0

0 0

, , ,
min

u u l l

t u t u t l t l
R Z R Z

x y x y
c x c y d x d y+ + + (11)

 s.t. 0 0u u l l
R Z R ZA x A y B x B y r+ + + ≤ (12)

 0 0u u l l
R Z R ZQ x Q y P x P y s+ + + ≤ (13)

6

 0 0

,
max :

,

l l

R Z

t l t l t l t l
R Z R Z

x y
u u l l

R Z R Z
n nl l

w x w y w x w y
Q x Q y P x P y s
x y+ +

 + ≥ +
 

+ + + ≤ 
 ∈ ∈  

 (14)

 0 0, , ,R Z R Zm m n nu u l lx y x y+ + + +∈ ∈ ∈ ∈   (15)

Because the lower-level program is a maximization problem, constraint (14) ensures that

()0 0,l lx y is an optimal solution to the lower-level problem, for any given (),u ux y . Furthermore,

(P2) corresponds to the optimistic formulation because ()0 0,l lx y are controlled for the benefits of

the upper-level program.

4.2. Projection-based single-level formulation

It is a standard approach to reduce bilevel programs to equivalent single-level programs [47-

50]. In the case that the lower-level program is a linear program (LP), one can replace the lower-

level program with its corresponding Karush-Kuhn-Tucker (KKT) conditions. However, the

discrete variables 𝑦𝑦𝑙𝑙 in (P2) renders the lower level problem non-convex and hence cannot be

replaced by its KKT conditions. To deeply analyze their impact, we introduce the following

projection concept.

Definition 5 We denote Proj ly
Ω :

() (){ }Proj : , , with , , ,Z R Z R
l

n m m nl u u l u u l l
y

y x y x x y x y+ + + +Ω = ∈ ∃ ∈ × × ∈Ω   (16)

the projection of the constraint region on the space of lower-level integer variables, which

represents the collection of all admissible ly .

Following the idea in [23], we can separate the continuous and integer variables in the lower-

level program and restructure the right-hand-side of (14):

{ }()0 0

Proj
max max : , R

l l
ly

nt l t l t l t l l l u u l
R Z Z R R Z R Z

y x
w x w y w y w x P x s P y Q x Q y x +

∈ Ω
+ ≥ + ≤ − − − ∈ (17)

As pointed in [23], because the second maximization problem in (17) is an LP, we can replace

it with the KKT-conditions, thus having the following equivalent form:

7

0 0

Proj
max

l
ly

t l t l t l t l
R Z Z R

y
w x w y w y w x

∈ Ω
+ ≥ + (18)

 s.t. ()
()

()
,

,

,R L

l u u l
R R Z Z

t t l t t
R R R Rl

u u l l
R Z R Z

n nl

P x s Q x Q y P y

P w x P w
x

s Q x Q y P x P y

x

π π
π

π

π+ +

 ≤ − − −
 

≥ ⊥ −  ∈ 
⊥ − − − − 

 
∈ ∈   

 (19)

where the ⊥ (perpendicular) operator enforces the perpendicularity condition between the vectors

on the left- and right-hand sides, i.e., their element-by-element product is equal to zero. According

to Assumption 1, all lower-level integer variables are bounded. Hence, Proj ly
Ω is a finite set. For

ease of exposition, we let { },1 ,2 ,, ,...,L l l l JY y y y= (indexed by j) represents the finite set of all ly

such that Proj l
l

y
y ∈ Ω .

Then, following the strategy of [23], by enumerating ,l j Ly Y∈ and introducing corresponding

primal and dual variables (), ,l j jx π and their related KKT-conditions, we have the next

formulation (P3). Though finite, the set LY could be extremely large and cannot be bounded by a

polynomial in the dimension of the problem.

(P3)
0 0

, ,

0 0

, , ,
 ,

min
u u l l

l j l j

t u t u t l t l
R Z R Z

x y x y
x

c x c y d x d y
π

+ + + (11)

 s.t. (12), (13), and (15)
 0 0 , , ,, t l t l t l j t l j l j L

R Z R Zw x w y w x w y y Y+ ≥ + ∀ ∈ (20)
 , , ,, l j u u l j l j L

R R Z ZP x s Q x Q y P y y Y≤ − − − ∀ ∈ (21)

 (), ,, , t j t l j t j t l j L
R R R RP w x P w y Yπ π≥ ⊥ − ∀ ∈ (22)

 (), , ,, j u u l j l j l j L
R Z R Zs Q x Q y P x P y y Yπ ⊥ − − − − ∀ ∈ (23)

 , ,, , R Ln nl j j l j Lx y Yπ+ +∈ ∈ ∀ ∈  (24)

We mention that it may seem that (P3) is equivalent to (P2). However, this is not always true.

As epitomized by the following example, (P3) can be infeasible even when (P2) is feasible.

(Q0)
0 0

0

, ,
min

u l l

u l

y x y
y y− − (25)

 s.t. { } { }0 00,1 , , 0,1u l ly x y+∈ ∈ ∈ (26)

 ()0 0

,
, arg max

l l

l l l l

x y
x y x y∈ − − (27)

 s.t. l l ux y y− ≤ − (28)

8

 { }, 0,1l lx y+∈ ∈ (29)

It is easy to see that the upper-level optimal solution is () ()* 0* 0*, , 1,0,1u l ly x y = with an

optimal value of – 2. Now, let ,1 1ly = and ,2 0ly = . If we reformulate (Q0) according to the

formulation in (P3), we then have:

(Q1)
0 0

,1 1 ,2 2

0

, ,
, , ,

min
u l l

l l

u l

y x y
x x

y y
π π

− − (25)

 s.t. (26)
 0 0 0u l ly x y+ − ≤ (30)
 0 0 ,1 1l l lx y x− − ≥ − − (31)
 ,1 1l ux y≤ − + (32)
 ()1 ,1 11, 1lxπ π≥ − ⊥ +
(33)
 ()1 ,1 1u ly xπ ⊥ − − + (34)

 ,1 1,lx π +∈ (35)
 0 0 ,2l l lx y x− − ≥ − (36)
 ,2l ux y≤ − (37)
 ()2 ,2 21, 1lxπ π≥ − ⊥ + (38)

 ()2 ,2u ly xπ ⊥ − − (39)

 ,2 2,lx π +∈ (40)

where (31) – (35) correspond to ,1 1ly = and (36) – (39) correspond to ,2 0ly = . It is interesting to

note that () ()* 0* 0*, , 1,0,1u l ly x y = is infeasible to (Q1) because constraint (37) indicates ,2 1lx ≤ − ,

which contradicts with ,2lx +∈ in (40). Hence, formulation (P3) is not equivalent to (P2). As

noted in [23], this issue is caused by the lack of relatively complete response property in (Q0).

Definition 6 We denote (),
Proj u ux y

Ω :

() () () (){ }0 0 0 0
,

Proj , : , with , , ,R Z R Z
u u

m m n nu u l l u u l l
x y

x y x y x y x y+ + + +Ω = ∈ × ∃ ∈ × ∈Ω   (41)

the projection of the constraint region on the space of upper-level variables.

Next, we re-define the relatively complete response property in [23] using our projection concepts.

9

Definition 7 An MIBLP in the form of (P0) has the relatively complete response property if for

any 3-tuple (), ,u u lx y y such that () (),
, Proj u u

u u
x y

x y ∈ Ω and Proj l
l

y
y ∈ Ω , the following LP is

feasible and has a finite optimal value.

max
l

t l
R

x
w x (42)

 s.t. l u u l
R R Z ZP x s Q x Q y P y≤ − − − (43)

 Rnlx +∈ (44)

 Taking (Q0) as example, since there is no upper-level continuous variable, we have

{ }Proj 0,1uy
Ω = and { }Proj 0,1ly

Ω = . When the couple (),u ly y is fixed at ()1,1 , ()0,1 or ()0,0 ,

the related LP (27) – (29) is feasible and has a finite optimal value. However, when the couple

(),u ly y is fixed at ()1,0 the related LP (27) – (29) becomes infeasible. Hence, problem (Q0) does

not have the relatively complete response property.

In formulation (Q1), constraints (36) – (40) corresponding to ,2 0ly = are imposed regardless

of the value of uy , which excludes any 3-tuple ()0 0, ,u l ly x y such that 1uy = . This is incorrect

according to the previous analysis. A straightforward approach to fix this issue is not to impose

constraints (36) – (40) when 1uy = , thus having

(Q2)
0 0

,1 1 ,2 2

0

, ,
, , ,

min
u l l

l l

u l

y x y
x x

y y
π π

− − (25)

 s.t. (26) and (30)
 { }0,1uy ∈ ⇒  [(31) – (35)] (45)

 0uy = ⇒  [(36) – (40)] (46)

Next, we generalize the equivalent reformulation from (Q0) to (Q2).

Definition 8 For any given ,l j Ly Y∈ , we denote (),l jP y

 () () ,
, , , : ,

 , ,R Z R

u u l u u l l j
R Z R Zl j

m m nu u l

x y x Q x Q y P x s P y
P y

x y x+ + +

 + + ≤ − =  
∈ ∈ ∈   

 (47)

Definition 9 For any given ,l j Ly Y∈ , we denote () (),
,

Proj u u
l j

x y
P y

() () () () (){ }, ,
,

Proj , : with , ,R Z R
u u

m m nl j u u l u u l l j
x y

P y x y x x y x P y+ + += ∈ × ∃ ∈ ∈  (48)

10

With Definitions 8 and 9, we propose a projection-based formulation (P4), which is equivalent

to (P0), even when (P0) does not have the relatively complete response property. Hence, it extends

the scope investigated in [23] to a more general situation, which actually has an important value

as many real problems may not have that property. Notably, although the formulation of (P4) may

seem similar to the subroutine 1 adopted in [13], the concepts and approaches of these two ideas

are essentially different. The subroutine 1 in [13] is iteratively deriving a bound box on upper level

variables based on a complete lower level solution, while (P4) is built on the projection of a feasible

discrete variable ,l jy on upper level variables.

(P4)
0 0

, ,

0 0

, , ,
 ,

min
u u l l

l j l j

t u t u t l t l
R Z R Z

x y x y
x

c x c y d x d y
π

+ + + (11)

 s.t. (12), (13), and (15)

() () ()

()
()

,
,

0 0 , ,

, ,

, ,

, ,

,

, Proj

 , ,

,

u u

R L

u u l j
x y

t l t l t l j t l j
R Z R Z

l j u u l j
R R Z Z

t j t l j t j t l j L
R R R R

j u u l j l j
R Z R Z

n nl j j

x y P y

w x w y w x w y
P x s Q x Q y P y

P w x P w y Y

s Q x Q y P x P y

x

π π

π

π+ +

 ∈  
 + ≥ +
 
 ≤ − − −
 

⇒ ≥ ⊥ − ∀ ∈ 
 

⊥ − − − − 
 

∈ ∈   

 (49)

In formulation (P4), constraint (49) indicates that constraints (20) – (24) corresponding to any

given ,l j Ly Y∈ will only be imposed if () () (),
,

, Proj u u
u u l j

x y
x y P y∈ . In the following, a formal

argument is presented to show equivalence between our projection-based formulation and (P0).

Theorem 1 The projection-based single-level formulation (P4) is equivalent to the original

MIBLP problem (P0).

Proof Since it has been shown that (P0) is equivalent to (P2) [23,31], we now prove (P4) is also

equivalent to (P2). It is sufficient to show constraint (49) is equivalent to (14) since the other

constraints and the objectives are the same in both problems.

Let ()0 0, , ,u u l lx y x y    be a feasible solution to (P2), we then have

{ }0 0

,
max : , ,R Z

l l

n nt l t l t l t l l l u u l l
R Z R Z R Z R Z

x y
w x w y w x w y P x P y s Q x Q y x y+ ++ ≥ + + ≤ − − ∈ ∈   

  (50)

11

0 0 , ,

, ,

,

max :
 s.t. ,

R

t l t l t l j t l j
R Z R Z

l j u u l j
R R Z Z

nl j

w x w y w x w y
P x s Q x Q y P y
x +

 + ≥ +
 

⇔ ≤ − − − 
 ∈ 

 

 



() ()

,

,

:

 with ,

Z

R
u u

nl

l j
nl l l

x y

y
y

x x y
+

+

 ∈ ∀ ∈ ∃ ∈ ∈Ω   




 (51)

()
()

() ()

0 0 , ,

, ,

, ,

,, ,

,

:
, ,

 with ,

,

Z

R
u u

R L

t l t l t l j t l j
R Z R Z

l j u u l j
nlR R Z Z

t j t l j t j t l j
nl l lR R R R

x yj u u l j l j
R Z R Z

n nl j j

w x w y w x w y
P x s Q x Q y P y

y
P w x P w y

x x y
s Q x Q y P x P y

x

π π

π

π

+

+

+ +

 + ≥ +
 
 ≤ − − −

 ∈  ⇔ ≥ ⊥ − ∀ ∈  ∃ ∈ ∈Ω  ⊥ − − − − 
 

∈ ∈  

 

 

 



 

 

 



 (52)

Only the constraints (49) corresponding to () (){ },
,

: with ,Z R
u u

n nl j l l l l
x y

y y x x y+ +∈ ∈ ∃ ∈ ∈Ω
 



will be imposed in problem (P4) when () (), ,u u u ux y x y=   . Hence, ()0 0, , ,u u l lx y x y    is also feasible

to problem (P4). Now let ()0 0, , ,u u l lx y x y    be a feasible solution to (P4). Following the reverse

order from (52) to (50), we can show that ()0 0, , ,u u l lx y x y    is also feasible to (P2) because KKT

conditions are both necessary and sufficient for optimality for LPs. We have shown above that any

feasible solution to (P2) is feasible to (P4), and vice versa. In addition, the objectives of (P2) and

(P4) are the same. Hence, problems (P2) and (P4) are equivalent to each other.

We mention that, instead of utilizing () (),
,

Proj u u
l j

x y
P y , i.e., the actual feasible set for the upper

level when ,l l jy y= , a different strategy that penalizes lower level constraint violations caused by

any infeasible (),, ,u u l jx y y is proposed in [23]. Through using Big-M penalty coefficients, such

infeasible solution will incur a large objective function value, which could make it ineligible for

an optimal solution. Nevertheless, we note that selecting an appropriate Big-M is very subjective.

Also, a very large M, which is desired, may seriously affect the computational performance. On

the other hand, our projection-based reformulation (P4), together with the implementation method

in Section 6.2, provides a rather analytical approach when the relatively complete response

property is missing. Hence, it is a novel feature to the reformulation and decomposition scheme.

12

5. Algorithm
A drawback of the single-level formulation (P4) is the size of set LY grows exponentially as

the number and bound of lower-level integer variables increase. Consequently, the number of

constraints (49) could be intractably large and applications to large-scale MIBLP problems may

be limited. In [23], a decomposition approach based column-and-constraint generation method is

developed that tries to ameliorate this issue via partial enumeration [51]. In this section, we extend

that decomposition algorithm in the projection formulation context by modifying and updating the

master and subproblems according to the structure of (P4), or equivalently (P0). Specifically, the

algorithm always deals with a partial enumeration, where only a subset of LY (denoted as L
kY) is

considered in each iteration k. Starting from an empty set 0
LY = ∅ , we expand this subset by adding

a new ,l j Ly Y∈ at the end of each iteration. This decomposition algorithm involves one master

problem and two subproblems, which are presented below. As argued in [23], the master problem

provides a lower bound, and the two subproblems select important ,l j Ly Y∈ that help the

algorithm converge as early as possible.

5.1. Master problem

Let *
kΘ be the optimal objective value of the master problem in iteration k. The master

problem (P5) is formulated as

(P5)
0 0

, ,

* 0 0

, , ,
 ,

min
u u l l

l j l j

t u t u t l t l
k R Z R Z

x y x y
x

c x c y d x d y
π

Θ = + + + (53)

 s.t. (12), (13), and (15)

() () ()

()
()

,
,

0 0 , ,

, ,

, ,

, ,

,

, Proj

 , ,

,

u u

R L

u u l j
x y

t l t l t l j t l j
R Z R Z

l j u u l j
R R Z Z

Lt j t l j t j t l j L
kR R R R

j u u l j l j
R Z R Z

n nl j j

x y P y

w x w y w x w y
P x s Q x Q y P y

P w x P w y Y Y

s Q x Q y P x P y

x

π π

π

π+ +

 ∈  
 + ≥ +
 
 ≤ − − −
 

⇒ ≥ ⊥ − ∀ ∈ ⊆ 
 

⊥ − − − − 
 

∈ ∈   

 (54)

Proposition 1 At any given iteration k, *
kΘ provides a lower bound to problem (P4).

13

Proof Because L L
kY Y⊆ , problem (P5) is a relaxation of problem (P4). Since this is a minimization

problem, *
kΘ is a valid lower bound to problem (P4).

5.2. Subproblem 1

Let (),* ,*,u u
k kx y be the optimal solution of (P5) in iteration k, we follow [23] and employ

problem (P6) to find an optimal solution to the lower-level program at (),* ,*,u u
k kx y .

(P6) (),* ,*

,
, max

l l

u u t l t l
k k k R Z

x y
x y w x w yθ = + (55)

 s.t. ,* ,*l l u u
R Z R k Z kP x P y s Q x Q y+ ≤ − −

(56)
 ,R Zn nl lx y+ +∈ ∈  (57)

where (),* ,*,u u
k k kx yθ denotes the optimal lower-level objective value at (),* ,*,u u

k kx y . Let ()ˆ ˆ,l l
k kx y

denote the optimal solution to (P6) in iteration k.

5.3. Subproblem 2

As mentioned in [23], in case where multiple optimal solutions to the lower-level program

exist for a given (),* ,*,u u
k kx y , the first subproblem (P6) may not provide the one that is desired by

the upper-level objective function. Moreover, due to the existence of upper-level connecting

constraint (2), ()ˆ ˆ,l l
k kx y may not even be feasible. Therefore, we modify the second subproblem

presented in [23] to (P7), which either produces an optimal solution or detects an infeasible

situation with (),* ,*,u u
k kx y . It is worth pointing out that the proposition of (P7) follows a similar

idea as the upper bounding program in [13] to provide an upper bound. However, we note that (P7)

is a Pareto version of the lower level problem that guarantees to be optimistic, which is well-

defined and provides an upper bound. Meanwhile, the upper bounding problem in [13] could be a

relaxed problem due to the introduced epsilon.

(P7) (),* ,*
,

,
, min

l l

u u t l t l
o k k k R Z

x y
x y d x d yΘ = + (58)

 s.t. (56) and (57)
 ,* ,*l l u u

R Z R k Z kB x B y r A x A y+ ≤ − − (59)

 (),* ,*,t l t l u u
R Z k k kw x w y x yθ+ ≥ (60)

14

where (),* ,*
, ,u u

o k k kx yΘ denotes the optimal objective value of problem (P7) if it is feasible. It is

easy to see that (),* ,* ,* ,*
, ,t u t u u u

R k Z k o k k kc x c y x y+ + Θ provides an upper bound to problem (P4).

5.4. Decomposition algorithm

Based on the master problem (P5) and the two subproblems (P6) and (P7), the proposed

decomposition algorithm, which implements the column-and-constraint generation (CCG) method

[52], is summarized below.

Algorithm. Projection-based reformulation and decomposition through CCG method

1 Step 1 (Initialization)
2 Set LB = −∞ , UB = +∞ , 0ξ = , 0k = , and 0

LY ←∅ .
3 Step 2 (Lower Bounding)
4 Solve problem (P5).
5 Denote the optimal solution as (),* ,* 0,* 0,*, , ,u u l l

k k k kx y x y .

6 Set LB to the optimal objective value *
kΘ .

7 Step 3 (Termination)
8 if UB LB ξ− < , then Terminate and return optimal solution.
9 Step 4 (Subproblem 1)

10 Solve problem (P6) at (),* ,*,u u
k kx y .

11 Denote the optimal solution as ()ˆ ˆ,l l
k kx y and optimal objective value as (),* ,*,u u

k k kx yθ .
12 Step 5 (Subproblem 2)
13 Solve problem (P7) at (),* ,*,u u

k kx y and (),* ,*,u u
k k kx yθ

14 if Feasible then
15 Denote the optimal solution as (),* ,*,l l

k kx y

16 Set (){ },* ,* ,* ,*
,min , ,t u t u u u

R k Z k o k k kUB UB c x c y x y= + + Θ .

17 Set ,*l l
k ky y= .

18 else (Infeasible Problem)
19 Set ˆl l

k ky y= .
20 end
21 Step 6 (Tightening the Master Problem)
22 Create new variables (), ,l j jx π and constraint (54) corresponding to ,l j l

ky y=  .

23 Set { }1 1
L L l
k k kY Y y+ += ∪  and 1k k= + .

24 Step 7 (Loop)
25 if UB LB ξ− < , then

15

26 Terminate and return the optimal solution.
27 else
28 Go to step 2.
29 end

Remark 1 Assumption 1 ensures that MIBLP (P0) is feasible. Because the master problem (P5)

is a relaxation of problem (P0) in all iterations, (P5) is guaranteed to be feasible.

Remark 2 The first subproblem (P6) is always feasible. We know that at any given iteration k,

the optimal solution to (P5) ()0,* 0,*,l l
k kx y will be feasible to (P6).

Remark 3 The decomposition algorithm through column-and-constraint generation provides a

series of non-decreasing lower bounds. For any given iteration k, 1
L L
k kY Y +⊆ . Hence, the master

problem (P5) in iteration k is a relaxation of that in iteration k+1.

5.5. Convergence

In this subsection, we generalize the convergence proof in [23] to our new algorithm development,

noting that we consider a more general MIBLP (i.e., (P0)) and employ modified master and

subproblems.

Theorem 2 If an MIBLP satisfies Assumption 1, 0ξ = and LY is finite, then the presented

algorithm converges to the global optimal objective value of MIBLP problem (P0) within LY

iterations.

Proof It is sufficient to show that if none of the stopping criteria are met, a new ,l j Ly Y∈ would

be generated in each iteration. This is equivalent to showing that a repeated ,l j Ly Y∈ leads to either

LB UB= or an infeasible master problem (P5). Assume that the current iteration index is 1k l=

and ()1 1 1 1

,* ,* 0,* 0,*, , ,u u l l
l l l lx y x y is obtained in step 2 with 0UB LB− > . From Remark 2 we know that

the first subproblem is feasible. However, the second subproblem could be infeasible.

We first consider the case where the second subproblem (P7) is feasible, so that
1

,*l
ly is obtained

in step 5. The proof for this case is similar to that in [23]. We further assume that
1

,*l
ly was also

derived in a previous iteration ()0 1k l l= < and included in
0 1
L
lY + . Because 0UB LB− > in iteration

1l , new variables (), ,l j jx π and constraints (54) corresponding to
1

, ,*l j l
ly y= will be added to the

16

master problem (P5) in iteration 1 1l + (Note that
1 1

,*l l
l ly y=). Since these variables and constraints

are the same as those created and included in step 6 in iteration 0l , step 6 in iteration 1l essentially

does not change problem (P5). Consequently, it yields the same optimal values in iteration 1 1l +

as that of iteration 1l , i.e., () ()1 1 1 1 1 1 1 1

,* ,* 0,* 0,* ,* ,* 0,* 0,*
1 1 1 1, , , , , ,u u l l u u l l

l l l l l l l lx y x y x y x y+ + + += . Hence, LB does not change

when the algorithm proceeds from iteration 1l to 1 1l + . In the following, we show that LB UB≥

in iteration 1 1l + .

1 1 1 1

,* ,* 0,* 0,*
1 1 1 1 t u t u t l t l

R l Z l R l Z lLB c x c y d x d y+ + + += + + + (61)

0 01 1

,* ,* 0 0
1 1

,
 min

l l

t u t u t l t l
R l Z l R Z

x y
c x c y d x d y+ +≥ + + + (62)

 s.t.
1 1

0 0 ,* ,*
1 1

l l u u
R Z R l Z lB x B y r A x A y+ ++ ≤ − − (63)

1 1

0 0 ,* ,*
1 1

l l u u
R Z R l Z lP x P y s Q x Q y+ ++ ≤ − − (64)

 ()
()

1 1

1 1

0 0 , ,

, ,* ,* ,
1 1

,

,* ,* , ,
1 1

,

,

,R L

t l t l t l j t l j
R Z R Z

l j u u l j
R R l Z l Z

t j t l j t j t
R R R R

j u u l j l j
R l Z l R Z

n nl j j

w x w y w x w y
P x s Q x Q y P y

P w x P w

s Q x Q y P x P y

x

π π

π

π

+ +

+ +

+ +

 + ≥ +
 

≤ − − − 
 

≥ ⊥ − 
 

⊥ − − − − 
 

∈ ∈   

 for
1

, ,*l j l
ly y= (65)

0 01 1

,* ,* 0 0

,
 min

l l

t u t u t l t l
R l Z l R Z

x y
c x c y d x d y≥ + + + (66)

 s.t.
1 1

0 0 ,* ,*l l u u
R Z R l Z lB x B y r A x A y+ ≤ − − (67)

1 1

0 0 ,* ,*l l u u
R Z R l Z lP x P y s Q x Q y+ ≤ − − (68)

 ()1 1 1

0 0 ,* ,*,t l t l u u
R Z l l lw x w y x yθ+ ≥ (69)

()1 1 1 1 1

,* ,* ,* ,*
, ,t u t u u u

R l Z l o l l lc x c y x y= + + Θ (70)
 UB≥ (71)

Inequality (62) follows from () ()1 1 1

,* ,* ,*
1 1,u u l

l l lx y P y+ + ∈ and
11

,*
1

Ll
lly Y +∈ . Inequality (66) follows

from
1

,*l
ly is optimal to ()1 1 1

,* ,*,u u
l l lx yθ , and ()1 1 1

, , ,* ,*,t l j t l j u u
R Z l l lw x w y x yθ+ = for

1

, ,*l j l
ly y= due to the

KKT conditions. Inequality (71) follows from (){ }1 1 1 1 1

,* ,* ,* ,*
,min , ,t u t u u u

R l Z l o l l lUB UB c x c y x y= + + Θ .

Consequently, we have LB UB≥ in iteration 1 1l + , which terminates the algorithm.

Now we consider the case where the second subproblem is infeasible, so that
1

ˆ l
ly is obtained

in step 4 of iteration 1l and
1 1

ˆl l
l ly y= . We further assume that

1
ˆ l

ly was also derived in a previous

17

iteration ()0 1k l l= < and included in
0 1
L
lY + . In the following, we show that master problem (P5) in

iteration 1 1l + is infeasible. As aforementioned, step 6 in iteration 1l essentially does not change

problem (P5). If we assume that the master problem (P5) in iteration 1 1l + is feasible, then we

have () ()1 1 1 1 1 1 1 1

,* ,* 0,* 0,* ,* ,* 0,* 0,*
1 1 1 1, , , , , ,u u l l u u l l

l l l l l l l lx y x y x y x y+ + + += . Because () ()1 1 1

,* ,*
1 1 ˆ,u u l

l l lx y P y+ + ∈ , the following

constraint will be imposed in problem (P5) in iteration 1 1l + .

 ()
()

1 1

1 1

0 0 , ,

, ,* ,* ,
1 1

,

,* ,* , ,
1 1

,

,

,R L

t l t l t l j t l j
R Z R Z

l j u u l j
R R l Z l Z

t j t l j t j t
R R R R

j u u l j l j
R l Z l R Z

n nl j j

w x w y w x w y
P x s Q x Q y P y

P w x P w

s Q x Q y P x P y

x

π π

π

π

+ +

+ +

+ +

 + ≥ +
 

≤ − − − 
 

≥ ⊥ − 
 

⊥ − − − − 
 

∈ ∈   

 for
1

, ˆl j l
ly y= (72)

Because
1

ˆ l
ly is optimal to ()1 1 1

,* ,*,u u
l l lx yθ , and ()1 1 1

, , ,* ,*,t l j t l j u u
R Z l l lw x w y x yθ+ = for

1

, ˆl j l
ly y= due

to the KKT conditions. Hence, constraint (72) is equivalent to (69). However, we know from step

5 of iteration 1l that there does not exist a tuple ()1 1 1 1

,* ,* 0,* 0,*
1 1 1 1, , ,u u l l

l l l lx y x y+ + + + that simultaneously satisfy

constraints (63), (64) and (69), which are imposed in (P5) in iteration 1 1l + . This is contradictory

to that the same problem is solved in iteration 1l . Hence, the master problem (P5) in iteration 1 1l +

is infeasible. In consideration of the two cases above, we know a new ,l j Ly Y∈ would be generated

in each iteration, if none of the stopping criteria are met.

Similar to that in [23], since a repeated ,l j Ly Y∈ leads to convergence of the algorithm and

the fact that set LY is finite, the algorithm will converge within LY iterations.

6. Implementation

6.1. KKT-condition-based tightening constraints

As suggested by [23,13], the master problem (P5) can be tightened by introducing the

following KKT-conditions related to the lower-level program at given ()0, ,u u lx y y . Hence, we

have

18

(P8)
0 0

, ,

0 0

, , ,
, , ,

min
u u l l

l j l j l

t u t u t l t l
R Z R Z

x y x y
x x

c x c y d x d y
π π

+ + +
 

 (73)

 s.t. (12), (13), (15), and (54)
 0t l t l

R Rw x w x≥  (74)
 0 ,l u u l t t

R R Z Z R RP x s Q x Q y P y P wπ≤ − − − ≥  (75)

 () ()0,l t t u u l l
R R R Z R Zx P w s Q x Q y P x P yπ π⊥ − ⊥ − − − −    (76)

 ,R Ln nlx π+ +∈ ∈ 
  (77)

Given that ux , uy and 0ly are variables, (P8) provides lower bound information that is

parametric not only to ux , uy but also to 0ly . The value of 0t l t l
R Zw x w y+ provides a valid lower

bound support to 0 0t l t l
R Zw x w y+ , which might not be available from any fixed ,l j Ly Y∈ . As

mentioned in [23,13], the KKT-condition-based tightening constraints (74) – (77) help reduce the

number of iterations and computational time. Therefore, unless otherwise stated, we consider

KKT-condition-based tightening constraints in the decomposition algorithm for all numerical

studies in this work.

6.2. Projection and indicator constraint

To practically handle our new projection-based formulation, we present an alternative

representation for () () (),
,

, Proj u u
u u l j

x y
x y P y∈ in (54) in this subsection. Specifically, we use the

following LP to check whether () () (),
,

, Proj u u
u u l j

x y
x y P y∈ or not.

For any given ,l j Ly Y∈

(P9)
, ,

min
l j j

t j

x t
e t (78)

 s.t. , ,l j j u u l j
R R Z ZP x t s Q x Q y P y− ≤ − − − (79)

 , ,R Ln nl j jx t+ +∈ ∈  (80)

where e is a vector with all elements equal to 1; jt represents the relaxation variables for each

constraint. The dimension of vector jt is equal to the number of lower-level constraints.

Remark 4 Given () (),
, Proj u u

u u
x y

x y ∈ Ω and ,l j Ly Y∈ , if the optimal value of problem (P9)

,* 0t je t = , then () () (),
,

, Proj u u
u u l j

x y
x y P y∈ ; otherwise, () () (),

,
, Proj u u

u u l j
x y

x y P y∉ .

19

Noting that LP (P9) can be equivalently replaced by its corresponding KKT-conditions, we

can replace (54) in problem (P8) with the following constraints based on Remark 4. Thus, we have

(P9)
0 0

, ,

0 0

, , ,
, , , , ,

min
u u l l

l j l j l j j

t u t u t l t l
R Z R Z

x y x y
x x t

c x c y d x d y
π π λ

+ + +
 

 (81)

 s.t. (12), (13), (15), (54), (74) – (77), (79) and (80)

 ()
()

0 0 , ,

, ,

, ,

, ,

,

0 , ,

,R L

t l t l t l j t l j
R Z R Z

l j u u l j
R R Z Z

Lt j t j t l j t j t l j L
kR R R R

j u u l j l j
R Z R Z

n nl j j

w x w y w x w y
P x s Q x Q y P y

e t P w x P w y Y Y

s Q x Q y P x P y

x

π π

π

π+ +

 + ≥ +
 
 ≤ − − −
 

 = ⇒ ≥ ⊥ − ∀ ∈ ⊆  
 

⊥ − − − − 
 

∈ ∈   

 (82)

 , ,0, , Lj l j j l j L
kR RP x P y Y Yλ λ≥ ⊥ ∀ ∈ ⊆ (83)

 () ,0, , Lj j j l j L
ke t e y Y Yλ λ− ≥ ⊥ − ∀ ∈ ⊆ (84)

 (), , ,, Lj u u l j l j j l j L
kR Z Z Rs Q x Q y P y P x t y Y Yλ ⊥ − − − − + ∀ ∈ ⊆ (85)

6.3. Approximations

6.3.1. Indicator constraint

Constraint (82) cannot be computed by off-the-shelf solvers directly. In this work, we take

advantage of the special language feature – indicator constraints 1 in GAMS 24.4 [53]. We

introduce a binary variable jψ to denote whether 0t je t = or not. Hence, we have

(P10)
0 0

, ,

0 0

, , ,
, , ,
, ,

min
u u l l

l j l j l

j j j

t u t u t l t l
R Z R Z

x y x y
x x

t

c x c y d x d y
π π
λ ψ

+ + +
 

 (86)

 s.t. (12), (13), (15), (54), (74) – (77), (79), (80), (83) – (85)

 ()
()

0 0 , ,

, ,

, ,

, ,

,

, ,

,R L

t l t l t l j t l j
R Z R Z

l j u u l j
R R Z Z

Lj t j t l j t j t l j L
kR R R R

j u u l j l j
R Z R Z

n nl j j

w x w y w x w y
P x s Q x Q y P y

P w x P w y Y Y

s Q x Q y P x P y

x

ψ π π

π

π+ +

 + ≥ +
 
 ≤ − − −
 

⇒ ≥ ⊥ − ∀ ∈ ⊆ 
 

⊥ − − − − 
 

∈ ∈   

 (87)

 () { } ,1 , 0,1 , Lj t j j l j L
ke t y Y Yε ψ ψ− ≤ ∈ ∀ ∈ ⊆ (88)

1 An indicator constraint is a way of expressing relationships among variables by specifying a binary variable to
control whether or not a constraint takes effect.

20

where ε is a very small positive number (e.g., 10-4). Constraint (88) indicates that if ,* 0t je t =

then jψ is forced to 1. If ,*t je t ε≥ , at optimality jψ will equal 0 as less constraints will be

imposed. Note that the case 0 T je t ε< < is excluded. Hence, formulation (P10) is an

approximation of (P9).

6.3.2. Linearization of complementary constraints

In this work, we linearize all complementary constraints in KKT conditions by using the big-

M formulation and introducing a binary variable for each complementary constraint [1]. For

example,

 ()
{ }

0
0 0 0 1

0,1

f M
f g g M

δ
δ

δ

 ≤ ≤
 

≤ ⊥ ≥ ⇔ ≤ ≤ − 
 ∈ 

 (89)

where f and g are two arbitrary equations; M is a large positive number; and δ is the binary

variable for complementary constraint 0 0f g≤ ⊥ ≥ . It is noted that there are other approaches in

handling such complementarity constraints [54-58]. We choose the big-M formulation because

applying it to (P10) results in a single-level MILP with indicator constraints, which can be handled

by CPLEX 12.

Assuming that ε is chosen sufficiently small and M is chosen sufficiently large, the proposed

algorithm will converge to the optimal solution in finite iterations. In case that the infimum may

not be attainable [20], the proposed algorithm converges to ε -optimal solutions. Interested readers

are referred to [23] for more details.

7. Computational examples
To systematically test and evaluate our algorithm development, a very comprehensive

computational study is performed on three set of examples. Specifically, we employ Example 1 to

verify our algorithm by computing and comparing with the only publicly accessible MIBLP library

at the time of writing this paper. We further observe that obtained results cannot reflect the full

features of the proposed algorithm, given that these instances do not include upper-level

continuous variables and the parameters are all assumed to be integral. We then employ Example

2 to test our algorithm on MIBLPs in the general form of (P0), which cannot be computed by the

original reformulation-and-decomposition method. To demonstrate the applicability of our

21

algorithm in solving practical problems, we employ Example 3, which is a case study on

hierarchical supply chain planning. Also, a few illustrative examples are provided in the Appendix

for easy understanding.

All computational experiments are performed on a PC with an Intel® Core™ i5-2400 CPU @

3.10GHz and 8.00 GB RAM. All models and solution procedures are coded in GAMS 24.4 [59].

The resulting MILP problems are solved with CPLEX 12. The indicator constraints are

programmed using the GAMS/CPLEX option files [53]. The CPLEX solver options are set as

follows: epint2= 0, eprhs3 = 10-8. The optimality tolerances for the solver are set to 0, i.e., optcr =

0; optca = 0.0. The big-M coefficients are all set to 104, and the ε coefficients are set to 10-4. The

tolerance of the relative gap between UB and LB (ξ) is set to 10-3.

7.1. Example 1

In this example, we test the proposed algorithm on the small- and medium-size instances in

[7]. The computational results are presented in Table 1, where Rm , Zm , Rn , and Zn are the

numbers of upper-level continuous variables, upper-level integer variables, lower-level continuous

variables, and lower-level integer variables. The total number of variables is

T R Z R Zn m m n n= + + + . The numbers of upper-level constraints (Un) and lower-level constraints

(Ln) are both set to 0.2 Tn .

The instances are put in the same order as that in [7]. The smallest instances have 0 upper-

level continuous variables, 10 upper-level binary variables, an average of 5 lower-level continuous

variables, an average of 5 lower-level binary variables, 4 upper-level constraints, and 4 lower-level

constraints. The largest instances tested have 0 upper-level continuous variables, 110 upper-level

binary variables, an average of 55 lower-level continuous variables, an average of 55 lower-level

binary variables, 44 upper-level constraints, and 44 lower-level constraints. The proposed

algorithm obtained the same objective function values as that in [7] for all instances. As expected,

the computational time of the proposed algorithm increases as the problem dimension grows. For

example, (Xu_Wang _20) instances take an average of 1 second to solve, while (Xu_Wang_220)

2 epint: integrality tolerance (a CPLEX option), which specifies the amount by which an integer variable can be
different than an integer and still be considered feasible.
3 eprhs: feasibility tolerance (a CPLEX option), which specifies the degree to which a problem's basic variables may
violate their bounds. This tolerance influences the selection of an optimal basis and can be reset to a higher value
when a problem is having difficulty maintaining feasibility during optimization.

22

instances take about an average of 100 seconds to solve. Furthermore, we observe that the

computational time varies significantly even for problems of the same scale. For example, instance

(Xu_Wang_220_1) takes 3 seconds to solve, while instance (Xu_Wang_220_10) takes about 937

seconds to solve. Another observation is that the proposed algorithm usually converges in a few

number of iterations. We can see that all instances are solved within 4 iterations. From Table 1,

we can see that the proposed algorithm is comparable with the branch-and-bound algorithm in [7].

For certain instances the proposed algorithm is faster, e.g., Xu_Wang _120_10; but for some

instances the branch-and-bound algorithm in [7] is faster, e.g., Xu_Wang_220_10. This is because

different MILP subproblems are solved, and different solution approaches are used.

Table 1 Computational performance of the proposed algorithm on instances in [7].

Instance Rm Zm Rn Zn Proposed Alg. Alg. in [7]
CPUs # Iterations CPUs

Xu_Wang_20_1 0 10 6 4 1 1 0
Xu_Wang_20_2 0 10 5 5 1 2 0
Xu_Wang_20_3 0 10 6 4 1 2 0
Xu_Wang_20_4 0 10 4 6 1 2 1
Xu_Wang_20_5 0 10 6 4 1 2 1
Xu_Wang_20_6 0 10 4 6 1 3 1
Xu_Wang_20_7 0 10 5 5 1 4 1
Xu_Wang_20_8 0 10 6 4 1 2 2
Xu_Wang_20_9 0 10 7 3 1 2 4
Xu_Wang_20_10 0 10 5 5 1 2 4
Xu_Wang_120_1 0 60 31 29 10 3 1
Xu_Wang_120_2 0 60 25 35 5 2 2
Xu_Wang_120_3 0 60 34 26 1 1 7
Xu_Wang_120_4 0 60 28 32 1 1 8
Xu_Wang_120_5 0 60 27 33 26 2 25
Xu_Wang_120_6 0 60 33 27 1 1 30
Xu_Wang_120_7 0 60 32 28 1 1 63
Xu_Wang_120_8 0 60 30 30 20 3 81
Xu_Wang_120_9 0 60 34 26 6 3 85
Xu_Wang_120_10 0 60 35 25 3 2 154
Xu_Wang_220_1 0 110 60 50 3 1 2
Xu_Wang_220_2 0 110 65 45 5 2 9
Xu_Wang_220_3 0 110 55 55 4 1 14
Xu_Wang_220_4 0 110 60 50 1 1 15
Xu_Wang_220_5 0 110 58 52 1 1 19
Xu_Wang_220_6 0 110 55 55 35 2 35
Xu_Wang_220_7 0 110 49 61 6 2 62
Xu_Wang_220_8 0 110 56 54 21 2 75

23

Xu_Wang_220_9 0 110 52 58 1 1 168
Xu_Wang_220_10 0 110 47 63 937 4 720

7.2. Example 2

In this subsection, we test the proposed algorithm on randomly generated instances.

Parameters for these instances are generated as follows. The number of upper-level variables is set

equal to that of lower-level variables, i.e. R Z R Zm m n n+ = + . The numbers of continuous and

integer variables are randomly determined with equal probability. The total number of variables

(T R Z R Zn m m n n= + + +) is set to five levels ranging from 20 to 400. The numbers of upper-level

constraints (Un) and lower-level constraints (Ln) are set to 0.2 Tn . We use the same notations as

those of problem (P0). The upper bounds of ux and lx are set to 10. The integer variables uy and
ly are all assumed to be binary variables. Elements of the following matrices and vectors are real

numbers randomly generated following uniform distribution. Rc , Zc , Rd , Zd , Rw , and Zw are

within [–50, 50]. RA , ZA , RB , ZB , RQ , ZQ , RP , and ZP are within [0, 10]. r is within [30, 130].

s is within [10, 110]. For each level of Tn , ten random instances are generated. The detailed inputs

to the GAMs code for generating computational instances are provided in the Appendix D. Note

that they are in the general form of (P0) and cannot be computed by the original reformulation-

and-decomposition method.

The model statistics and computational performances corresponding to the 50 instances are

summarized in Table 2. The instances that have the same total number of variables are sorted in

the ascending order of computational time. The smallest instances have an average of 5 upper-

level continuous variables, an average of 5 upper-level binary variables, an average of 5 lower-

level continuous variables, an average of 5 lower-level binary variables, 4 upper-level constraints,

and 4 lower-level constraints. The largest instances have an average of 100 upper-level continuous

variables, an average of 100 upper-level binary variables, an average of 100 lower-level continuous

variables, an average of 100 lower-level binary variables, 80 upper-level constraints, and 80 lower-

level constraints. As expected, the computational time increases rapidly as the problem dimension

grows. For example, (miblp_20) instances take an average of 1 second to solve, while (miblp_400)

instances take about an average of 1 hour to solve. Furthermore, we observe that the computational

time varies significantly even for problems of the same scale. For example, instance (miblp_300_1)

24

takes 2 seconds to solve, while instance (miblp_300_10) takes about 50 minutes to solve. Another

observation is that the algorithm usually converges in a few number of iterations. We can see that

49 out of the 50 instances are solved within 3 iterations, demonstrating the efficiency of the KKT-

condition-based inequalities. The exception is instance (miblp_20_10) which is solved in 10

iterations due to its complexity.

Table 2 Computational performance of the proposed algorithm on random instances.

Instance Rm Zm Rn Zn CPUs # Iterations
miblp_20_1 6 4 4 6 1 1
miblp_20_2 7 3 6 4 1 1
miblp_20_3 3 7 5 5 1 1
miblp_20_4 6 4 5 5 1 3
miblp_20_5 2 8 4 6 1 2
miblp_20_6 9 1 3 7 1 2
miblp_20_7 6 4 4 6 1 3
miblp_20_8 3 7 6 4 1 2
miblp_20_9 5 5 7 3 1 3
miblp_20_10 5 5 2 8 2 10
miblp_100_1 25 25 20 30 1 1
miblp_100_2 26 24 26 24 1 1
miblp_100_3 27 23 23 27 1 2
miblp_100_4 25 25 24 26 1 2
miblp_100_5 21 29 27 23 1 2
miblp_100_6 30 20 28 22 1 2
miblp_100_7 32 18 20 30 2 2
miblp_100_8 19 31 17 33 7 2
miblp_100_9 21 29 25 25 9 3
miblp_100_10 22 28 28 22 13 3
miblp_200_1 53 47 51 49 1 1
miblp_200_2 48 52 45 55 1 1
miblp_200_3 48 52 46 54 7 2
miblp_200_4 40 60 58 42 19 2
miblp_200_5 42 58 57 43 19 2
miblp_200_6 55 45 49 51 87 2
miblp_200_7 53 47 51 49 243 2
miblp_200_8 51 49 49 51 268 2
miblp_200_9 52 48 52 48 349 2
miblp_200_10 48 52 51 49 595 2
miblp_300_1 73 77 83 67 2 1
miblp_300_2 80 70 68 82 2 1
miblp_300_3 69 81 73 77 17 2
miblp_300_4 76 74 79 71 209 2
miblp_300_5 74 76 77 73 264 2

25

miblp_300_6 79 71 75 75 290 2
miblp_300_7 78 72 73 77 432 2
miblp_300_8 82 68 68 82 437 2
miblp_300_9 75 75 79 71 1,713 2
miblp_300_10 73 77 70 80 3,016 2
miblp_400_1 95 105 99 101 2 1
miblp_400_2 94 106 107 93 6 1
miblp_400_3 97 103 100 100 75 2
miblp_400_4 98 102 104 96 93 1
miblp_400_5 104 96 92 108 189 2
miblp_400_6 103 97 98 102 779 2
miblp_400_7 111 89 95 105 896 2
miblp_400_8 99 101 97 103 8,285 2
miblp_400_9 104 96 106 94 14,232 3
miblp_400_10 98 102 108 92 16,573 2

7.3. Example 3

This problem is modified from the capacitated plant selection problem by Cao and Chen [60].

While most facility selection and production planning approaches assume centralized decision

making using monolithic models, the authors addressed the problem in a decentralized

manufacturing environment, where the principal firm and the auxiliary plants operate

independently in an organizational hierarchy. A bilevel optimization model was proposed to

separate the decision making of plant selection and production planning. Changes to the original

problem include: 1) a constraint on resource limitation (e.g., capital, labor, emission cap) is added

to the upper-level program; 2) a continuous capacity variable is considered as an upper-level

decision variable; and 3) a fixed cost for opening a certain production line is considered. The

hierarchical planning problem is formulated into an MIBLP problem which involves continuous

and binary variables in both the upper- and lower-level programs. A detailed mathematical model

formulation can be found in Appendix E.

We test the proposed algorithm on a total of 35 instances. By varying the number of plants

and products, we consider 7 levels, each including 5 cases: (6,6), (6,8), (8,8), (8,10), (10,10),

(10,12), and (12,12), where the first number denotes the number of plants and the second number

denotes the number of products. The parameters are randomly generated. The demands of product

j (d(j)) are uniformly generated on 5 [8,12]U× . The opening cost of plant i (f(i)) is uniformly

distributed on 5 [20,80]U× , and the opportunity cost (p(i)) is generated uniformly on

26

0.1 [4,10]U× . The resource quota (q) is determined in each instance varying from 230 to 650. The

unit production cost (w(i)) equals the summation of p(i) and a random parameter uniformly

generated on 0.1 [2,2]U× − . The upper bound for capacity (cu(i)) is uniformly distributed on

50 [2,9]U× . The capacity consumption ratio (a(i,j)) is generated as a ratio of two uniformly

generated parameters, given as 0.1 [7,12] / [0,1]U U× . The transportation cost (r(i,j)) is given as a

summation of three uniformly generated parameters 0.1 [0,5] 0.1 [0,5] 0.01 [1,3]U U U× + × + × .

The setup cost in the upper level problem (s(i,j)) and the lower level problem (g(i,j)) are given as

()0.5 [20,80] 2 [3,3]round U U× + × − and ()0.5 [20,80] 2 [3,3] 2 [2,2]round U U U× + × − + × − ,

respectively. The resource demand for producing unit product (e(i,j)) is given as

0.1 [0,5] 0.1 [0,5] 0.1 [1,3]U U U× + × + × . The trivial instances that can be solved in one iteration

are intentionally excluded. The detailed inputs to GAMS code for generating instances are

provided in the Appendix D.

The model statistics and computational performances corresponding to the 35 instances are

summarized in Table 3. The instances that have the same number of plants and products are sorted

in ascending order of computational time. The smallest instances have up to 6 upper-level

continuous variables, 6 upper-level binary variables, 36 lower-level continuous variables, 36

lower-level binary variables, 7 upper-level constraints, and 54 lower-level constraints. The largest

instances have up to 12 upper-level continuous variables, 12 upper-level binary variables, 144

lower-level continuous variables, 144 lower-level binary variables, 13 upper-level constraints, and

180 lower-level constraints. From the model statistics, we can see that the lower-level programs

are more difficult than the upper-level programs. As expected, the computational time increases

as the numbers of plants and products increase. For example, (hscp_6_6) instances take an average

of 1 second to solve, while (hscp_12_12) instances take an average of 16 minutes. We also observe

that the computational time varies significantly even for instances with the same numbers of plants

and products. For example, instance (hscp_10_10_1) takes 1 second to solve, while instance

(hscp_10_10_5) takes about 4 minutes. It is noted that all instances are solved within 4 iterations.

Specifically, 26 instances are solved in 2 iterations, 6 instances in 3 iterations, and 3 instances in

4 iterations.

27

Table 3 Computational performance of the proposed algorithm on hierarchical supply chain

planning instances.

Instance # plants # products CPUs # Iterations
hscp_6_6_1 6 6 1 2
hscp_6_6_2 6 6 1 2
hscp_6_6_3 6 6 2 2
hscp_6_6_4 6 6 2 2
hscp_6_6_5 6 6 3 3
hscp_6_8_1 6 8 1 2
hscp_6_8_2 6 8 1 2
hscp_6_8_3 6 8 1 2
hscp_6_8_4 6 8 2 2
hscp_6_8_5 6 8 102 3
hscp_8_8_1 8 8 1 2
hscp_8_8_2 8 8 1 2
hscp_8_8_3 8 8 2 2
hscp_8_8_4 8 8 2 2
hscp_8_8_5 8 8 2 2
hscp_8_10_1 8 10 2 2
hscp_8_10_2 8 10 3 2
hscp_8_10_3 8 10 5 2
hscp_8_10_4 8 10 6 3
hscp_8_10_5 8 10 39 4
hscp_10_10_1 10 10 1 2
hscp_10_10_2 10 10 7 2
hscp_10_10_3 10 10 18 2
hscp_10_10_4 10 10 22 3
hscp_10_10_5 10 10 214 3
hscp_10_12_1 10 12 4 2
hscp_10_12_2 10 12 8 2
hscp_10_12_3 10 12 9 2
hscp_10_12_4 10 12 9 2
hscp_10_12_5 10 12 117 3
hscp_12_12_1 12 12 18 2
hscp_12_12_2 12 12 36 2
hscp_12_12_3 12 12 1,016 4
hscp_12_12_4 12 12 1,214 2
hscp_12_12_5 12 12 2,625 4

8. Conclusions
In this paper, an extended variant of the reformulation and decomposition algorithm was

proposed and developed for solving a broad class of MIBLP problems. We assumed that the

28

inducible region was nonempty and all variables had finite bounds, which guaranteed that an

MIBLP is feasible and has an optimal solution. A novel projection-based single-level formulation

was proposed, which accounts for MIBLPs that do not have the relatively complete response

property. Based on this formulation, a decomposition algorithm through column-and-constraint

generation was developed, which progressively generated stronger lower and upper bounds by

iteratively solving master and subproblems. We also proved that the algorithm converges to global

optimal solutions in finite iterations.

The computational performance of the proposed MIBLP solution algorithm has been

comprehensively evaluated by three types of computational examples, including 30 literature

instances, 50 randomly-generated numerical instances, and 35 hierarchical supply chain planning

problems, formulated as MIBLPs. We conclude from the computational results that our algorithm

can solve small to large scale MIBLP problems very efficiently in most cases. The future work

should investigate the potential opportunity to further boost the computational performance

especially when facing large number of lower-level integer variables. The exploration of MIBNLP

will be another interesting direction for further exploration.

Acknowledgements We greatly appreciate the helpful discussions with Professor Andreas

Wächter at Department of Industrial Engineering and Management Sciences at Northwestern

University. The paper has been greatly improved by the insightful and constructive feedback from

the associate editor and three anonymous reviewers. The authors acknowledge financial support

from National Science Foundation (NSF) CAREER Award (CBET-1643244).

Appendix A: Toy example 1
The following example is adapted from [8] and is a classical MIBLP problem. We use toy

example 1 to verify the results of the proposed algorithm and demonstrate the solution procedure.

29

0

0

,

0

0

min 10

 ,

 s.t. arg max :
25 20 30

2 10
2 15

2 10 15

u l

l

u l

y y

u l

l l

y u l

u l

u l

u l

l

y y

y y

y y
y y

y y
y y

y y
y

+ +

+

− −

∈ ∈

 ∈ −
 
− + ≤ 
 + ≤ 
 

− ≤ 
 − − ≤ − 
 ∈ 

 



This problem does not have lower-level continuous variables, so the reformulation (P4) can

be simplified and the KKT conditions are not required. In addition, since there is no upper-level

constraint, the second subproblem (P7) is always feasible. Thus, it is guaranteed that a bilevel

feasible solution can be obtained in each iteration. The solution procedure of the proposed

algorithm is presented below, and a graphical illustration is shown in Fig. A1.

In iteration 0l = we solve master problem (P5) to obtain () (),* 0,*, 2,4u ly y = and 42LB = − ; given

,* 2uy = , we solve subproblems (P6) and (P7) to obtain ,*
0 2ly = and 22UB = − ; at step 6, we add

the following constraint to master problem(P5): 01 6 2u ly y   ≤ ≤ ⇒ ≤    .

In iteration 1l = we solve master problem (P5) to obtain () (),* 0,*, 6,2u ly y = and 26LB = − ; given

,* 6uy = , we solve subproblems (P6) and (P7) to obtain ,*
1 1ly = and { }min 22, 16 22UB = − − = − ;

at step 6, we add the following constraint to master problem (P5): 02.5 8 1u ly y   ≤ ≤ ⇒ ≤    .

In iteration 2l = we solve master problem (P7) to obtain () (),* 0,*, 2,2uy y = and 22LB = − ; now

we have UB LB= so that the algorithm terminates in step 3.

30

Fig. A1 The solution procedure of toy example 1.

Appendix B: Toy example 2
The following example is adapted from [25]. We use toy example 2 to demonstrate how the

proposed algorithm solves an MIBLP problem with upper-level connecting constraints. Note that

this toy example and following ones in Appendices C and E cannot be computed by the original

reformulation-and-decomposition method.

{ }

0

0

,

0

0 0

0

min 2

 s.t. ,
 2 3 12, 14

 arg max : 3 3,3 30,

u l

l

u l

y y

u l

u l u l

l u l u l l

y

y y

y y
y y y y

y y y y y y y

+ +

+

− −

∈ ∈

− + ≤ + ≤

∈ − + ≤ − + ≤ ∈

 



This problem does not have lower-level continuous variables either, so the reformulation (P4)

can be simplified and the KKT conditions are not required. However, there are two upper-level

constraints that involve lower-level variables. Thus, the second subproblem (P7) could be

infeasible. The solution procedure of the proposed algorithm is presented below, and a graphical

illustration is shown in Fig. B1.

In iteration 0l = we solve master problem (P5) to obtain () (),* 0,*, 6,8u ly y = and 22LB = − ; given

,* 6uy = , we solve the first subproblem (P6) and obtain 0ˆ 12ly = . As the second subproblem (P7)

is infeasible, at step 6 we add the following constraint to master problem (P5):
05 6 12u ly y   ≤ ≤ ⇒ ≥    .

In iteration 1l = we solve master problem (P5) to obtain () (),* 0,*, 7,7u ly y = and 21LB = − ; given

,* 7uy = , we solve the first subproblem (P6) and obtain 1ˆ 9ly = ; but we find that the second

subproblem (P7) is still infeasible; at step 6, we add the following constraint to master problem

(P5): 04 7 9u ly y   ≤ ≤ ⇒ ≥    .

In iteration 2l = we solve master problem (P5) to obtain () (),* 0,*, 8,6u ly y = and 20LB = − ; given

,* 8uy = , we solve subproblems (P6) and (P7) to obtain ,*
2 6ly = and 20UB = − ; now we have

UB LB= , so the algorithm terminates in step 7.

31

Fig. B1 The solution procedure of toy example 2

Appendix C: Toy example 3
The two examples above represent a special class of MIBLPs, which include merely an upper-

level integer variable and a lower-level integer variable. To show all features of the proposed

algorithm while ensuring simplicity for demonstration, we propose the following illustrative

example.

()

0 0

0 0

, , ,

0 0

0 0

0 0

0 0

,

min 20 38 42

 s.t. 7 5 7 62
 6 9 10 2 117
 , , ,

 , arg max 39 27

u u l l

l l

u u l l

x y x y

u l l

u u l l

u u l l

l l l l

x y

x y x y

y x y
x y x y

x y x y

x y x y
+ + + +

− + +

+ + ≤

+ + + ≤

∈ ∈ ∈ ∈

∈ +

   

 s.t. 8 2 8 53
 9 2 28
 ,

u l l

u l l

l l

x x y
x x y

x y+ +

+ + ≤

+ + ≤

∈ ∈ 

This problem includes continuous and integer variables in both upper- and lower-level

programs. There are two upper-level constraints involving lower-level variables. Thus, the second

subproblem (P7) could be infeasible. The solution procedure of the proposed algorithm is

presented below.

32

In iteration 0l = we solve master problem (P5) to obtain () (),* ,* 0,* 0,*, , , 2.844,8,1.200,0u u l lx y x y =

and 245.911LB = − ; given () (),* ,*, 2.844,8u ux y = , we solve the first subproblem (P6) and obtain

() ()0 0ˆ ˆ, 0.200,2l lx y = ; the second subproblem (P7) is infeasible; at step 6 we add a set of KKT-

condition-based inequalities to master problem (P5).

In iteration 1l = we solve master problem (P5) to obtain () (),* ,* 0,* 0,*, , , 2.889,8,1.000,0u u l lx y x y =

and 245.222LB = − ; given () (),* ,*, 2.889,8u ux y = , we solve the first subproblem (P6) and obtain

() ()1 1ˆ ˆ, 0.500,1l lx y = ; we find that the second subproblem (P7) is still infeasible; at step 6, we add

another set of KKT-condition-based inequalities to master problem (P5).

In iteration 2l = we solve master problem (P5) to obtain () (),* ,* 0,* 0,*, , , 3.000,8,0.500,0u u l lx y x y =

and 243.500LB = − ; given () (),* ,*, 3.000,8u ux y = , we solve subproblems (P6) and (P7) to obtain

() (),* ,*
2 2, 0.500,0l lx y = and 243.500UB = − ; now we have UB LB= , so the algorithm terminates

in step 7.

The solution procedure above takes a total of 3 iterations. If the KKT-condition-based

tightening constraints (74) – (77) are not used, the algorithm takes a total of 5 iterations. Therefore,

it is shown that the KKT-condition-based tightening constraints help reduce the number of

iterations and computational time.

Appendix D: Inputs for generating computational examples
The following Table 4 provides the inputs to the GAMS code for generating computational

instances corresponding to example 2. We note that seed is the factor used to generate random

parameters, std. stands for the standard deviation used when generating Rm , Zm , Rn , and Zn .

Table 4 Inputs to the GAMS code for generating computational instances in example 2.

Instance seed 0.5nT std.
miblp_20_1 1 10 2
miblp_20_2 4 10 2
miblp_20_3 1000 10 2
miblp_20_4 7 10 2
miblp_20_5 20 10 2

33

miblp_20_6 84 10 2
miblp_20_7 96 10 2
miblp_20_8 5678 10 2
miblp_20_9 79 10 2
miblp_20_10 892 10 2
miblp_100_1 34 50 5
miblp_100_2 689 50 5
miblp_100_3 1 50 5
miblp_100_4 572 50 5
miblp_100_5 694 50 5
miblp_100_6 4 50 5
miblp_100_7 42 50 5
miblp_100_8 99 50 5
miblp_100_9 1000 50 5
miblp_100_10 789 50 5
miblp_200_1 7 100 5
miblp_200_2 377 100 5
miblp_200_3 1065 100 5
miblp_200_4 29 100 5
miblp_200_5 89 100 5
miblp_200_6 95 100 5
miblp_200_7 232 100 5
miblp_200_8 46 100 5
miblp_200_9 48 100 5
miblp_200_10 693 100 5
miblp_300_1 10 150 5
miblp_300_2 2 150 5
miblp_300_3 236 150 5
miblp_300_4 36 150 5
miblp_300_5 25 150 5
miblp_300_6 867 150 5
miblp_300_7 999 150 5
miblp_300_8 777 150 5
miblp_300_9 239 150 5
miblp_300_10 388 150 5
miblp_400_1 965 200 5
miblp_400_2 479 200 5
miblp_400_3 374 200 5
miblp_400_4 69 200 5
miblp_400_5 988 200 5

34

miblp_400_6 999 200 5
miblp_400_7 111 200 5
miblp_400_8 389 200 5
miblp_400_9 7374 200 5
miblp_400_10 10 200 5

In the following Table 5, we provide the inputs to GAMS for generating instances in example

3 from (hscp_6_6_1) through (hscp_12_12_5).

Table 5. Inputs to GAMS for generating instances in example 3.

Instance # plants # products seed q
hscp_6_6_1 6 6 41257601 230
hscp_6_6_2 6 6 9782 230
hscp_6_6_3 6 6 18654 230
hscp_6_6_4 6 6 3342 250
hscp_6_6_5 6 6 22 260
hscp_6_8_1 6 8 22555 320
hscp_6_8_2 6 8 3611 350
hscp_6_8_3 6 8 527 300
hscp_6_8_4 6 8 91 300
hscp_6_8_5 6 8 19123 360
hscp_8_8_1 8 8 8688 250
hscp_8_8_2 8 8 9651 300
hscp_8_8_3 8 8 1752 280
hscp_8_8_4 8 8 87422 250
hscp_8_8_5 8 8 436 250
hscp_8_10_1 8 10 57275355 400
hscp_8_10_2 8 10 7296453 450
hscp_8_10_3 8 10 72964 430
hscp_8_10_4 8 10 288174 500
hscp_8_10_5 8 10 2 450
hscp_10_10_1 10 10 796 300
hscp_10_10_2 10 10 8910 400
hscp_10_10_3 10 10 23 350
hscp_10_10_4 10 10 294 370
hscp_10_10_5 10 10 7955 320
hscp_10_12_1 10 12 89765 500
hscp_10_12_2 10 12 47 400
hscp_10_12_3 10 12 9364875 450

35

hscp_10_12_4 10 12 76563 500
hscp_10_12_5 10 12 3254336 400
hscp_12_12_1 12 12 818 650
hscp_12_12_2 12 12 97 350
hscp_12_12_3 12 12 2689 500
hscp_12_12_4 12 12 9434 480
hscp_12_12_5 12 12 463 290

Appendix E: Hierarchical supply chain planning model
In this section, we present the bilevel model formulation of the hierarchical supply chain

planning problem adapted from [60]. Before the model is presented, we first give the notations

used in the model.

Parameters

ija capacity consumption ratio for processing product j in plant i

U
ic upper bound of production capacity in plant i

jd customer demand of product j

ije resource factor for processing product j in plant i

if opening cost for plant i

ijg fixed cost for opening production line j in plant i

ip opportunity cost for unused production capacity of plant i after it is opened

q resource availability

ijr transportation cost for transferring product j from plant i to the principal firm

ijs fixed operation cost for processing product j in plant i

iw cost to use production capacity in plant i

n number of product types

Continuous variables

iCap designated production capacity in plant i

ijX fraction of demand of product j produced in plant i

36

Binary variables

iY 1 if plant I is selected and opened; 0 otherwise

ijZ 1 if production line for product j in plant i is used; 0 otherwise

With the above notations, the model for the hierarchical supply chain planning problem is

formulated as follows.

min 1
i i

i i ij ij i i j ij ij
i i j IS i j IS

z f Y g Z p Cap d a X
∈ ∈

 
= + + − 

 
∑ ∑∑ ∑ ∑ (E.1)

s.t.
i

j ij ij
i j IS

d e X q
∈

≤∑ ∑ (E.2)

 U
i iCap c i≤ ∀ (E.3)

 { }0,1 ,i iY Cap +∈ ∈ (E.4)

min ()2
i i

i j ij ij ij ij j ij ij
i j IS i j IS

z w d a X s Z d r X
∈ ∈

 
= + + 

 
∑ ∑ ∑∑ (E.5)

s.t. 1,
j

ij
i JS

X j
∈

= ∀∑ (E.6)

 ,
i

j ij ij i
j IS

d a X Cap i
∈

≤ ∀∑ (E.7)

 ,
i

ij i
j IS

X nY i
∈

≤ ∀∑ (E.8)

 , ,ij ij iX Z i j IS≤ ∀ ∈ (E.9)

 { }, 0,1ij ijX Z+∈ ∈ (E.10)

The principal firm’s objective (E.1) is to minimize the sum of the plant opening cost, the

production line opening cost, and the opportunity cost of over-setting production capacities.

Constraint (E.2) enforces that the use of resources does not exceed their availabilities. Although

only one type of resource is considered in this model, it can be easily extended to include multiple

types of resources by adding an index for resources. Constraint (E.3) imposes a limitation on plant

capacity. The lower-level objective function (E.5) is to minimize the operational costs, including

the cost related to production capacity consumption, the fixed charge cost, and transportation costs

for shipping products from auxiliary plants to the principal firm. Constraint (E.6) indicates that the

demands must be fully satisfied. Constraint (E.7) indicates that production should not exceed

capacity. Constraint (E.8) suggests that no product can be produced if the plant is not opened.

Constraint (E.9) indicates that no product can be produced if the production line is not opened.

37

Constraints (E.4) and (E.10) are non-negative and binary constraints for upper- and lower-level

decision variables. In this problem setting, the principal firm first determines which plant to open

(iY) and the capacity to install (iCap). Then the auxiliary plants determine which production line

to use (ijZ) and the production level of each product (ijX).

References
1. Bard, J.F.: Practical Bilevel Optimization: Algorithm and Applications. Kluwer Academic

Publishers, Dordrecht (1998)
2. Talbi, E.-G.: A Taxonomy of Metaheuristics for Bi-level Optimization. In: Talbi, E.-G. (ed.)

Metaheuristics for Bi-level Optimization. pp. 1-39. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

3. Wiesemann, W., Tsoukalas, A., Kleniati, P.-M., Rustem, B.: Pessimistic Bilevel Optimization.
SIAM Journal on Optimization 23(1), 353-380 (2013)

4. Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links Between Linear Bilevel and Mixed 0–1
Programming Problems. Journal of Optimization Theory and Applications 93(2), 273-300
(1997)

5. von Stackelberg, H.: Marktform und Gleichgewicht. - Wien & Berlin: Springer 1934. J. Springer,
(1934)

6. Bracken, J., McGill, J.T.: Mathematical Programs with Optimization Problems in the
Constraints. Operations Research 21(1), 37-44 (1973)

7. Xu, P., Wang, L.: An exact algorithm for the bilevel mixed integer linear programming problem
under three simplifying assumptions. Computers & Operations Research 41, 309-318 (2014)

8. Moore, J.T., Bard, J.F.: The mixed integer linear bilevel programming problem. Operations
Research 38(5), 911-921 (1990)

9. Tang, Y., Richard, J.-P.P., Smith, J.C.: A class of algorithms for mixed-integer bilevel min–max
optimization. Journal of Global Optimization 66(2), 225-262 (2016)

10. Gümüş, Z.H., Floudas, C.A.: Global optimization of mixed-integer bilevel programming
problems. Computational Management Science 2(3), 181-212 (2005)

11. Domínguez, L.F., Pistikopoulos, E.N.: Multiparametric programming based algorithms for
pure integer and mixed-integer bilevel programming problems. Computers & Chemical
Engineering 34(12), 2097-2106 (2010)

12. Kleniati, P.-M., Adjiman, C.S.: A generalization of the Branch-and-Sandwich algorithm: From
continuous to mixed-integer nonlinear bilevel problems. Computers & Chemical Engineering
72, 373-386 (2015)

13. Mitsos, A.: Global solution of nonlinear mixed-integer bilevel programs. Journal of Global
Optimization 47(4), 557-582 (2010)

14. Fliscounakis, S., Panciatici, P., Capitanescu, F., Wehenkel, L.: Contingency Ranking With
Respect to Overloads in Very Large Power Systems Taking Into Account Uncertainty,
Preventive, and Corrective Actions. IEEE Transactions on Power Systems 28(4), 4909-4917
(2013)

15. DeNegre, S.T., Ralphs, T.K.: A Branch-and-cut Algorithm for Integer Bilevel Linear Programs.
In: Chinneck, J.W., Kristjansson, B., Saltzman, M.J. (eds.) Operations Research and Cyber-

38

Infrastructure, DOI:10.1007/978-0-387-88843-9_4. pp. 65-78. Springer US, Boston, MA
(2009)

16. Hemmati, M., Smith, J.C.: A mixed-integer bilevel programming approach for a competitive
prioritized set covering problem. Discrete Optimization 20, 105-134 (2016)

17. Wen, U.P., Yang, Y.H.: Algorithms for solving the mixed integer two-level linear
programming problem. Computers & Operations Research 17(2), 133-142 (1990)

18. Lozano, L., Smith, J.C.: A Value-Function-Based Exact Approach for the Bilevel Mixed-
Integer Programming Problem. Operations Research DOI:10.1287/opre.2017.1589 (2017)

19. Dempe, S.: Discrete bilevel optimization problems. Citeseer, (2001)
20. Köppe, M., Queyranne, M., Ryan, C.T.: Parametric integer programming algorithm for bilevel

mixed integer programs. Journal of Optimization Theory and Applications 146(1), 137-150
(2010)

21. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Intersection Cuts for Bilevel Optimization. In:
Louveaux, Q., Skutella, M. (eds.) Integer Programming and Combinatorial Optimization: 18th
International Conference, IPCO 2016, Liège, Belgium, June 1-3, 2016, Proceedings. pp. 77-
88. Springer International Publishing, Cham (2016)

22. Fischetti, M., Ljubic, I., Monaci, M., Sinnl, M.: A new general-purpose algorithm for mixed-
integer bilevel linear programs. https://msinnl.github.io/pdfs/secondbilevel-techreport.pdf
(2016).

23. Zeng, B., An, Y.: Solving Bilevel Mixed Integer Program by Reformulations and
Decomposition. http://www.optimization-online.org/DB_HTML/2014/07/4455.html (2014).

24. Florensa, C., Garcia-Herreros, P., Misra, P., Arslan, E., Mehta, S., Grossmann, I.E.: Capacity
planning with competitive decision-makers: Trilevel MILP formulation, degeneracy, and
solution approaches. European Journal of Operational Research 262(2), 449-463 (2017)

25. Mersha, A.G., Dempe, S.: Linear bilevel programming with upper level constraints depending
on the lower level solution. Applied Mathematics and Computation 180(1), 247-254 (2006)

26. Bard, J.F., Moore, J.T.: An algorithm for the discrete bilevel programming problem. Naval
Research Logistics (NRL) 39(3), 419-435 (1992)

27. Saharidis, G.K., Ierapetritou, M.G.: Resolution method for mixed integer bi-level linear
problems based on decomposition technique. Journal of Global Optimization 44(1), 29-51
(2009)

28. Poirion, P.-L., Toubaline, S., Ambrosio, C.D., Liberti, L.: Bilevel mixed-integer linear
programs and the zero forcing set. optimization online (2015)

29. Edmunds, T., Bard, J.: An algorithm for the mixed-integer nonlinear bilevel programming
problem. Annals of Operations Research 34(1), 149-162 (1992)

30. Faísca, N., Dua, V., Rustem, B., Saraiva, P., Pistikopoulos, E.: Parametric global optimisation
for bilevel programming. Journal of Global Optimization 38(4), 609-623 (2007)

31. Mitsos, A., Lemonidis, P., Barton, P.I.: Global solution of bilevel programs with a nonconvex
inner program. Journal of Global Optimization 42(4), 475-513 (2008)

32. Kleniati, P.-M., Adjiman, C.: Branch-and-Sandwich: a deterministic global optimization
algorithm for optimistic bilevel programming problems. Part I: Theoretical development.
Journal of Global Optimization 60(3), 425-458 (2014)

33. Falk, J.E., Hoffman, K.: A nonconvex max-min problem. Naval Research Logistics Quarterly
24(3), 441-450 (1977)

34. Zuhe, S., Neumaier, A., Eiermann, M.C.: Solving minimax problems by interval methods. BIT
Numerical Mathematics 30(4), 742-751 (1990)

https://msinnl.github.io/pdfs/secondbilevel-techreport.pdf
http://www.optimization-online.org/DB_HTML/2014/07/4455.html

39

35. Bhattacharjee, B., Lemonidis, P., Green Jr, W.H., Barton, P.I.: Global solution of semi-infinite
programs. Mathematical Programming 103(2), 283-307 (2005)

36. Blankenship, J.W., Falk, J.E.: Infinitely constrained optimization problems. Journal of
Optimization Theory and Applications 19(2), 261-281 (1976)

37. Floudas, C.A., Stein, O.: The Adaptive Convexification Algorithm: A Feasible Point Method
for Semi-Infinite Programming. SIAM Journal on Optimization 18(4), 1187-1208 (2008)

38. Mitsos, A., Tsoukalas, A.: Global optimization of generalized semi-infinite programs via
restriction of the right hand side. Journal of Global Optimization 61(1), 1-17 (2015)

39. Stein, O., Still, G.: On generalized semi-infinite optimization and bilevel optimization.
European Journal of Operational Research 142(3), 444-462 (2002)

40. Jongen, H.T., Rückmann, J.J., Stein, O.: Generalized semi-infinite optimization: A first order
optimality condition and examples. Mathematical Programming 83(1-3), 145-158 (1998)

41. Talbi, E.-G.: Metaheuristics for bi-level optimization. Springer, (2013)
42. Smith, J.C., Lim, C., Alptekinoglu, A.: Optimal Mixed-Integer Programming and Heuristic

Methods for a Bilevel Stackelberg Product Introduction Game. Naval Research Logistics
(NRL) 56(8), 714-729 (2009)

43. Vicente, L., Savard, G., Judice, J.: Discrete linear bilevel programming problem. Journal of
Optimization Theory and Applications 89(3), 597-614 (1996)

44. Bank, B.: Non-linear parametric optimization. Akademie Verlag, Berlin, Germany (1982)
45. Ishizuka, Y., Aiyoshi, E.: Double penalty method for bilevel optimization problems. Annals

of Operations Research 34(1), 73-88 (1992)
46. Chen, Y., Florian, M.: The nonlinear bilevel programming problem:formulations,regularity

and optimality conditions. Optimization 32(3), 193-209 (1995)
47. Dempe, S.: Foundations of bilevel programming. Springer Science & Business Media, (2002)
48. Vicente, L., Calamai, P.: Bilevel and multilevel programming: A bibliography review. Journal

of Global Optimization 5(3), 291-306 (1994)
49. Dewez, S., Labbé, M., Marcotte, P., Gilles, S.: New formulations and valid inequalities for a

bilevel pricing problem. Operations Research Letters 36(2), 141-149 (2008)
50. Lodi, A., Ralphs, T., Woeginger, G.: Bilevel programming and the separation problem.

Mathematical Programming 146(1-2), 437-458 (2014)
51. Takeda, A., Taguchi, S., Tütüncü, R.H.: Adjustable Robust Optimization Models

for a Nonlinear Two-Period System. Journal of Optimization Theory and Applications 136(2),
275-295 (2008)

52. Zeng, B., Zhao, L.: Solving two-stage robust optimization problems using a column-and-
constraint generation method. Operations Research Letters 41(5), 457-461 (2013)

53. GAMS: GAMS/CPLEX Indicator Constraints. http://www.gams.com/solvers/cpxindic.htm.
2015

54. Floudas, C.A., Pardalos, P.M.: Recent advances in global optimization. Princeton University
Press, 41 William Street, Princeton, New Jersey 08450 (2014)

55. Ferris, M.C., Mangasarian, O.L., Pang, J.S.: Complementarity: applications, algorithms and
extensions, vol. 50. Springer Science & Business Media, (2013)

56. Hu, J., Mitchell, J., Pang, J.S., Yu, B.: On linear programs with linear complementarity
constraints. Journal of Global Optimization 53(1), 29-51 (2012)

57. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation
methods for mathematical programs with complementarity constraints. Mathematical
Programming 137(1-2), 257-288 (2013)

http://www.gams.com/solvers/cpxindic.htm

40

58. Ferris, M.C., Munson, T.S.: Complementarity problems in GAMS and the PATH solver1.
Journal of Economic Dynamics and Control 24(2), 165-188 (2000)

59. Rosenthal, R.E.: GAMS--a user's guide. (2004)
60. Cao, D., Chen, M.: Capacitated plant selection in a decentralized manufacturing environment:

A bilevel optimization approach. European Journal of Operational Research 169(1), 97-110
(2006)

	1. Introduction
	2. Literature review
	3. Preliminaries
	4. Reformulations
	4.1. Optimal value reformulation
	4.2. Projection-based single-level formulation

	5. Algorithm
	5.1. Master problem
	5.2. Subproblem 1
	5.3. Subproblem 2
	5.4. Decomposition algorithm
	5.5. Convergence

	6. Implementation
	6.1. KKT-condition-based tightening constraints
	6.2. Projection and indicator constraint
	6.3. Approximations
	6.3.1. Indicator constraint
	6.3.2. Linearization of complementary constraints

	7. Computational examples
	7.1. Example 1
	7.2. Example 2
	7.3. Example 3

	8. Conclusions
	Appendix A: Toy example 1
	Appendix B: Toy example 2
	Appendix C: Toy example 3
	Appendix D: Inputs for generating computational examples
	Appendix E: Hierarchical supply chain planning model
	References

