Skip to main content
Log in

An inexact splitting method for the subspace segmentation from incomplete and noisy observations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Subspace segmentation is a fundamental issue in computer vision and machine learning, which segments a collection of high-dimensional data points into their respective low-dimensional subspaces. In this paper, we first propose a model for segmenting the data points from incomplete and noisy observations. Then, we develop an inexact splitting method for solving the resulted model. Moreover, we prove the global convergence of the proposed method. Finally, the inexact splitting method is implemented on the clustering problems in synthetic and benchmark data, respectively. Numerical results demonstrate that the proposed method is computationally efficient, robust as well as more accurate compared with the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bauschke, H., Combettes, P.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26(2), 248–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bradley, P., Mangasarian, O.: k-Plane clustering. J. Glob. Optim. 16(1), 23–32 (2000). https://doi.org/10.1023/A:1008324625522

    Article  MathSciNet  MATH  Google Scholar 

  3. Butenko, S., Chaovalitwongse, W., Pardalos, P.: Clustering Challenges in Biological Networks. World Scientific, Singapore (2009)

    Book  Google Scholar 

  4. Cai, J., Candès, E., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès, E., Plan, Y.: Matrix completion with noise. Proc. IEEE 98(6), 925–936 (2010)

    Article  Google Scholar 

  6. Candès, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, G., Lerman, G.: Spectral curvature clustering (SCC). Int. J. Comput. Vis. 81(3), 317–330 (2009)

    Article  Google Scholar 

  8. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013). https://doi.org/10.1109/TPAMI.2013.57

    Article  Google Scholar 

  9. Goh, A., Vidal, R.: Segmenting motions of different types by unsupervised manifold clustering. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–6 (2007)

  10. Gruber, A., Weiss, Y.: Multibody factorization with uncertainty and missing data using the EM algorithm. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 707–714 (2004). https://doi.org/10.1109/CVPR.2004.1315101

  11. Han, L., Bi, S.: Two-stage convex relaxation approach to low-rank and sparsity regularized least squares loss. J. Glob. Optim. (2017). https://doi.org/10.1007/s10898-017-0573-2

    MATH  Google Scholar 

  12. He, B., Tao, M., Yuan, X.: A splitting method for separable convex programming. IMA J. Numer. Anal. 35(1), 394–426 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ho, J., Yang, M., Lim, J., Lee, K., Kriegman, D.: Clustering appearances of objects under varying illumination conditions. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 11–18 (2003)

  14. Hong, W., Wright, J., Huang, K., Ma, Y.: Multiscale hybrid linear models for lossy image representation. IEEE Trans. Image Process. 15(12), 3655–3671 (2006)

    Article  MathSciNet  Google Scholar 

  15. Kanatani, K.: Motion segmentation by subspace separation: model selection and reliability evaluation. Int. J. Image Graph. 2(2), 179–197 (2002)

    Article  Google Scholar 

  16. Lee, K., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)

    Article  Google Scholar 

  17. Lin, Z., Chen, M., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices (2010). Eprint arXiv:1009.5055

  18. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  19. Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and feature extraction. In: 2011 International Conference on Computer Vision, pp. 1615–1622 (2011). https://doi.org/10.1109/ICCV.2011.6126422

  20. Liu, Y., Jiao, L., Shang, F.: A fast tri-factorization method for low-rank matrix recovery and completion. Pattern Recognit. 46(1), 163–173 (2013)

    Article  MATH  Google Scholar 

  21. Lu, C., Min, H., Zhao, Z., Zhu, L., Huang, D., Yan, S.: Robust and Efficient Subspace Segmentation via Least Squares Regression, pp. 347–360. Springer, Berlin (2012)

    Google Scholar 

  22. Ma, Y., Yang, A., Derksen, H., Fossum, R.: Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Rev. 50(3), 413–458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1832–1845 (2010)

    Article  Google Scholar 

  24. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  25. Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21(1), 57–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tipping, M., Bishop, C.: Mixtures of probabilistic principal component analyzers. Neural Comput. 11(2), 443–482 (1999)

    Article  Google Scholar 

  27. Tseng, P.: Nearest q-flat to m points. J. Optim. Theory Appl. 105(1), 249–252 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1945–1959 (2005)

    Article  Google Scholar 

  29. Xiao, Y., Wu, S., Li, D.: Splitting and linearizing augmented Lagrangian algorithm for subspace recovery from corrupted observations. Adv. Comput. Math. 38(4), 837–858 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yan, J., Pollefeys, M.: A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate, pp. 94–106. Springer, Berlin (2006)

    Google Scholar 

  31. Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2(2), 569–592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, C., Bitmead, R.: Subspace system identification for training-based MIMO channel estimation. Automatica 41(9), 1623–1632 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, T., Szlam, A., Lerman, G.: Median k-flats for hybrid linear modeling with many outliers. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 234–241 (2009)

  34. Zhang, T., Szlam, A., Wang, Y., Lerman, G.: Hybrid linear modeling via local best-fit flats. Int. J. Comput. Vis. 100(3), 217–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqin Bai.

Additional information

This research was supported by a grant from the National Natural Science Foundation of China (No. 11771275).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, R., Bai, Y. & Lin, H.X. An inexact splitting method for the subspace segmentation from incomplete and noisy observations. J Glob Optim 73, 411–429 (2019). https://doi.org/10.1007/s10898-018-0684-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0684-4

Keywords

Mathematics Subject Classification

Navigation