
A Bayesian optimization approach to find Nash equilibria

Victor Picheny∗ Mickael Binois† Abderrahmane Habbal‡

February 28, 2018

Abstract

Game theory finds nowadays a broad range of applications in engineering and machine learning.
However, in a derivative-free, expensive black-box context, very few algorithmic solutions are available
to find game equilibria. Here, we propose a novel Gaussian-process based approach for solving games in
this context. We follow a classical Bayesian optimization framework, with sequential sampling decisions
based on acquisition functions. Two strategies are proposed, based either on the probability of achieving
equilibrium or on the Stepwise Uncertainty Reduction paradigm. Practical and numerical aspects are
discussed in order to enhance the scalability and reduce computation time. Our approach is evaluated
on several synthetic game problems with varying number of players and decision space dimensions. We
show that equilibria can be found reliably for a fraction of the cost (in terms of black-box evaluations)
compared to classical, derivative-based algorithms. The method is available in the R package GPGame

available on CRAN at https://cran.r-project.org/package=GPGame.
Keywords: Game theory, Gaussian processes, Stepwise Uncertainty Reduction

1 Introduction

Game theory arose from the need to model economic behavior, where multiple decision makers (MDM)
with antagonistic goals is a natural feature. It was further extended to broader areas, where MDM had
however to deal with systems governed by ordinary differential equations, the so-called differential games.
See e.g., Gibbons (1992) for a nice introduction to the general theory and Isaacs (1965) for differential games.
Recently, engineering problems with antagonistic design goals and with real or virtual MDM were formulated
by some authors within a game-theoretic framework. See e.g., León et al. (2014) for aerodynamics, Habbal
et al. (2004) for structural topology design, Habbal & Kallel (2013) for missing data recovery problems.
The study of multi-agent systems or games such as poker under this setting is also quite common in the AI
and machine learning communities, see e.g., Johanson & Bowling (2009); Lanctot et al. (2012); Brown et al.
(2015).

Solutions to games are called equilibria. Contrarily to classical optimization, the definition of an equi-
librium depends on the game setting (or rules). Within the static with complete information setting, a
relevant one is the so-called Nash equilibrium (NE). Shortly speaking, a NE is a fixed-point of iterated many
single optimizations (see the exact definition in Section-2 below). Its computation generically carries the
well known tricks and pitfalls related to computing a fixed-point, as well as those related to intensive opti-
mizations notably when cost evaluations are expensive, which is the case for most engineering applications.
There is an extensive literature related to theoretical analysis of algorithms for computing NE (Başar, 1987;
Li & Başar, 1987; Uryas’ev & Rubinstein, 1994), but very little -if any- on black-box models (i.e., non convex
utilities) and expensive-to-evaluate ones; to the best of our knowledge, only home-tailored implementations
are used. On the other hand, Bayesian optimization (BO, Mockus, 1989) is a popular approach to tackle

∗MIAT, Université de Toulouse, INRA, Castanet-Tolosan, France (victor.picheny@inra.fr)
†The University of Chicago Booth School of Business, Chicago IL (mickael.binois@chicagobooth.edu)
‡Université Côte d’Azur, Inria, CNRS, LJAD, UMR 7351, Nice, France (habbal@unice.fr)

1

ar
X

iv
:1

61
1.

02
44

0v
2

 [
st

at
.M

L
]

 2
7

Fe
b

20
18

black-box problems. Our aim is to investigate the extension of such approach to the problem of computing
game equilibria.

BO relies on Gaussian processes, which are used as emulators (or surrogates) of the black-box model
outputs based on a small set of model evaluations. Posterior distributions provided by the Gaussian pro-
cess are used to design acquisition functions that guide sequential search strategies that balance between
exploration and exploitation. Such approaches have been applied for instance to multi-objective problems
(Wagner et al., 2010), as well as transposed to frameworks other than optimization, such as uncertainty
quantification (Bect et al., 2012) or optimal stopping problems in finance (Gramacy & Ludkovski, 2015).

In this paper, we show that the BO apparatus can be applied to the search of game equilibria, and
in particular the classical Nash equilibrium (NE). To this end, we propose two complementary acquisition
functions, one based on a greedy search approach and one based on the Stepwise Uncertainty Reduction
paradigm (Fleuret & Geman, 1999). The corresponding algorithms require very few model evaluations
to converge to the solution. Our proposal hence broadens the scope of applicability of equilibrium-based
methods, as it is designed to tackle derivative-free, non-convex and expensive models, for which a game
perspective was previously out of reach.

The rest of the paper is organized as follows. Section 2 reviews the basics of game theory and presents our
Gaussian process framework. Section 3 presents our main contribution, with the definition of two acquisition
functions, along with computational aspects. Finally, Section 4 demonstrates the capability of our algorithm
on three challenging problems.

2 Background

2.1 Games and equilibria

2.1.1 Nash games

We consider primarily the standard (static, under complete information) Nash equilibrium problem (NEP,
Gibbons, 1992).

Definition 1 A NEP consists of p ≥ 2 decision makers (i.e., players), where each player i ∈ {1, . . . , p} tries
to solve his optimization problem:

(Pi) min
xi∈Xi

yi(x), (1)

where y(x) = [y1(x), . . . , yp(x)] : X ⊂ Rn → Rp (with n ≥ p) denotes a vector of cost functions (a.k.a.
pay-off or utility functions), yi denotes the specific cost function of player i, and the vector x consists of
block components x1, . . . ,xp (x = (xj)1≤j≤p).

Each block xi denotes the variables of player i and Xi its corresponding action space and X =
∏
iXi. We

shall use the convention yi(x) = yi(xi,x−i) when we need to emphasize the role of xi.

Definition 2 A Nash equilibrium x∗ ∈ X is a strategy such that:

(NE) ∀i, 1 ≤ i ≤ p, x∗i ∈ arg min
xi∈Xi

yi(xi,x
∗
−i). (2)

In other words, when all players have chosen to play a NE, then no single player has incentive to move from
his x∗i . Let us however mention by now that, generically, Nash equilibria are not efficient, i.e., do not belong
to the underlying set of best compromise solutions, called Pareto front, of the objective vector (yi(x))x∈X.

2.1.2 Random games

We shall also deal with the case where cost functions are uncertain. Such problems belong to a family
of random games that are called disturbed games by Harsanyi in (Harsanyi, 1973). We denote such cost
functions fi(x, ε(ξ)), where ε = (εi) : Ξ→ Rp is a random vector defined over a probability space (Ξ,F ,P).
In the following we refer to our setting as random games, but emphasize that we consider static Nash games
with expectations of randomly perturbed costs.

2

Definition 3 Assuming risk-neutrality of the players, a random Nash game consists of p ≥ 2 players, where
each player i ∈ {1, . . . , p} tries to solve

(SPi) min
xi∈Xi

E[fi(x, ε(ξ))]. (3)

Definition 4 A random Nash equilibrium x∗ ∈ X is a strategy such that:

(SNE) ∀i, 1 ≤ i ≤ p, x∗i ∈ arg min
xi∈Xi

E[fi(xi,x
∗
−i, ε(ξ))]. (4)

Note that setting yi = E[fi(x, ε(ξ))], we see directly that (NE) and (SNE) are equivalent.

2.1.3 Working hypotheses

In this work, we focus on continuous-strategy non-cooperative Nash games (i.e., with infinite sets Xi) or on
large finite games (i.e., with large finite sets Xi).

Our working hypotheses are:

• queries on the cost function (i.e., pointwise evaluation of the yi’s for a given x) result from an expensive
process: typically, the yi’s can be the outputs of numerical models;

• the cost functions may have some regularity properties but are possibly strongly not convex (e.g.,
continuous and multimodal);

• the cost functions evaluations can be corrupted by noise;

• X is either originally discrete, or a representative discretization of it is available (so that the equilibrium
of the corresponding finite game is similar to the one of original problem).

Note that to account for the particular form of NEPs, X must realize a full-factorial design: X = X1×. . .×Xp.
Given each action space Xi = {x1

i , . . . ,x
mi
i } of size mi, X consists of all the combinations (xki ,x

l
j) (1 ≤ i 6=

j ≤ p, 1 ≤ k ≤ mi, 1 ≤ l ≤ mj), and we have N := Card(X) =
∏p
i=1mi.

Let us remark that we do not require for an equilibrium to exist and be unique, the case when there is
no or equilibria is discussed in Section 3.2.4.

In the case of noisy evaluations, we consider only here an additive noise corruption:

fi(x, ε(ξ)) = yi(x) + εi(ξ), (5)

and we assume further that ε has independent Gaussian centered elements: εi ∼ N (0, τ2
i). Notice that in

this case, both problems and equilibria coincide, and can be solved with the same algorithm. Hence, in the
following, all calculations are given in the noisy case, while the deterministic case of the standard NEP is
recovered by setting εi = 0 and τi = 0.

Furthermore, we consider solely pure-strategy Nash equilibria (as opposed to mixed-strategies equilibria,
in which the optimal strategies can be chosen stochastically, see Gibbons, 1992, Chapter 1), and as such,
we avoid solving the linear programs LP or linear complementarity problems LCP generally used in the
dedicated classes of algorithms à la Lemke-Howson (Rosenmüller, 1971).

2.1.4 Related work

Let us mention that in the continuous (in the sense of smooth) games setting, there is an extensive literature
dedicated to the computation of NE, based on the rich theory of variational analysis, starting with the
classical fixed-point algorithms to solve NEPs (Uryas’ev & Rubinstein, 1994; Başar, 1987; Li & Başar, 1987).
When the players share common constraints, Nash equilibria are shown to be Fritz-John (FJ) points (Dorsch
et al., 2013), which allows the op. cit. authors to propose a nonsmooth projection method (NPM) well

3

adapted for the computation of FJ points. From other part, it is well known (and straightforward) that
Nash equilibria are in general not classical Karush-Kuhn-Tucker (KKT) points, nevertheless, a notion of
KKT condition for generalized Nash equilibria GNEP is developed in Kanzow & Steck (2016), which allows
the authors to derive an augmented Lagrangian method to compute GNEPs.

Noncooperative stochastic games theory, starting from the seminal paper by Shapley (Shapley, 1953),
occupies nowadays most of the game theorists, and a vast literature is dedicated to stochastic differential
games (Friedman, 1972), robust games (Nishimura et al., 2009), games on random graphs, or agents learning
games (Hu & Wellman, 2003), among many other branches, and it is definitely out of the scope of the paper
to review all aspects of the field. See also the introductory book Neyman & Sorin (2003) to the basic -yet
deep- concepts of the stochastic games theory.

We also do not consider games with additional specific structures, like cooperative, zero-sum stochastic or
deterministic games, or repeated Nash games (Littman & Stone, 2005). For these games, tailored algorithms
should be used, among which are the pure exploration statistical learning with Monte Carlo Tree Search
(Garivier et al., 2016) or multi-agent reinforcement learning MARL, see e.g., Games (2016) and references
therein.

We stress here that none of the above-mentioned approaches are designed to tackle expensive black-box
problems. They may even prove unusable in this context, either because they could simply not converge or
require too many cost function evaluations to do so.

2.2 Bayesian optimization

2.2.1 Gaussian process regression

The idea of replacing an expensive function by a cheap-to-evaluate surrogate is not recent, with initial
attempts based on linear regression. Gaussian process (GP) regression, or kriging, extends the versatility
and efficiency of surrogate-based methods in many applications, such as in optimization or reliability analysis.
Among alternative non-parametric models such as radial basis functions or random forests, see e.g., Wang
& Shan (2007); Shahriari et al. (2016) for a discussion, GPs are attractive in particular for their tractability,
since they are simply characterized by their mean m and covariance (or kernel) k functions, see e.g., Cressie
(1993); Rasmussen & Williams (2006). In the following, we consider zero-mean processes (m = 0) for the
sake of conciseness.

Briefly, for a single objective y, conditionally on n noisy observations f = (f1, . . . , fn), with independent,
centered, Gaussian noise, that is, fi = y(xi) + εi with εi ∼ N (0, τ2

i), the predictive distribution of y is
another GP, with mean and covariance functions given by:

µ(x) = k(x)>K−1f , (6)

σ2(x,x′) = k(x,x′)− k(x)>K−1k(x′), (7)

where k(x) := (k(x,x1), . . . , k(x,xn))> and K := (k(xi,xj) + τ2
i δi=j)1≤i,j≤n, δ standing for the Kronecker

function. Commonly, k belongs to a parametric family of covariance functions such as the Gaussian and
Matérn kernels, based on hypotheses about the smoothness of y. Corresponding hyperparameters are often
obtained as maximum likelihood estimates, see e.g., Rasmussen & Williams (2006) or Roustant et al. (2012)
for the corresponding details.

With several objectives, a statistical emulator for y(x) = [y1(x), . . . , yp(x)] is needed. While a joint

modeling is possible (see e.g., Álvarez et al., 2011), it is more common practice to treat the yi’s separately.
Hence, conditioned on a set of vectorial observations {f1, . . . , fn}, our emulator is a multivariate Gaussian
process Y:

Y(.) ∼ GP (µ(.),Σ (., .)) , (8)

with µ(.) = [µ1(.), . . . , µp(.)], Σ = diag
(
σ2

1(., .), . . . , σ2
p(., .)

)
, such that {µi(.), σ2

i (., .)} is the predictive mean
and covariance, respectively, of a GP model of the objective yi. Note that the predictive distribution of an
observation is:

F(x) ∼ N
(
µ(x),Σ (x,x) + diag(τ2

1 , . . . , τ
2
p)
)
. (9)

4

GPs are commonly limited to a few thousands of design points, due to the cubic cost needed to invert
the covariance matrix. This can be overcome in several ways, by using inducing points Wilson & Nickisch
(2015), or local models Gramacy & Apley (2015); Rullière et al. (2016); see also Heaton et al. (2017) for a
comparison or Žilinskas & Zhigljavsky (2016) for a broader discussion. In addition, here the full-factorial
structure of the design space can potentially be exploited. For instance, if evaluated points also have a full-
factorial structure, then the covariance matrix can be written as a Kronecker product, reducing drastically
the computational cost, see e.g., Plumlee (2014).

2.2.2 Sequential design

Bayesian optimization methods are usually outlined as follows: a first set of observations {Xn0
, fn0
} is

generated using a space-filling design to obtain a first predictive distribution of Y(.). Then, observations
are performed sequentially by maximizing a so-called acquisition function (or infill criterion) J(x), that
represents the potential usefulness of a given input x. That is, at step n ≥ n0,

xn+1 = arg max
x∈X

J(x). (10)

Typically, an acquisition function offers an efficient trade-off between exploration of unsampled regions
(high posterior variance) and exploitation of promising ones (low posterior mean), and has an analytical
expression which makes it inexpensive to evaluate, conveniently allowing to use of-the-shelf optimization
algorithms to solve Eq. (10). In unconstrained, noise-free optimization, the canonical choice for J(x) is the
so-called Expected Improvement (EI, Jones et al., 1998), while in the bandit literature (noisy observations),
the Upper Confidence Bound (UCB, Srinivas et al., 2012) can be considered as standard. Extensions abound
in the literature to tackle various optimization problems: see e.g. Wagner et al. (2010) for multi-objective
optimization or Hernández-Lobato et al. (2016) for constrained problems.

Figure 1 provides an illustration of the BO principles.

0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
10

−
5

0
5

10
15

x

f(
x)

●

● ●

●

●

0
1

2
3

J(
x)

0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
10

−
5

0
5

10
15

x

f(
x)

●

● ●

●

●

●●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

J(
x)

●

●

y(x)
GP model
J(x)
Observations
New observation
J maximizer

Figure 1: One iteration of Bayesian optimization on a one-dimensional toy problem. A first GP is conditioned
on a set of five observations (left), out of which an acquisition function is maximized to find the next
observation. Once this observation is performed (right), the GP model and acquisition function are updated,
and start pointing towards the optimum x = 0.75. Note that the acquisition is also large in unexplored
regions (around x = 0.2).

5

3 Acquisition functions for NEP

We propose in the following two acquisition functions tailored to solve NEPs, respectively based on the
probability of achieving equilibrium and on stepwise uncertainty reduction. Both aim at providing an
efficient trade-off between exploration and exploitation.

3.1 Probability of equilibrium

Given a predictive distribution of Y(.), a first natural metric to consider is the probability of achieving the
NE. From (2), using the notation x = (xi,x−i), this probability writes:

PE(x) = P

(
p⋂
i=1

{
Yi(xi,x−i) = min

xk
i ∈Xi

Yi(x
k
i ,x−i)

})
, (11)

where {x1
i , . . . ,x

mi
i } denotes the mi alternatives in Xi, and x−i is fixed to its value in x.

Since our GP model assumes the independence of the posterior distributions of the objectives, we have:

PE(x) =

p∏
i=1

P

{
Yi(x) = min

xk
i ∈Xi

Yi(x
k
i ,x−i)

}
:=

p∏
i=1

Pi(x). (12)

Let us now introduce the notation xi = xli (1 ≤ l ≤ mi). As exploited recently by Chevalier & Ginsbourger
(2013) in a multi-point optimization context, each Pi can be expressed as

Pi(x) = P

 ⋂
k∈mi,k 6=l

{
Yi(x

l
i,x−i)− Yi(xki ,x−i) ≤ 0

} . (13)

Pi(x) amounts to compute the cumulative distribution function (CDF) of a Gaussian vector of size q := mi−1:

Pi(x) = P (Zi ≤ 0) = ΦµZi
,ΣZi

(0), (14)

with

Zi =
[
Yi(x

1
i ,x−i)− Yi(xli,x−i), . . . , Yi(xl−1

i ,x−i)− Yi(xli,x−i),
Yi(x

l+1
i ,x−i)− Yi(xli,x−i), . . . , Yi(x

mi
i ,x−i)− Yi(xli,x−i)

]
.

The mean µZi
and covariance ΣZi

of Zi can be expressed as:

(µZi)j = µi(x
l
i,x−i)− µi(x

j
i ,x−i),

(ΣZi)jk = clli + cjki − c
lj
i − c

lk
i if k, l 6= j and clli otherwise,

with cjki = σ2
i

(
(xji ,x−i), (x

k
i ,x−i)

)
.

Several fast implementations of the multivariate Gaussian CDF are available, for instance in the R pack-
ages mnormt (for q < 20) (Azzalini & Genz, 2016) or, up to q = 1000, by Quasi-Monte-Carlo with mvtnorm

(Genz & Bretz, 2009; Genz et al., 2016).

Alternatively, this quantity can be computed using Monte-Carlo methods by drawingR samples Y(1)
i , . . . ,Y(R)

i

of
[
Yi(x

1
i ,x−i), . . . , Yi(x

mi
i ,x−i)

]
, to compute

P̂i(x) =
1

R

R∑
r=1

1

(
Y(r)
i (x) = min

xk
i ∈Xi

Y(r)
i (xki ,x−i)

)
,

1(.) denoting the indicator function. This latter approach may be preferred when the number of alternatives
mi is high (say > 20), which makes the CDF evaluation overly expensive while a coarse estimation may be

6

sufficient. Note that in both cases, a substantial computational speed-up can be achieved by removing from
the Xi’s the non-critical strategies. This point is discussed in Section 3.2.3.

Using J(x) = PE(x) as an acquisition function defines our first sequential sampling strategy. The strategy
is rather intuitive: i.e., sampling at designs most likely to achieve NE.

Still, maximizing PE is a myopic approach (i.e., favoring an immediate reward instead of a long-term one),
which are often sub-optimal (see e.g. Ginsbourger & Le Riche, 2010; Gonzalez et al., 2016, and references
therein). Instead, other authors have advocated the use of an information gain from a new observation
instead, see e.g., Villemonteix et al. (2009); Hennig & Schuler (2012), which motivated the definition of an
alternative acquisition function, which we describe next.

3.2 Stepwise uncertainty reduction

Stepwise Uncertainty Reduction (SUR, also referred to as information-based approach) has recently emerged
as an efficient approach to perform sequential sampling, with successful applications in optimization (Ville-
monteix et al., 2009; Picheny, 2014; Hernández-Lobato et al., 2014, 2016) or uncertainty quantification (Bect
et al., 2012; Jala et al., 2016). Its principle is to perform a sequence of observations in order to reduce
as quickly as possible an uncertainty measure related to the quantity of interest (in the present case: the
equilibrium).

3.2.1 Acquisition function definition

Let us first denote by Ψ(y) the application that associates a NE with a multivariate function. In the case of
finite games, we have: Ψ : RN×p → Rp, for which a pseudo-code is detailed in Algorithm 3. If we consider
the random process Y (Eq. 8) in lieu of the deterministic objective y, the equilibrium Ψ(Y) is a random
vector of Rp with unknown distribution. Let Γ be a measure of variability (or residual uncertainty) of Ψ(Y);
we use here the determinant of its second moment:

Γ(Y) = det [cov (Ψ(Y))] . (15)

The SUR strategy aims at reducing Γ by adding sequentially observations y(x) on which Y is conditioned.
An “ideal” choice of x would be:

xn+1 = arg min
x∈X

Γ [Y|f = y(x)] , (16)

where Y|f = y(x) is the process conditioned on the observation f . Since we do not want to evaluate y for
all x candidates, we consider the following criterion instead:

J(x) = EF (Γ [Y|F = Y(x) + ε]) , (17)

with F following the posterior distribution (conditioned on the n current observations, Eq. 9) and EF denoting
the expectation over F.

In practice, computing J(x) is a complex task, as no closed-form expression is available. The next
subsection is dedicated to this question.

Remark For simplicity of exposition, we assume here that the equilibrium Ψ(Y) exists, which is not
guaranteed even if Ψ(y) does. To avoid this problem, one may consider an extended Ψ̄ function equal to
+∞× Ip if there is no equilibrium and to Ψ otherwise, and in Eq. 15 use the restriction of Ψ̄ to finite values.

3.2.2 Approximation using conditional simulations

Let us first focus on the measure Γ when no new observation is involved. Due to the strong non-linearity of
Ψ, no analytical simplification is available, so we rely on conditional simulations of Y to evaluate Γ.

7

Let Y1, . . . ,YM be independent draws of Y(X) (each Yi ∈ RN×p). For each draw, the corresponding
NE Ψ(Yi) can be computed by exhaustive search. We reported to Appendix C the particular algorithm we
used for this step. The following empirical estimator of Γ(Y) is then available:

Γ̂ (Y1, . . . ,YM) = det [QY] ,

with QY the sample covariance of Ψ(Y1), . . . ,Ψ(YM).
Now, let us assume that we evaluate the criterion for a given candidate observation point x. Let

F1, . . . ,FK be independent draws of F(x) = Y(x) + ε. For each F i, we can condition Y on the event
(F(x) = F i) in order to generate Y1|F i, . . . ,YM |F i draws of Y|F i, from which we can compute the empir-
ical estimator Γ̂

(
Y1|F i, . . . ,YM |F i

)
. Then, an estimator of J(x) is obtained using the empirical mean:

Ĵ(x) =
1

K

K∑
i=1

Γ̂
(
Y1|F i, . . . ,YM |F i

)
.

3.2.3 Numerical aspects

The proposed SUR strategy has a substantial numerical cost, as the criterion requires a double loop for its
computation: one over the K values of F i and another over the M sample paths. The two computational
bottlenecks are the sample path generations and the searches of equilibria, and both are performed in total
K ×M times for a single estimation of J . Thankfully, several computational shortcuts allow us to evaluate
the criterion efficiently.

First, we employed the FOXY algorithm (fast update of conditional simulation ensemble) as proposed
in Chevalier et al. (2015), in order to obtain draws of Y|F i based on a set of draws Y1, . . . ,YM . In short,
a unique set of draws is generated prior to the search of xn+1, which is updated quickly when necessary
depending on the pair (x,F i). The expression used are given in Appendix A, and we refer to Chevalier et al.
(2015) for the detailed algebra and complexity analysis.

Second, we discard points in X that are unlikely to provide information regarding the equilibrium prior
to the search of xn+1, as we detail below. By doing so, we reduce substantially the sample paths size and
the dimension of each finite game, which drastically reduces the cost. We call Xsim the retained subset.

Finally, Ĵ is evaluated only on a small, promising subset of Xsim. We call Xcand this set.
To select the subsets, we rely on a fast-to-evaluate score function C, which can be seen as a proxy to the

more expensive acquisition function. The subset of X is then chosen by sampling randomly with probabilities
proportional to the scores C(X), while ensuring that the subset retains a factorial form. We propose three
scores, of increasing complexity and cost, which can be interleaved:

• Ctarget: the simplest score is the posterior density at a target TE in the objective space, for instance
the NE of the posterior mean (hence, it requires one NE search). Ctarget reflects a proximity to an
estimate of the NE. We use this scheme for the first iteration to select Xsim ⊂ X.

• Cbox: once conditional simulations have been performed, the above scheme can be replaced by the
probability for a given strategy to fall into the box defined by the extremal values of the simulated NE
(i.e., Ψ(Y1), . . . ,Ψ(YM)). We use this scheme to select Xsim ⊂ X for all the other iterations.

• CP: since PE is faster (in particular in its Monte Carlo setting with small R) than Ĵ(x), it can be used
to select Xcand ⊂ Xsim.

The detailed expressions of Ctarget and Cbox are given in Appendix B. Note that in our experiments, Ctarget

and Cbox are also used with the PE acquisition function.
Last but not least, this framework enjoys savings from parallelization in several ways. In particular, the

searches of NE for each sample Y can be readily distributed.
An overview of the full SUR approach is given in pseudo-code in Algorithm 1. Note that by construction,

SUR does not necessarily sample at the NE, even when it is well-identified. Hence, as a post-processing step,
the returned NE estimator is the design that maximizes the probability of achieving equilibrium.

8

Algorithm 1 Pseudo-code for the SUR approach

Require: n0, nmax, Nsim, Ncand

1: Construct initial design of experiments Xn0

2: Evaluate yn0 = F(Xn0)
3: while n ≤ nmax do
4: Train the p GP models on the current design of experiments {Xn,yn}
5: if n = n0 then
6: estimate TE = Ψ(µ(X), the NE on the posterior mean; select Xsim ⊂ X using Ctarget

7: else
8: Select Xsim ⊂ X using Cbox

9: end if
10: Generate M draws (Y1, . . . ,YM) on Xsim

11: Compute Ψ(Y1), . . . ,Ψ(YM) (for Cbox)
12: Select Xcand ⊂ Xsim using CP
13: Find xn+1 = arg minx∈Xcand

Ĵ(x)
14: Evaluate yn+1 = F(xn+1) and add {xn+1,yn+1} to the current design of experiments
15: end while
Ensure: x∗ = arg minx∈Xcand

PE(x)

3.2.4 Stopping criterion

We consider in Algorithm 1 a fixed budget, assuming that simulation cost is limited. However, other natural
stopping criteria are available. For PE , one may stop if there is a strategy for which the probability is high,
i.e., maxPE(x) ≥ 1 − ε (with ε close to zero). For SUR, Ĵ is an indicator of the remaining uncertainty, so
the algorithm may stop if this uncertainty is below a threshold, i.e., min J(x) ≤ ε.

While there always exists a Nash equilibrium for mixed strategy, in the setup we entertain there may
actually be no pure strategy, or several. For PE , this is completely transparent, with a probability zero for
all strategies (no NE) or several strategies having probability one (multiple NEs). For SUR, with more than
one equilibrium, no change is needed, even though SUR may benefit from using a clustering method of the
simulated NEs and defining local variability instead of the global Γ, Eq. (15). The absence of NE on the GP
draws (Ψ(Yi)) can be used to detect the absence of NE for the problem at hand.

4 NUMERICAL EXPERIMENTS

These experiments have been performed in R (R Core Team, 2016) using the GPGame package (Picheny &
Binois, 2017), which relies on the DiceKriging package (Roustant et al., 2012) for the Gaussian process
regression part.

We used a fixed-point method as a competitive alternative to compute Nash equilibria, in order to
assess the efficiency of our approach. It is a popular method among the audience who is familiar with
gradient-descent optimization algorithms. The algorithm pseudo-code is given in Algorithm 2, and has been
implemented in Scilab (Scilab Enterprises, 2012).

In the following, performance is assessed in terms of numbers of calls to the objective function, hence
assuming that the cost of running the black-box model largely exceeds the cost of choosing the points. For
moderately expensive problems, the choice of algorithm may depend on the budget, as, intuitively, the time
used to search for a new point may not exceed the time to simulate it. We report in Appendix D the
computational times required for our approach on the three following test problems.

9

Algorithm 2 Pseudo-code for the fixed-point approach Uryas’ev & Rubinstein (1994)

Require: P : number of players, 0 < α < 1 : relaxation factor, kmax : max iterations
1: Construct initial strategy x(0)

2: while k ≤ kmax do
3: Compute in parallel : ∀i, 1 ≤ i ≤ P, z

(k+1)
i = arg minxi∈Xi Ji(x

(k)
−i , xi)

4: Update : x(k+1) = αz(k+1) + (1− α)x(k)

5:

6: if ‖x(k+1) − x(k)‖ small enough then exit
7: end if
8: end while

Ensure: For all i = 1...P , x∗i = arg minxi∈Xi
Ji(x

∗
−i, xi)

4.1 A classical multi-objective problem

We first consider a classical optimization toy problem (P1) as given in Parr (2012), with two variables and
two cost functions, defined as:

y1 = (x2 − 5.1(x1/(2π))2 +
5

π
x1 − 6)2 + 10((1− 1

8π
) cos(x1) + 1)

y2 = −
√

(10.5− x1)(x1 + 5.5)(x2 + 0.5)− (x2 − 5.1(x1/(2π))2 − 6)2

30

− (1− 1/(8π)) cos(x1) + 1

3

with x1 ∈ [−5, 10] and x2 ∈ [0, 15]. Both functions are non-convex. We set x1 = x1 and x2 = x2 . The
actual NE is attained at x1 = −3.786 and x2 = 15.

Our strategies are parameterized as follow. X is first discretized over a 31× 31 regular grid. With such
size, there is no need to resort to subsets, so we use Xcand = Xsim = X. We set the number of draws to
K = M = 20, which was empirically found as a good trade-off between accuracy and speed. We use n0 = 6
initial observations from a Latin hypercube design (LHD, McKay et al., 1979), and observations are added
sequentially using both acquisition functions. As a comparison, we ran a standard fixed-point algorithm
(Başar, 1987) based on finite differences. This experiment is replicated five times with different initial sets
of observations for the GP-based approaches and different initial points for the fixed-point algorithm. The
results are reported in Table 1.

In addition, Figure 2 provides some illustration for a single run. In the initial state (top left), the
simulated NEs form a cloud in the region of the actual NE. A first point is added, although far from the NE,
that impacts the form of the cloud (top, middle). The infill criterion surface (Figure 2, top right) then targets
the top left corner, which offers the best compromise between exploration and exploitation. After adding 7
points (bottom left) the cloud is smaller and centered on the actual NE. As the NE is quite well-identified,
the infill criterion surface (Figure 2, bottom right) is now relatively flat and mostly indicates regions that
have not been explored yet. After 14 additions (bottom, middle), all simulated NE but two concentrate on
the actual NE. The observed values have been added around the actual NE, but not only, which indicates
that some exploration steps (such as iteration 8) have been performed.

Strategy Evaluations required Success rate
PE 9–10 5/5

SUR 8–14 5/5
Fixed point 200–1000 3/5

Table 1: P1 convergence results.

10

Both GP approaches consistently find the NE very quickly: the worst run required 14 cost evaluations
(that is, 8 infill points). In contrast, the classical fixed-point algorithm required hundreds of evaluations,
which is only marginally better than an exhaustive search on the 961-points grid. Besides, two out of five
runs converged to the stationary point (1, 1), which is not a NE. On this example, PE performed slightly
better than SUR.

0 50 100 150 200 250 300

−
35

−
30

−
25

−
20

−
15

−
10

−
5

Iteration 1

f1

f 2

●

●

●

●

●●

●

●

Actual NE
Simulated NE
Current obs
New obs

●

0 50 100 150 200 250 300

−
35

−
30

−
25

−
20

−
15

−
10

−
5

Iteration 2

f1

f 2

●

●

●

●

●●

● ●

●

Actual NE
Simulated NE
Current obs
New obs

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ●

●

●

●

●

●

●

●

Iteration 2

x1

x 2

0 50 100 150 200 250 300

−
35

−
30

−
25

−
20

−
15

−
10

−
5

Iteration 8

f1

f 2

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Actual NE
Simulated NE
Current obs
New obs

●

0 50 100 150 200 250 300

−
35

−
30

−
25

−
20

−
15

−
10

−
5

Iteration 15

f1

f 2

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Actual NE
Simulated NE
Current obs
New obs

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●●

●

●

●

● ●

Iteration 8

x1

x 2

Figure 2: Four iterations of SUR for (P1). Left and middle: observations and simulated NEs in the objective
space. The hatched area represents the image of X by y. Right: level sets of the SUR criterion value in the
variable space (green is better).

4.2 An open loop differential game

Differential games model a huge variety of competitive interactions, in social behavior, economics, biology
among many others (predator-prey, pursuit-evasion games and so on, see Isaacs, 1965). As a toy-model,
let us consider p players who compete to drive a dynamic process to their preferred final state. Let denote
T > 0 the final time, and t ∈ [0, T] the time variable. Then we consider the following simple process, which
state z(t) ∈ R2 obeys the first order dynamics:{

ż(t) = v0 +
∑

1≤i≤p αi(t)xi(t)

z(0) = z0
(18)

The parameter αi(t) = e−θit models the lifetime range of each player’s influence on the process (θi is a
measure of player (i)’s preference for the present). The time-dependent action xi(t) ∈ R2 is the player (i)’s
strategy, which we restrict to the (finite-dimensional) space of spline functions of a given degree κ− 1, that

11

is:

xi(t) =

[∑
1≤k≤κ a

(i)
k ×Bk(t/T)∑

1≤k≤κ b
(i)
k ×Bk(t/T)

]
,

where (Bk)1≤k≤κ is the spline basis.

Now, the decision variables for player (i) is the array (a
(i)
1 , . . . , a

(i)
κ , b

(i)
1 , . . . , b

(i)
κ) (the spline coefficients),

and x ∈ Rκ×2×p. We used κ = 1 (constant splines, two decision variables per player) and κ = 2 (linear
splines, four decision variables per player).

All players have their own preferred final states ziT ∈ R2, and a limited energy to dispense in playing
with their own action. The cost yi of player (i) is then the following :

yi(xi,x−i) =
1

2
‖z(T)− ziT ‖2R2 +

1

2
‖xi‖2L2(0,T). (19)

The game considered here is an open loop differential game (the decisions do not depend on the state), and
belongs to the larger class of dynamic Nash games.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

z2

z 2

●
zT

2

●
zT

1

●
zT

3

●
zT

4

z0

initial state

z(T)
final state

Figure 3: The differential game setting: The process starts at the initial state z0 and travels during a time

T to reach the state z(T). Players targets are z
(i)
T . The final state at Nash equilibrium is zNE .

When the αi’s do not depend on i, and the points ziT are located on some -any- circle, then the Nash
solution of the game puts the final state z(T) on the center of the circle (provided T is large enough to let
the state reach this center starting from z0). In our setup, we have p = 4 players, with targets positioned on
the four corners of the [−1, 1]2 square, as illustrated by Figure 3. The state equation (18) is solved by means
of an explicit Euler numerical scheme, with T set to 4, and 40 time steps. As for problem parameters, we
chose v0 = 0, z0 = (0, 0.5) (non-central initial position) and θ = (θi) = (0.25, 0, 0.5, 0) (heterogeneous time
preferences), which makes the search of NE non-trivial. The results ”Fixed point” presented in Table 2 are
performed by means of a popular fixed-point algorithm, as described in Algorithm-2.

The initial design space is set as [−6, 6]d (with d = 8 or d = 16) and discretized as follow. For each set
of design variables belonging to a player, we first generate a 17-point LHD. For κ = 1, this means four LHD
in the spaces (x1, x2), (x3, x4) and so on. Then, we take all the combinations of strategies, ending with a
total of Card(X) = N = 174 = 83, 521 possible strategies.

In both cases, we followed Algorithm 1 with n0 = 80 or 160 initial design points and a maximum budget
of nmax = 160 or 320 evaluations (depending on the dimension). We chose Card(Xsim) = Nsim = 1296

12

Configuration Strategy Evaluations required
d = 8 (κ = 1) PE 83–95
d = 8 (κ = 1) SUR 81–88
d = 8 (κ = 1) Fixed point 3000–5000
d = 16 (κ = 2) PE 196–221
d = 16 (κ = 2) SUR 208–232
d = 16 (κ = 2) Fixed point 5000–7000

Table 2: Differential game convergence results.

simulation points and Card(Xcand) = Ncand = 256 candidates. For the number of draws to compute the
SUR criterion, we chose K = M = 20.

A fixed-point algorithm based on finite differences is also ran, and the experiment is replicated five times
with different algorithm initializations. Note that, here, the actual NE is unknown beforehand. However,
since all runs (including the fixed-point algorithm ones) converged to the same point, we assume that it is
the actual NE.

We show the results in Table 2. For the lower dimension problem (d = 8), all runs found the solution
with less than 100 evaluations (that is, 80 initial points plus 20 infills). This represents about 1% of the
total number of possible strategies. In this case, SUR appears as slightly more efficient than PE . For the
higher dimension problem (d = 16), more evaluations are needed, yet all runs converge with less than 240
evaluations. As a comparison, on both cases the fixed-point algorithm is more than 60 (resp. 20) times more
expensive.

4.3 PDE-constrained example: data completion

4.3.1 Problem description

We address here the class of problems known as data completion or data recovery problems. Let be Ω a
bounded open domain in Rd (d = 2, 3) with a sufficiently smooth boundary ∂Ω composed of two connected
disjoint components Γc and Γi, with the latter being inaccessible to boundary measurements. For details,
see Habbal & Kallel (2013) whence the present example is excerpt.

Let us focus, for illustration, on the particular case of steady state heat equation. The problem is
formulated in terms of the following elliptic Cauchy problem : ∇.(λ∇u) = 0 in Ω

u = ϕ on Γc
λ∇u.ν = Φ on Γc

(20)

The data to be recovered, or missing data, are u|Γi
and λ∇u.ν|Γi

, which are determined as soon as one
knows u in the whole Ω. The parameters λ, ϕ and Φ are given functions, ν is the unit outward normal
vector on the boundary. The Dirichlet data ϕ and the Neumann data Φ are the so-called Cauchy data,
which are known on the accessible part Γc of the boundary ∂Ω and the unknown field u is the Cauchy solu-
tion. Completion/Cauchy problems are known to be severely ill-posed (Hadamard’s), and computationally
challenging.

Let us assume that (Φ, ϕ) ∈ H− 1
2 (Γc)×H

1
2 (Γc) where H−

1
2 (Γc) resp. H

1
2 (Γc) are the Sobolev spaces of

Neumann resp. Dirichlet traces of functions in the Sobolev space H1(Ω) (see e.g. Adams & Fournier, 2003).

For given η ∈ H− 1
2 (Γi) and ζ ∈ H 1

2 (Γi), let us define u1(η) and u2(ζ) as the unique solutions in H1(Ω) of
the following elliptic boundary value problems :

(SP1)

 ∇.(λ∇u1) = 0 in Ω
u1 = ϕ on Γc

λ∇u1.ν = η on Γi

(SP2)

 ∇.(λ∇u2) = 0 in Ω
u2 = ζ on Γi

λ∇u2.ν = Φ on Γc

(21)

13

Let us define the following two costs : for any η ∈ H− 1
2 (Γi) and ζ ∈ H 1

2 (Γi),

J1(η, ζ) =
1

2
‖λ∇u1.ν − Φ‖2

H− 1
2 (Γc)

+
α

2
‖u1 − u2‖2

H
1
2 (Γi)

, (22)

J2(η, ζ) =
1

2
‖u2 − ϕ‖2L2(Γc) +

α

2
‖u1 − u2‖2

H
1
2 (Γi)

, (23)

where α is a given positive parameter (e.g. α = 1).
Let us remark that, for the problem is severely ill posed, the classical descent algorithms for the min-

imization of the cost J1 + J2 with respect to the couple of variables (η, ζ) do not converge. Besides, the
solution is extremely sensitive to small variations of φ and Φ. This originally motivated the above-described
game formulation.

The fields u1 = u1(η) and u2 = u2(ζ) are aiming at the fulfillment of a possibly antagonistic goals,
namely minimizing the Neumann gap ‖λ∇u1.ν − Φ‖

H− 1
2 (Γc)

and the Dirichlet gap ‖u2 − ϕ‖L2(Γc). This

antagonism is intimately related to Hadamard’s ill-posedness character of the Cauchy problem, and rises as
soon as one requires that u1 and u2 coincide, which is exactly what the coupling term ‖u1− u2‖L2(Γi) is for.
Thus, one may think of an iterative process which minimizes in a smart fashion the three terms, namely
Neumann-Dirichlet-Coupling terms.

From a game theory perspective, one may define two players, one associated with the strategy variable
η and cost y1 = J1 and the second with the variable ζ and cost y2 = J2, each trying to minimize its cost in
a non-cooperative fashion. The fact that each player controls only his own strategy, while there is a strong
dependence of each player’s cost on the joint strategies (η, ζ) justifies the use of the game theory framework
(and terminology), a natural setting which may be used to formulate the negotiation between these two
costs.

Theorem 1 (Habbal & Kallel, 2013) There always exists a unique Nash equilibrium (η∗, ζ∗) ∈ H− 1
2 (Γi) ×

H
1
2 (Γi), and when the Cauchy problem has a solution u, then u1(η∗) = u2(ζ∗) = u, and (η∗, ζ∗) are the

missing data, namely η∗ = λ∇u.ν|Γi
and ζ∗ = u|Γi

.

4.3.2 Noisy data and random Nash equilibrium

In a realistic situation, the fields ϕ and Φ may be “polluted” by noise. Habbal & Kallel (2013) showed
that the Nash equilibrium is stable with respect to small perturbations, and that the perturbed equilibrium
converges strongly to the unperturbed one when the noise tends to zero. However, they did not consider
directly the random Nash game: {

minη E[J1(η, ζ, ϕε,Φε)]
minζ E[J2(η, ζ, ϕε,Φε)],

(24)

where ϕε and Φε are perturbed values of ϕ and Φ.
Addressing this problem with a classical fixed-point algorithm à la Başar (1987) would require, for each

trial pair (η, ζ), repeated evaluations of J1 and J2 for many different values of ϕε and Φε, which would prove
extremely intensive computationally.

4.3.3 Implementation and experimental setup

The physical domain Ω is taken as a 2D annular structure. The accessible boundary Γc is the outer circle,
with a ray Rc = 1 and the inaccessible boundary Γi is the inner circle with a ray Ri = 0.5, see Figure 4. The
conductivity coefficient is λ = 1, the flux Φ = 0 and the heat field ϕ is built from an exact known solution
(an academic u(x, y) = exp(x) cos(y) used for validation issues).

We use FreemFem++ Hecht et al. (2010) to develop our finite element (FE) solvers. The FE computations
are performed with a P1-triangular mesh yielding 1, 088 degrees of freedom, the outer and inner boundaries
being discretized each with 60 finite element nodes. From now on, we use the same notations as above for
functions to refer to their finite element approximations (values at FE nodes).

14

As in Section 4.2, to reduce the dimensionality of the problem, the η and ζ being originally vectors of
size 60 (the number of nodes at the inner boundary), we interpolate the underlying functions with -natural-
splines with κ = 8 coefficients for each quantity, resulting with a decision space of size d = 16 (instead of the
original 120). Each coefficient is bounded between -3 and 3, allowing a large variety of spline shapes.

Since the Neumann condition involving Φ is known to be the most sensitive to noise, we perturb only
this term with an additive noise:

Φε = Φ0 + ε(ξ),

with ε(ξ) a white noise uniformly distributed between −0.25 and 0.25, thus resulting in a randomized vector
of dimension 60 (the number of FE nodes on the outer boundary). The resulting variability on J1(η, ζ,Φε)
and J2(η, ζ,Φε) strongly depends on the value of (η, ζ) and can be very large (with coefficients of variation,
yi/τi, from 5% to over 100%).

The original continuous space of the spline coefficients is discretized by generating first two 1000 × 8
LHD and taking all the combinations between the two designs, ending with space of size N = 106 potential
strategies. The Bayesian optimization strategy is run with n0 = 50 initial points (chosen by space-filling
design) and 150 infill points. Since the noise is very heteroskedastic, we use five repetitions for each trial
pair (η, ζ) in order to obtain a rough estimate of the noise variance τi, and we take the mean over those
five repetitions as our observations (fi’s). This results with a total budget of (50 + 150)× 5 = 1, 000 model
runs. Let us notice that computing a deterministic NE with fixed-point methods requires about five times
this budget on this problem. We followed Algorithm 1 with the SUR criterion, K = M = 20, selecting
Card(Xsim) = Nsim = 1, 296 simulation points and Card(Xcand) = Ncand = 256 candidates.

Figure 4: The domain is an annular structure, the outer circle is the accessible boundary while the inner
circle is the inaccessible one. The plot shows the isovalues of the solution u1 at convergence.

4.3.4 Results

The algorithm is run five times with different initial points to assess its robustness. The results on the test
problem are presented in Figure 5. In the absence of reference (ground truth to be compared to), we show
the evolution of the two objectives functions during optimization. All five runs identify very quickly (after
20 iterations, which corresponds to 350 FE evaluations) a similar estimation of the equilibrium, close to the
equilibrium of the noiseless problem (which is actually known to be (0, 0), Habbal & Kallel (2013)). However,
it fails at converging finely to a single, stable value, in particular for y2. This is not surprising and can largely
be attributed to the difficulty of the problem (with respect to the noise level and dimensionality). Hybrid
approaches (using fixed-point strategies for a final local convergence) or sophisticated sampling strategies
(increasing the number of repeated simulations gradually with the iterations) may be used to solve this issue
(although at the price of a considerably higher computational budget).

15

5 CONCLUDING COMMENTS

We have proposed here a novel approach to solve stochastic or deterministic Nash games with drastically
limited budgets of evaluations based on GP regression, taking the form of a Bayesian optimization algorithm.
Experiments on challenging synthetic problems demonstrate the potential of this approach compared to
classical, derivative-based algorithms.

On the test problems, the two acquisition functions performed similarly well. PE has the benefit of
not relying on conditional simulation paths, which makes it simpler to implement and less computationally
intensive in most cases. Still, the SUR approach has several decisive advantages; in particular, it does not
actually require the new observations to belong to the grid Xsim, such that it could be optimized continuously.
Moreover, it lays the groundwork for many extensions that may be pursued in future work.

First, SUR strategies are well-suited to allow selecting batches of points instead of only one, a key feature
in distributed computer experiments (Chevalier & Ginsbourger, 2013). Second, other games and equilibria
may be considered: the versatility of the SUR approach may allow its transposition to other frameworks. In
particular, mixed equilibria, which existence are always guaranteed on discrete problems, could be addressed
by using Ψ functions that return discrete probability measures. Generalized NEPs (Facchinei & Kanzow,
2010) could be tackled by building on existing works on Bayesian optimization with constraints (see e.g.,
Hernández-Lobato et al., 2016, and references therein).

Finally, this work could also be extended to continuous domains, for which related convergence properties
may be investigated in light of recent advances on SUR approaches (Bect et al., 2016).

A Handling conditional simulations

We detail here how we generate the draws of Y|F i to compute Ĵ(x) in practice. We employ the FOXY (fast
update of conditional simulation ensemble) algorithm proposed in Chevalier et al. (2015), as detailed below.

Let Y1, . . . ,YM be independent draws of Y (X) (each Yi ∈ RN×p), generated using the posterior Gaus-
sian distribution of Eq. (8), and F1, . . . ,FK independent (of each other and of the Yi’s) draws of Y(x) + ε

0 50 100 150

−
20

0
20

40

Iteration

y1

0 50 100 150

−
20

0
20

40

Iteration

y2

Figure 5: Convergence of the estimated Nash equilibrium for five algorithm runs. Each iteration corresponds
to five calls of the FreeFem++ model.

16

Case / Criterion Pnash SUR

Case 4.1 4s 20s
Case 4.2 (κ = 1) 13s 40s
Case 4.2 (κ = 2) 28s 82s

Case 4.3 9s 12s

Table 3: Average CPU times required for one iteration of the GP-based algorithm on the different test
problems.

from the posterior Gaussian distribution of Eq. (9). As shown in Chevalier et al. (2015), draws of Y|F i can
be obtained efficiently from Y1, . . . ,YM using:

Y(i)
j |F

(i)
k = Y(i)

j + λ(i)(x)
(
F (i)
k − Y

(i)
j (x)

)
, (25)

with 1 ≤ i ≤ p, 1 ≤ j ≤M , 1 ≤ k ≤ K and

λ(i)(x) =
k

(i)
n (x,X)

k
(i)
n (x,x)

.

Notice that λ(i)(x) may only be computed once for all Y(i)
j (x).

B C(x) formulae

For a given target TE ∈ Rp and x ∈ X:

Ctarget(x) =

p∏
i=1

φ

(
TEi − µi(x)

σi(x)

)
, (26)

with φ the probability density function of the standard Gaussian variable.
Let TL ∈ Rp and TU ∈ Rp such that ∀1 ≤ i ≤ p, TLi < TUi define a box in the objective space. Defining

Ψ = [Ψ(Y1), . . . ,Ψ(YM)] the p×M matrix of simulated NE, we use:

∀1 ≤ i ≤ p TLi = min Ψi,1...M and TUi = max Ψi,1...M .

Then, the probability to belong to the box is:

Cbox(x) =

p∏
i=1

[
Φ

(
TUi − µi(x)

σi(x)

)
− Φ

(
µi(x)− TLi

σi(x)

)]
. (27)

C Solving NEP on GP draws

We detail here a simple algorithm to extract Nash equilibria from GP draws.

D Computational time

We report here the computational time required to perform a single iteration of our algorithm for each of
the three examples (not including the time required to run the simulation itself). Experiments were run on
an Intel R©CoreTM i7-5600U CPU at 2.60GHz with 4 × 8GB of RAM.

17

Algorithm 3 Pseudo-code for Nash equilibria extraction

Require: P : number of players, Y: draw of Y(X) of size N × P , I = {1, . . . , N}
1: for 1 ≤ i ≤ N do
2: if i ∈ I then
3: for 1 ≤ j ≤ P do
4: Find K =

{
1 ≤ k ≤ N,xk−j = xi−j

}
5: Find l∗ = min

1≤l≤|K|
Y(xl)j

6: for 1 ≤ l ≤ |K| do
7: if Y(xl)j > Y(xl

∗
)j then

8: I ← I \ l
9: end if

10: end for
11: end for
12: end if
13: end for
Ensure: I

References

Adams, R. A. & Fournier, J. J. (2003). Sobolev spaces, vol. 140. Academic press.

Álvarez, M. A., Rosasco, L. & Lawrence, N. D. (2011). Kernels for vector-valued functions: A review.
Foundations and Trends in Machine Learning 4, 195–266.

Azzalini, A. & Genz, A. (2016). The R package mnormt: The multivariate normal and t distributions
(version 1.5-4).

Başar, T. (1987). Relaxation techniques and asynchronous algorithms for on-line computation of nonco-
operative equilibria. J. Econom. Dynam. Control 11, 531–549.

Bect, J., Bachoc, F. & Ginsbourger, D. (2016). A supermartingale approach to gaussian process based
sequential design of experiments. arXiv preprint arXiv:1608.01118 .

Bect, J., Ginsbourger, D., Li, L., Picheny, V. & Vazquez, E. (2012). Sequential design of computer
experiments for the estimation of a probability of failure. Statistics and Computing 22, 773–793.

Brown, N., Ganzfried, S. & Sandholm, T. (2015). Hierarchical abstraction, distributed equilibrium
computation, and post-processing, with application to a champion no-limit Texas hold’em agent. In
Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems.

Chevalier, C., Emery, X. & Ginsbourger, D. (2015). Fast update of conditional simulation ensembles.
Mathematical Geosciences 47, 771–789.

Chevalier, C. & Ginsbourger, D. (2013). Fast computation of the multi-points expected improvement
with applications in batch selection. In Learning and Intelligent Optimization. Springer, pp. 59–69.

Cressie, N. (1993). Statistics for spatial data: Wiley series in probability and statistics .

Dorsch, D., Jongen, H. T. & Shikhman, V. (2013). On structure and computation of generalized nash
equilibria. SIAM Journal on Optimization 23, 452–474.

Facchinei, F. & Kanzow, C. (2010). Generalized nash equilibrium problems. Annals of Operations
Research 175, 177–211.

18

http://arxiv.org/abs/1608.01118

Fleuret, F. & Geman, D. (1999). Graded learning for object detection. In Proceedings of the workshop
on Statistical and Computational Theories of Vision of the IEEE international conference on Computer
Vision and Pattern Recognition (CVPR/SCTV), vol. 2.

Friedman, A. (1972). Stochastic differential games. Journal of differential equations 11, 79–108.

Games, I.-L. S. C. (2016). Lenient learning in independent-learner stochastic cooperative games. Journal
of Machine Learning Research 17, 1–42.

Garivier, A., Kaufmann, E. & Koolen, W. M. (2016). Maximin action identification: A new bandit
framework for games. In 29th Annual Conference on Learning Theory.

Genz, A. & Bretz, F. (2009). Computation of Multivariate Normal and t Probabilities. Lecture Notes in
Statistics. Heidelberg: Springer-Verlag.

Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F. & Hothorn, T. (2016). mvtnorm:
Multivariate Normal and t Distributions. R package version 1.0-5.

Gibbons, R. (1992). Game Theory for Applied Economists. Princeton, NJ: Princeton University Press.

Ginsbourger, D. & Le Riche, R. (2010). Towards Gaussian process-based optimization with finite time
horizon. In mODa 9–Advances in Model-Oriented Design and Analysis. Springer, pp. 89–96.

Gonzalez, J., Osborne, M. & Lawrence, N. (2016). Glasses: Relieving the myopia of Bayesian optimi-
sation. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics.

Gramacy, R. B. & Apley, D. W. (2015). Local gaussian process approximation for large computer
experiments. Journal of Computational and Graphical Statistics 24, 561–578.

Gramacy, R. B. & Ludkovski, M. (2015). Sequential design for optimal stopping problems. SIAM
Journal on Financial Mathematics 6, 748–775.

Habbal, A. & Kallel, M. (2013). Neumann-Dirichlet Nash strategies for the solution of elliptic Cauchy
problems. SIAM J. Control Optim. 51, 4066–4083.

Habbal, A., Petersson, J. & Thellner, M. (2004). Multidisciplinary topology optimization solved as
a Nash game. Int. J. Numer. Meth. Engng 61, 949–963.

Harsanyi, J. C. (1973). Games with randomly disturbed payoffs: A new rationale for mixed-strategy
equilibrium points. International Journal of Game Theory 2, 1–23.

Heaton, M. J., Datta, A., Finley, A., Furrer, R., Guhaniyogi, R., Gerber, F., Gramacy, R. B.,
Hammerling, D., Katzfuss, M., Lindgren, F. et al. (2017). Methods for analyzing large spatial data:
A review and comparison. arXiv preprint arXiv:1710.05013 .

Hecht, F., Pironneau, O., Le Hyaric, A. & Ohtsuka, K. (2010). Freefem++ v. 2.11. User?s Manual.
University of Paris 6.

Hennig, P. & Schuler, C. J. (2012). Entropy search for information-efficient global optimization. The
Journal of Machine Learning Research 13, 1809–1837.

Hernández-Lobato, J. M., Gelbart, M. A., Adams, R. P., Hoffman, M. W. & Ghahramani,
Z. (2016). A general framework for constrained bayesian optimization using information-based search.
Journal of Machine Learning Research 17, 1–53.

Hernández-Lobato, J. M., Hoffman, M. W. & Ghahramani, Z. (2014). Predictive entropy search for
efficient global optimization of black-box functions. In Advances in neural information processing systems.

19

http://arxiv.org/abs/1710.05013

Hu, J. & Wellman, M. P. (2003). Nash q-learning for general-sum stochastic games. Journal of Machine
learning research 4, 1039–1069.

Isaacs, R. (1965). Differential games. A mathematical theory with applications to warfare and pursuit,
control and optimization. John Wiley & Sons, Inc., New York-London-Sydney.

Jala, M., Lévy-Leduc, C., Moulines, É., Conil, E. & Wiart, J. (2016). Sequential design of computer
experiments for the assessment of fetus exposure to electromagnetic fields. Technometrics 58, 30–42.

Johanson, M. & Bowling, M. H. (2009). Data biased robust counter strategies. In Proceedings of the
Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS).

Jones, D. R., Schonlau, M. & Welch, W. J. (1998). Efficient global optimization of expensive black-box
functions. Journal of Global optimization 13, 455–492.

Kanzow, C. & Steck, D. (2016). Augmented lagrangian methods for the solution of generalized nash
equilibrium problems. SIAM Journal on Optimization 26, 2034–2058.

Lanctot, M., Burch, N., Zinkevich, M., Bowling, M. & Gibson, R. G. (2012). No-regret learning
in extensive-form games with imperfect recall. In Proceedings of the 29th International Conference on
Machine Learning (ICML-12).

León, E. R., Pape, A. L., Désidéri, J.-A., Alfano, D. & Costes, M. (2014). Concurrent aerodynamic
optimization of rotor blades using a nash game method. Journal of the American Helicopter Society .

Li, S. & Başar, T. (1987). Distributed algorithms for the computation of noncooperative equilibria.
Automatica J. IFAC 23, 523–533.

Littman, M. L. & Stone, P. (2005). A polynomial-time nash equilibrium algorithm for repeated games.
Decision Support Systems 39, 55–66.

McKay, M. D., Beckman, R. J. & Conover, W. J. (1979). Comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245.

Mockus, J. (1989). Bayesian Approach to Global Optimization: Theory and Applications. Springer.

Neyman, A. & Sorin, S. (2003). Stochastic games and applications, vol. 570. Springer Science & Business
Media.

Nishimura, R., Hayashi, S. & Fukushima, M. (2009). Robust nash equilibria in n-person non-cooperative
games: Uniqueness and reformulation. Pacific Journal of Optimization 5, 237–259.

Parr, J. M. (2012). Improvement Criteria for Constraint Handling and Multiobjective Optimization. Ph.D.
thesis, University of Southampton.

Picheny, V. (2014). A stepwise uncertainty reduction approach to constrained global optimization. In
Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, vol. 33. JMLR
W&CP.

Picheny, V. & Binois, M. (2017). GPGame: Solving Complex Game problems using Gaussian processes.
R package version 0.1.3.

Plumlee, M. (2014). Fast prediction of deterministic functions using sparse grid experimental designs.
Journal of the American Statistical Association 109, 1581–1591.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

20

Rasmussen, C. E. & Williams, C. (2006). Gaussian Processes for Machine Learning. MIT Press.

Rosenmüller, J. (1971). On a generalization of the lemke–howson algorithm to noncooperative n-person
games. SIAM Journal on Applied Mathematics 21, 73–79.

Roustant, O., Ginsbourger, D. & Deville, Y. (2012). DiceKriging, DiceOptim: Two R packages
for the analysis of computer experiments by kriging-based metamodeling and optimization. Journal of
Statistical Software 51, 1–55.

Rullière, D., Durrande, N., Bachoc, F. & Chevalier, C. (2016). Nested kriging predictions for
datasets with a large number of observations. Statistics and Computing , 1–19.

Scilab Enterprises (2012). Scilab: Free and Open Source software for numerical computation. Scilab
Enterprises, Orsay, France.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & de Freitas, N. (2016). Taking the human
out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104, 148–175.

Shapley, L. S. (1953). Stochastic games. Proceedings of the national academy of sciences 39, 1095–1100.

Srinivas, N., Krause, A., Kakade, S. M. & Seeger, M. (2012). Information-theoretic regret bounds
for gaussian process optimization in the bandit setting. Information Theory, IEEE Transactions on 58,
3250–3265.

Uryas’ev, S. & Rubinstein, R. Y. (1994). On relaxation algorithms in computation of noncooperative
equilibria. IEEE Transactions on Automatic Control 39, 1263–1267.

Villemonteix, J., Vazquez, E. & Walter, E. (2009). An informational approach to the global opti-
mization of expensive-to-evaluate functions. Journal of Global Optimization 44, 509–534.

Wagner, T., Emmerich, M., Deutz, A. & Ponweiser, W. (2010). On expected-improvement criteria
for model-based multi-objective optimization. In International Conference on Parallel Problem Solving
from Nature. Springer.

Wang, G. & Shan, S. (2007). Review of metamodeling techniques in support of engineering design opti-
mization. Journal of Mechanical Design 129, 370.

Wilson, A. & Nickisch, H. (2015). Kernel interpolation for scalable structured gaussian processes (kiss-
gp). In International Conference on Machine Learning.

Žilinskas, A. & Zhigljavsky, A. (2016). Stochastic global optimization: a review on the occasion of 25
years of informatica. Informatica 27, 229–256.

21

	1 Introduction
	2 Background
	2.1 Games and equilibria
	2.1.1 Nash games
	2.1.2 Random games
	2.1.3 Working hypotheses
	2.1.4 Related work

	2.2 Bayesian optimization
	2.2.1 Gaussian process regression
	2.2.2 Sequential design

	3 Acquisition functions for NEP
	3.1 Probability of equilibrium
	3.2 Stepwise uncertainty reduction
	3.2.1 Acquisition function definition
	3.2.2 Approximation using conditional simulations
	3.2.3 Numerical aspects
	3.2.4 Stopping criterion

	4 NUMERICAL EXPERIMENTS
	4.1 A classical multi-objective problem
	4.2 An open loop differential game
	4.3 PDE-constrained example: data completion
	4.3.1 Problem description
	4.3.2 Noisy data and random Nash equilibrium
	4.3.3 Implementation and experimental setup
	4.3.4 Results

	5 CONCLUDING COMMENTS
	A Handling conditional simulations
	B C(x) formulae
	C Solving NEP on GP draws
	D Computational time

