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1 Introduction

Introduced in [13], a weighted complementarity problem (wCP) is to find a
pair of vectors (x, y) belonging to the intersection of a manifold with a cone
such that their product in a certain (Euclidean Jordan) algebra equals a given
weight vector w. When w is the zero vector, wCP becomes a complementarity
problem (CP). To elaborate, consider a Euclidean Jordan algebra (V, ◦, 〈·, ·〉)
with symmetric cone V+ [5]. Given a map F : V × V × R

l → V × R
l and a

weight vector w ∈ V+, wCP is to find (x, y) ∈ V × V such that for some u,

x ∈ V+, y ∈ V+,
x ◦ y = w,
F (x, y, u) = 0.

(1)

Deferring this general problem for a future study, in [13] and [14], Potra studies
affine wCP on the (Euclidean Jordan) algebra R

n with several examples and
results. Given matrices A,B ∈ R

(n+m)×n, C ∈ R
(n+m)×m, a weight vector

w ∈ R
n
+, and q ∈ R

n+m, the weighted mixed horizontal linear complementarity
problem considered in [13], [14] is to find (x, y, z) ∈ R

n × R
n × R

m such that

x ≥ 0, y ≥ 0,
x ∗ y = w,
Ax+By + Cz = q,

(2)

where x ∗ y denotes the Hadamard (= componentwise) product of vectors x
and y. Here, C is assumed to be of full column rank and so, with a suitable
change of variables, one could transform (see Section 2 in [14]) the above
problem to an equivalent affine wCP where C becomes vacuous and A and
B are square. It is shown in [13] that the Fisher market equilibrium problem
[3],[17] and the linear programming and weighted centering problem [1] can
be formulated in the form (2), where the triple (A,B,C) satisfies a certain
monotonicity condition. In [13], Potra presented and analyzed two interior-
point methods for solving such monotone affine wCPs. Subsequently, replacing
‘monotone’ conditions by ‘row and column sufficient’ conditions, Potra [14]
described several theoretical results and a corrector-predictor interior-point
method for its numerical solution.

We note that weighted complementarity problems were studied much ear-
lier in connection with interior point methods. For example, in [8], Kojima et
al showed that if (continuous) f : Rn → R

n is a uniform P-function, that is,
there exists some γ > 0 such that

max
1≤i≤n

(xi − yi)
(
fi(x) − fi(y)

)
≥ γ||x− y||2 (for all x, y ∈ R

n
+),

then the mapping f̂ : Rn
+ × R

n
+ → R

n
+ × R

n is a homeomorphism, where

f̂(x, y) =

[
x ∗ y

y − f(x)

]
.
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In this situation, the following weighted nonlinear complementarity problem
has a unique solution for each w ∈ R

n
+ and q ∈ R

n:

x ≥ 0, y ≥ 0,
x ∗ y = w,
y = f(x) + q.

(3)

Another work that specifically looks at the general wCP (1) is by Yoshise
[18]. In this work, under certain‘monotonicity and injectivity’ assumptions, it

is shown that the map (x, y, u) →
(
x◦y, F (x, y, u)

)
is a homeomorphism on a

certain subset of V+×V+×R
l, leading to the solvability of wCP, see Theorem

3.10 and Corollary 4.4 in [18].
Our objective in this paper is to consider the following affine wCP in the

setting of Euclidean Jordan algebras. Given two linear transformations A and
B on a Euclidean Jordan algebra V , a weight vector w ∈ V+, and q ∈ V , the
weighted horizontal linear complementarity problem wHLCP(A,B,w, q) is to
find (x, y) ∈ V × V such that

x ≥ 0, y ≥ 0,
x ◦ y = w,
Ax+By = q,

(4)

where x ≥ 0 means that x ∈ V+, etc. If w = 0, the above problem reduces to
the (symmetric cone) horizontal linear complementarity problem on V , denoted
by HLCP(A,B, q). If w = 0, A = I, and B = −M , HLCP(A,B, q) reduces
to the (symmetric cone) linear complementarity problem LCP(M, q) on V . In
particular, when V = R

n, this reduces to the standard linear complementarity
problem.

Our analysis differs from Potra’s [13], [14] in several ways. First, our setting
is that of a general Euclidean Jordan algebra, instead of Rn. Second, instead
of the ‘monotone/sufficient’ conditions, we rely on the R0 property (that is
commonly used in the LCP literature) coupled with a nonzero degree con-
dition of a certain map associated with wHLCP. Third, instead of using the
optimization methodology, we rely on the degree theoretic tools. Our analysis
also differs from that of Yoshise [18] where results were proved under certain
‘monotonicity and injectivity’ conditions.

In this paper, we establish some basic existence/uniqueness results about
wHLCPs. Generalizing the LCP concept of a degree of an R0-matrix, we
introduce the concept of degree of an R0-pair of linear transformations in the
setting of Euclidean Jordan algebras. Assuming that this degree is nonzero for
the pair {A,B}, we show that wHLCP(A,B,w, q) has a nonempty compact
solution set for every (w, q) ∈ V+×V. This conclusion, in particular, will allow
us to say that

• the map Γ : V+ × V+ → V+ × V given by Γ (x, y) =
(
x ◦ y,Ax + By

)
is

surjective and
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• when w > 0 (that is, w ∈ int(V+)), the ‘interior point system’

x > 0, y > 0, x ◦ y = w, and Ax +By = q

has a nonempty compact solution set.

The result about the interior point system appears to be new even in the
setting of standard LCPs.

We also introduce the concept of a P-pair and show that when V = R
n,

wHLCP(A,B,w, q) has a unique solution for every (w, q) ∈ R
n
+ × R

n.
The organization of our paper is as follows. In Section 2, we cover some

basic material. In Section 3, we introduce the concepts of R0 and R pairs and
define the degree of an R0-pair. Section 4 covers the main result of the paper
describing the solvability of wHLCP. While Section 5 deals with the solution
set behavior, Sections 6 and 7 cover P-pairs and address uniqueness issues.

2 Preliminaries

Throughout this paper, Rn denotes the Euclidean n-space of real column vec-
tors. We use the (same) symbol 0 to denote the zero vector in any vector space.
(V, ◦, 〈·, ·〉) denotes a Euclidean Jordan algebra of rank n with symmetric cone
V+ [5], [7]. Here, x ◦ y and 〈x, y〉, respectively, denote the Jordan product and
the inner product of elements x and y. The unit element of V is denoted by e.
For a subset S of V , the interior, closure, and boundary are denoted by int(S),
S, and ∂(S). If x ∈ V+ (x ∈ int(V+)), we write x ≥ 0 (respectively, x > 0).
For x ∈ V , x+ denotes the projection of x onto V+, and we let x− := x+ − x,
|x| := x+ + x−. These can also be described via the spectral decomposition
x =

∑n

1 xiei (where x1, x2, . . . , xn are the eigenvalues of x and {e1, e2, . . . , en}
is Jordan frame): x+ =

∑n

1 x
+
i ei, |x| =

∑n

1 |xi|ei, etc. We see that |x|2 = x2,√
x2 = |x|, 〈x+, x−〉 = 0 and x+ ◦ x− = 0. For x, y ∈ V , we define

x ⊓ y := x− (x − y)+.

When V = R
n (with the usual componentwise product and the inner product),

this reduces to min{x, y}, the componentwise minimum of (vectors) x and y
in R

n. For this reason, we may call the map (x, y) → x ⊓ y, the ‘min map’ on
V . The map

(x, y) → x+ y −
√
x2 + y2

is called the Fischer-Burmeister map. It has been extensively used in the com-
plementarity literature. Below, we state some basic properties of these two
maps.

Proposition 1 The following statements hold in V :

(i) u+ x ⊓ y = (u+ x) ⊓ (u+ y).
(ii) λ(x ⊓ y) = λx ⊓ λy for all λ ≥ 0.
(iii) The following are equivalent:
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(a) x ⊓ y = 0.
(b) x ≥ 0, y ≥ 0, and 〈x, y〉 = 0.
(c) x ≥ 0, y ≥ 0, and x ◦ y = 0.
Moreover, in each case, x and y operator commute.

(iv) When w ≥ 0, the following are equivalent:

(a) x+ y −
√
x2 + y2 + 2w = 0

(b) x ≥ 0, y ≥ 0, and x ◦ y = w.
Moreover, when w = 0 or w = e (the unit element of V ), above x and y
operator commute.

Proof. Items (i) and (ii) follow easily from the definition of ‘min map’. Item
(iii) appears in [7], Proposition 6 and Item (iv) for w = 0 or w = e is covered in

[7], Propositions 6 and 7. Now, let w ≥ 0 and suppose x+y−
√

x2 + y2 + 2w =

0. Then, x+y =
√
x2 + y2 + 2w. This shows that x+y ≥ 0 and (upon squaring

and simplifying) x◦y = w. We need only show that x ≥ 0 and y ≥ 0. Consider
the spectral expansion x = λ1e1 + λ2e2 + · · ·+ λnen, where λ1, λ2, . . . , λn are
the eigenvalues of x and {e1, e2, . . . , en} is a Jordan frame in V . Suppose, if
possible, x 6≥ 0; we may assume without loss of generality that λ1 < 0. Then,
x ◦ e1 = λ1e1 and

0 ≤ 〈x+ y, e1〉 = 〈x, e1〉+ 〈y, e1〉 = λ1||e1||2 +
1

λ1
〈y, x ◦ e1〉

= λ1||e1||2 +
1

λ1
〈x ◦ y, e1〉 = λ1||e1||2 +

1

λ1
〈w, e1〉 < 0,

as 〈w, e1〉 ≥ 0. This contradiction proves that all eigenvalues of x are nonneg-
ative; so x ≥ 0. Similarly, y ≥ 0. Thus we have (iv). ⊓⊔

Item (iv) in the above proposition will allow us to formulate a wHLCP as
a system of equations. In fact, (x, y) is a solution of wHLCP(A,B,w, q) (4) if
and only if it is a solution of the system

x+ y −
√
x2 + y2 + 2w = 0,

Ax+By − q = 0.

Our next key result will be used to show that the min and the Fischer-
Burmeister maps are ‘homotopic’. This will allow us to replace the Fischer-
Burmeister map by the ‘simpler’ min map in our main solution analysis.

Proposition 2 Let x, y ∈ V and 0 ≤ t ≤ 1. Then,

t
[
x+ y −

√
x2 + y2

]
+ (1− t)x ⊓ y = 0 ⇐⇒ x ⊓ y = 0.

Proof. In view of Items (iii) and (iv) in the previous proposition, we prove
only the ‘if’ part. We also assume without loss of generality, 0 < t < 1. Let

u := t
[
x+ y −

√
x2 + y2

]
. From Item (i) of the previous proposition,

[
(1− t)x+ u

]
⊓
[
(1− t)y + u

]
= 0.
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This implies that (1− t)x+ u ≥ 0 and (1− t)y+ u ≥ 0. Now, (1− t)x+ u ≥ 0

implies that (1− t)x+ t
[
x+ y −

√
x2 + y2

]
≥ 0, that is, x+ ty ≥ t

√
x2 + y2.

As
√
x2 + y2 ≥

√
y2 = |y| (which is a consequence of the so-called Löwner-

Heinz inequality, see [7], Proposition 8), we see that

x ≥ t|y| − ty ≥ 0.

Hence x ≥ 0. Similarly, y ≥ 0. It follows that 〈x, y〉 ≥ 0. We now show that
〈x, y〉 ≤ 0 to conclude that 〈x, y〉 = 0.
We first note that x ⊓ y = (x+ y − |x− y|)/2. Let

p :=
t

1− t

[
x+ y −

√
x2 + y2

]

so that x+y−
√

x2 + y2 = αp, where α := 1−t
t
. Then,

√
x2 + y2 = (x+y)−α p.

Squaring both sides and simplifying, we get

p ◦ (x+ y) =
1

2α

[
2 x ◦ y + α2p2

]
. (5)

As t
[
x+ y −

√
x2 + y2

]
+ (1− t)x ⊓ y = 0, we have p+ x ⊓ y = 0, that is,

2p+ (x+ y) = |x− y|.

Squaring both sides, noting |x− y|2 = (x− y)2, and simplifying, we get

4p2 + 2x ◦ y + 4p ◦ (x+ y) = −2x ◦ y.

We replace 4p ◦ (x+ y) by using (5) to get an expression of the form

β x ◦ y + γ p2 = 0,

where numbers β and γ are positive. This yields x ◦ y ≤ 0 and 〈x, y〉 =
〈x◦y, e〉 ≤ 0. Finally, since 〈x, y〉 ≥ 0, we have 〈x, y〉 = 0. Thus we have shown
that x, y ≥ 0 and 〈x, y〉 = 0. Hence, x ⊓ y = 0.

⊓⊔
We end this subsection by quoting a well-known determinantal formula.

Proposition 3 [12] For A,B,X, Y ∈ R
n×n, with X,Y commuting, the fol-

lowing formula holds:

det

[
A −B
X Y

]
= det(AY +BX).

A similar statement can be made about linear transformations.
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2.1 Degree theory

We employ degree theoretic arguments to prove our existence results. All nec-
essary results concerning degree theory are given in [4] (specifically Proposition
2.1.3); see also, [10], [11]. Here is a brief summary. Suppose Ω is a bounded
open set in R

n, g : Ω → R
n is continuous and p 6∈ g(∂Ω), where Ω and ∂Ω

denote, respectively, the closure and boundary of Ω. Then the degree of g
over Ω with respect to p is defined; it is an integer and will be denoted by
deg(g,Ω, p). When this degree is nonzero, the equation g(x) = p has a solution
in Ω. Suppose g(x) = p has a unique solution, say, x∗ in Ω. Then deg(g,Ω′, p),
which equals deg(g,Ω′, g(x∗)), is constant over all bounded open sets Ω′ con-
taining x∗ and contained in Ω. This common degree is called the (topological)
index of g at x∗; it will be denoted by ind(g, x∗). In particular, if g : Rn → R

n

is a continuous map such that g(x) = 0 ⇔ x = 0, then for any bounded open
set containing 0, we have

ind(g, 0) = deg(g,Ω, 0);

moreover, when g is the identity map, ind(g, 0) = 1.
LetH(x, t) : Rn×[0, 1] → R

n be continuous (in which case, we say thatH is
a homotopy). Suppose that for some bounded open set Ω in R

n, 0 6∈ H(∂Ω, t)
for all t ∈ [0, 1]. Then, the homotopy invariance property of degree says that

deg
(
H(·, t), Ω, 0

)
is independent of t. In particular, if the zero set

{
x : H(x, t) = 0 for some t ∈ [0, 1]

}

is bounded, then for any bounded open set Ω in R
n containing this zero set,

we have

deg
(
H(·, 1), Ω, 0

)
= deg

(
H(·, 0), Ω, 0

)
.

Note: All degree theory concepts and results are also valid over any finite
dimensional real Hilbert space (such as V or V × V ) instead of Rn.

2.2 A normalization argument

To show that the zero set of a map or a system of equations is bounded,
we frequently employ the so-called normalization argument. Here, a certain
sequence of vectors (with their norms going to infinity) is normalized to yield
a unit vector that violates a given criteria. We illustrate this in the following
result, which will be used later.

Proposition 4 Let A and B two linear transformations on V and p ∈ V .
Suppose that

[
x ⊓ y = 0, Ax+By = 0

]
⇒ (x, y) = (0, 0).
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Then, the set

{
(x, y) : x ⊓ y = 0, Ax +By − tp = 0 for some t ∈ [0, 1]

}

is bounded.

Proof. Suppose the above set is unbounded. Let zk := (xk, yk), tk ∈ [0, 1] with
||zk|| → ∞, and xk ⊓ yk = 0, and Axk +Byk − tkp = 0 for all k = 1, 2, . . .. We
divide each of the above equations by ||zk|| (so as to create normalized vectors
zk

||zk||
). We let k → ∞ and suppose without loss of generality, x0 := lim xk

||zk||

and y0 := lim yk

||zk||
. Then, x0 ⊓ y0 = 0, and Ax0 + By0 = 0. However, from

||zk||2 = ||xk||2 + ||yk||2, we get ||x0||2 + ||y0||2 = 1, which contradicts our
assumption. The stated conclusion follows. ⊓⊔

3 The degree of an R0-pair

In the setting of V = R
n, the concepts of LCP-degree of a matrix and HLCP-

degree of a pair of matrices are useful in describing the existence and stability
of solutions, see [6] and [15]. In what follows, we extend these to Euclidean
Jordan algebras. Consider linear transformations M , A, and B on (a general
algebra) V and recall that

HLCP(A,B, q) := wHLCP(A,B, 0, q) and LCP(M, q) := HLCP(I,−M, q).

In view of Item (iii) in Proposition 1, HLCP(A,B, q) is equivalent to finding
(x, y) ∈ V × V such that

x ⊓ y = 0,
Ax+By = q,

(6)

and LCP(M, q) is equivalent to finding an x ∈ V such that

x ⊓ (Mx+ q) = 0.

We say that M has the R0 property on V if zero is the only solution of
LCP(M, 0), or equivalently,

x ⊓Mx = 0 ⇔ x = 0.

When this condition holds, for any bounded open set Ω in V that contains
zero, deg(θ,Ω, 0) is well defined, where

θ(x) := x ⊓Mx.

This common value – which is ind(θ, 0)– defines the LCP-degree of M, denoted
by deg(M). We now extend this concept to a pair of transformations.
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Definition 1 The pair {A,B} is said to be an R0-pair if zero is the only
solution of HLCP(A,B, 0). This means that

Θ(z) = 0 ⇔ z = 0,

where

Θ(z) :=

[
x ⊓ y

Ax+By

]

with z = (x, y). When this condition holds, ind(Θ, 0) is well defined. (Note that
this equals deg(Θ,Ω, 0) for any bounded open set Ω in V × V that contains
zero.) We define the HLCP-degree of the pair {A,B} by

deg(A,B) := ind(Θ, 0).

Our first result extends Corollary 5.2.6 in [15] from R
n to a general Eu-

clidean Jordan algebra.

Proposition 5 Let M be a linear transformation on V with the R0 property.
Then {I,−M} is an R0-pair and

deg(I,−M) = deg(M).

Proof. It is easy to see that {I,−M} is an R0-pair. Now define the map

Θ(z, t) :=

[
y ⊓ [tx+ (1 − t)My]

x− tMy

]
,

where z = (x, y) and t ∈ [0, 1]. Then,

Θ(z, 0) =

[
θ(y)
x

]
and Θ(z, 1) = Θ(z),

where θ(y) = y ⊓ My. Moreover, since M has the R0 property (so that
y ⊓ My = 0 ⇒ y = 0), it is easy to verify that Θ(z, t) = (0, 0) ∈ V × V if and
only if z = 0. This means that the zero set of Θ(z, t) (as t varies over [0, 1]) is
just {(0, 0)}. Thus, for arbitrary bounded open sets Ω1 and Ω2 both containing
zero in V , letting Ω = Ω1×Ω2, we have, by the homotopy invariance of degree
and the Cartesian product formula (see [4], Proposition 2.1.3(h)),

deg(I,−M) = deg
(
Θ(·, 1), Ω, 0

)
= deg

(
Θ(·, 0), Ω, 0

)

= deg
(
θ,Ω1, 0

)
deg

(
I,Ω2, 0

)
= ind(θ, 0) = deg(M),

where I denotes the identity transformation. ⊓⊔

In the standard LCP theory, R-matrices [2] form an important subclass of
matrices for which LCP-degree is nonzero. (We note that there are other ma-
trices, such as N-matrices of first category satisfying this property [6].) Recall
that M is an R-matrix (in the standard LCP setting) if there is some d > 0 in
R

n such that zero is the only vector that solves the problems LCP(M, 0) and
LCP(M,d). We now consider a generalization.
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Definition 2 Let A and B be two linear transformations on V . We say that
{A,B} is an R-pair if it is an R0-pair and there exists p ∈ V such that

(a) HLCP(A,B, p) has a unique solution, say, (x, y),
(b) x+ y > 0, and
(c) The derivative of G at (x, y) is nonsingular, where

G(z) :=

[
x ⊓ y

Ax+By − p

]

with z = (x, y).

Note that condition (c) above is equivalent to: The derivative of Θ (as
given in the Definition of R0-pair) at (x, y) is nonsingular.

We elaborate on the R-pair property and give some examples. Suppose
{A,B} is an R-pair. As x ⊓ y = 0 and x + y > 0, x and y operator commute
(see Proposition 1) and so, with respect to some Jordan frame {e1, e2, . . . , en},
we can write

x =
k∑

1

xiei and y =
n∑

k+1

yjej ,

where 1 ≤ k ≤ n and xi, yj > 0 for all i and j. Let z := (x, y),

α := {1, 2, . . . , k} and β = {k + 1, . . . , n}.

(Note that one of these sets may be empty.) Thus, the element

x− y =
k∑

1

xiei −
n∑

k+1

yiei

is invertible (which means that all the eigenvalues are nonzero). In view of
Lemma 19 in [7], the map G defined in condition (c) is Fréchet differentiable.
Let

Φ(x, y) := x ⊓ y = x−ΠV+
(x− y),

where ΠV+
denotes the projection operator onto V+. Then, the partial deriva-

tive of Φ with respect to x at z = (x, y) is given by

Φ′
x(z) = Ix −Π ′

V+
(x − y) ◦ Ix,

where Ix denotes the identity transformation and ‘◦′ denotes the composition.
Now, we use the formula for the derivative of ΠV+

given in Lemma 19 of [7].
(Although this formula is stated in the setting of a simple Euclidean Jordan
algebra, by writing a general Euclidean Jordan algebra as a product of simple
ones, we can show that that the formula is valid in any Euclidean Jordan
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algebra.) Then, for any h ∈ V with Peirce decomposition h =
∑n

1 hiei +∑
i<j hij , we have

Φ′
x(z)h = h−

( k∑

1

hiei +
∑

i,j∈α; i<j

hij +
∑

i∈α,j∈β

xi

xi + yj
hij

)
.

Simplification leads to

Φ′
x(z)h =

n∑

k+1

hiei +
∑

i,j∈β; i<j

hij +
∑

i∈α,j∈β

yj
xi + yj

hij .

Similarly, using Φ(x, y) := y⊓x = y−ΠV+
(y−x), we see that the y-derivative

of Φ(x, y) at (x, y) is given by

Φ′
y(z)h =

k∑

1

hiei +
∑

i,j∈α; i<j

hij +
∑

i∈α,j∈β

xi

xi + yj
hij .

Thus, the nonsingularity of G at (x, y) could be expressed by the implication
[
Φ′
x(z)u + Φ′

y(z)v = 0 and Au+Bv = 0
]
⇒ (u, v) = (0, 0). (7)

Upon simplification, the above condition could be written as

ui = 0 (i ∈ β), vj = 0 (j ∈ α)
uij = 0 (i, j ∈ β; i < j), vij = 0 (i, j ∈ α; i < j)

uij = − xi

yj
vij (i ∈ α, j ∈ β)

Au +Bv = 0





⇒ (u, v) = (0, 0). (8)

We now show that in some standard settings, condition (c) in Definition 2
is a consequence of conditions (a) and (b).

Example 1 Let V = R
n. Then the standard coordinate vectors form the only

Jordan frame and for any element h ∈ R
n, hij = 0 for all i < j. Thus, in order

to verify the implication (8), we let

u = (u1, u2, . . . , uk, 0, 0, . . . , 0)
T and v = (0, 0, . . . , 0, vk+1, . . . , vn)

T

and suppose that (u, v) 6= (0, 0). As x = (x1, x2, . . . , xk, 0, 0, . . . , 0)
T and

y = (0, 0, . . . , 0, yk+1, . . . yn)
T , where xi and yj are positive, we see that for

all small ε > 0, the pair (x+ ε u, y+ ε v) is a solution of HLCP(A,B, p). This
contradicts the uniqueness assumption (a). Hence condition (c) is superfluous
in this setting.

Example 2 Let M : V → V be a linear transformation that has the R
property with respect to V+. This means that for some d > 0 in V , zero
is the only solution of the linear complementarity problems LCP(M, 0) and
LCP(M,d). We claim that {I,−M} is an R-pair. It is easy to see that the
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problem HLCP(I,−M, 0) has (0, 0) as the only solution which means that
{I,−M} is an R0-pair. Also, HLCP(I,−M,d) has (d, 0) as the only solution.
This means that with (x, y) = (d, 0), conditions (a) and (b) in the above
definition are satisfied. We show that condition (c) holds. If z = (x, y) is close
to (d, 0), then x−y is close to d−0; hence for all such (x, y), ΠV+

(x−y) = x−y
and x ⊓ y = x− (x − y) = y. Thus, when z is close to (d, 0), we have

G(z) :=

[
y

Ix−My − p

]
and G′(z) :=

[
0 I
I −M

]
.

In view of Proposition 3, G′(z) is nonsingular. Thus, we have verified condition
(c). Hence {I,−M} is an R-pair.

Proposition 6 Suppose {A,B} is an R-pair. Then, deg(A,B) is nonzero.

Proof. The pair {A,B} satisfies conditions in Definition 2. Let

G(z, t) :=

[
x ⊓ y

Ax +By − tp

]
,

where z = (x, y) and t ∈ [0, 1]. Then,

G(z, 1) =

[
x ⊓ y

Ax+By − p

]
and G(z, 0) =

[
x ⊓ y

Ax+By

]
.

As {A,B} is an R0-pair, by a normalization argument (see Proposition 4), we
see that the zero sets of G(z, t) as t varies are uniformly bounded. Suppose
Ω is a bounded open set in V × V that contains all these zero sets. Note
that G(z, 1) vanishes only at (x, y) ∈ Ω and its derivative at this point is
nonsingular. Thus,

deg(A,B) = deg
(
G(·, 0), Ω, 0

)
= deg

(
G(·, 1), Ω, 0

)
= sgn detG′(z, 1) 6= 0.

This proves that deg(A,B) is nonzero. ⊓⊔

4 The main existence result

We now discuss the solvability of wHLCP(A,B,w, q). We recall that (x, y) is
a solution of wHLCP(A,B,w, q) if and only if it is a solution of the system

x+ y −
√
x2 + y2 + 2w = 0,

Ax+By − q = 0.

We show that this system has a solution under a nonzero degree condition.

Theorem 1 Let {A,B} be an R0-pair with deg(A,B) nonzero. Then for any
(w, q) ∈ V+ × V , wHLCP(A,B, , w, q) has a nonempty compact solution set.
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Proof We fix (w, q) ∈ V+ × V . With z = (x, y) ∈ V × V and t ∈ [0, 1], we
define the following maps:

F (z, t) :=

[
x+ y −

√
x2 + y2 + 2tw

Ax+By − tq

]
,

H(z, t) :=

[
t
[
x+ y −

√
x2 + y2

]
+ (1− t)x ⊓ y

Ax+ By

]
.

We show below that there is some bounded open set Ω in V ×V which contains
all the zeros (in z) of F and H (as t varies over [0, 1]). Then, over Ω, F is a
homotopy connecting F (z, 1) and F (z, 0); H is a homotopy connecting H(z, 1)(
= F (z, 0)

)
and H(z, 0). Using the homotopy invariance property of degree,

we see that

deg
(
F (·, 1), Ω, 0

)
= deg

(
H(·, 0), Ω, 0

)
6= 0.

This shows that the equation F (z, 1) = 0 has a nonempty bounded solution
set.

To justify these, we proceed as follows.
Let

Z := {z : F (z, t) = 0 for some t ∈ [0, 1]}.
We show by a normalization argument that Z is bounded. Suppose, if possible,
Z is unbounded. Let zk := (xk, yk), tk ∈ [0, 1] with ||zk|| → ∞, and F (zk, tk) =
0 for all k = 1, 2, . . .. Let k → ∞ and without loss of generality, x0 := lim xk

||zk||

and y0 := lim yk

||zk||
. We note that ||x0||2+ ||y0||2 = 1. Dividing each component

of F (zk, tk) by ||zk|| and letting k → ∞, we get

x0 + y0 −
√
x2
0 + y20 = 0,

Ax0 +By0 = 0.

By Proposition 1, (x0, y0) becomes a nonzero solution of HLCP(A,B, 0) con-
tradicting the R0 property of {A,B}. Hence, Z is bounded.
Next, in view of Proposition 2 and the R0 property of {A,B},

{z : H(z, t) = 0 for some t ∈ [0, 1]} = {(0, 0)}.

Let Ω be a bounded open set in V × V that contains the zero sets of F and
H . Then, by the homotopy invariance property of the degree,

deg
(
F (·, 1), Ω, 0

)
= deg

(
F (·, 0), Ω, 0

)
= deg

(
H(·, 1), Ω, 0

)
= deg

(
H(·, 0), Ω, 0

)

and

deg
(
H(·, 0), Ω, 0

)
= deg

(
Θ,Ω, 0

)
= ind(Θ, 0) = deg(A,B).
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As the last quantity, by assumption, is nonzero, we conclude that

deg
(
F (·, 1), Ω, 0

)
6= 0.

This means that the equation F (z, 1) = 0 has a zero in Ω proving the ex-
istence of a solution of wHLCP(A,B,w, q). As all zeros of F (·, 1) are in the
bounded set Ω and the solution set of wHLCP(A,B,w, q) is clearly closed,
we see nonemptyness and compactness of this solution set. This completes the
proof. ⊓⊔

Motivated by interior point methods, we consider the case w > 0. First,
we make a simple observation:

[
x ≥ 0, y ≥ 0, and x ◦ y > 0

]
=⇒ x > 0 and y > 0.

This follows from Item (iv), Lemma 2.6 in [18]. Here is a short/different proof.
Let x ≥ 0, y ≥ 0 and x ◦ y = w > 0. Suppose x 6> 0 so that zero is an
eigenvalue of x. This means that there is a primitive idempotent e1 (which
belongs to the Jordan frame that appears in the spectral decomposition of x)
such that x ◦ e1 = 0. But then, 0 < 〈w, e1〉 = 〈x ◦ y, e1〉 = 〈y, x ◦ e1〉 = 0, is a
contradiction. Hence, x > 0 and, similarly, y > 0.

Corollary 1 Let {A,B} be an R0-pair with deg(A,B) nonzero. Suppose w >
0. Then for any q ∈ V , the following ‘interior point system’ has a nonempty
compact solution set:

x > 0, y > 0, x ◦ y = w, and Ax +By = q.

We now specialize the above two results for a single linear transformation.

Corollary 2 Let M be a linear transformation on V . Suppose that M has
the R0 property and deg(M) is nonzero. Then, for all (w, q) ∈ V+ × V , the
weighted linear complementarity problem

x ≥ 0, y ≥ 0, x ◦ y = w, and y = Mx+ q

has a nonempty compact solution set. In particular, when w > 0, for any
q ∈ V , the ‘interior point system’

x > 0, y > 0, x ◦ y = w, and y = Mx+ q

has a nonempty compact solution set.

Remarks. In the standard LCP literature, the solvability and uniqueness
issues of interior point systems are usually addressed for special types of P0-
matrices (e.g., P∗-matrices), see [9], Lemma 4.3 and Theorem 4.4. In this
regard, the above result appears to be new even in the case of V = R

n, as
it holds for numerous types of non P0-matrices such as strictly copositive
matrices, R-matrices, and N-matrices of first category [2].
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5 The solution set behavior

Fixing the pair {A,B}, we let SOL(w, q) denote the solution set of
wHLCP(A,B,w, q). The following result describes the behavior of the map
(w, q) 7→ SOL(w, q).

Theorem 2 Suppose {A,B} is an R0-pair with deg(A,B) nonzero. Then, the
following statements hold:

(a) The solution map (w, q) 7→ SOL(w, q) from V+ × V to V+ × V+ is upper
semicontinuous.

(b) Let wk ≥ 0 for all k = 1, 2, . . . , and wk → w. Suppose (xk, yk) ∈ SOL(wk, q)
for all k. Then, the sequence {(xk, yk)} is bounded and any accumulation
point of this sequence solves wHLCP(A,B,w, q).

(c) Let w > 0, tk ↓ 0, and (xk, yk) ∈ SOL(tk w, q) for all k. Then, xk > 0 and
yk > 0 for all k, the sequence {(xk, yk)} is bounded, and any accumulation
point of this sequence solves HLCP(A,B, q).

Proof. (a) We fix (w∗, q∗) ∈ V+ ×V and let Ω be any open set in V ×V con-
taining SOL(w∗, q∗). We show that for all (w, q) near (w∗, q∗), SOL(w, q) is
contained in Ω. Assuming the contrary, suppose there is a sequence {(wk, qk)}
converging to (w∗, q∗) such that some solution (xk, yk) in SOL(wk, qk) belongs
to Ωc (the complement of Ω). The sequence {(xk, yk)} has to be bounded;
else, a normalization argument (such as the one used in the previous theorem)
produces a nonzero solution of HLCP(A,B, 0) contradicting the R0 property
of the pair {A,B}. Now, a subsequential limit of the sequence belongs to
SOL(w∗, q∗) and at the same time is in Ωc (as this set is closed). This contra-
diction proves the upper semicontinuity property of the solution set.
(b) Under the stated assumptions, (wk, q) → (w, q). A normalization argument
shows that the sequence {(xk, yk)} is bounded. Any subsequential limit of this
sequence, clearly, belongs to SOL(w, q), that is, solves wHLCP(A,B,w, q).
(c) That xk > 0 and yk > 0 for all k follows from Corollary 1. For the remain-
ing statements, we specialize (b) with wk := tkw.
⊓⊔

6 P-pairs over V

A linear transformation M on V is said to be a P-transformation [7] if

x and Mx operator commute
x ◦Mx ≤ 0

}
⇒ x = 0.

P-transformations are generalizations of P-matrices. An important example of
P-transformations appears in dynamical systems: the Lyapunov transforma-
tion X 7→ AX+XAT on the Euclidean Jordan algebra of n×n real symmetric
matrices is a P-transformation if and only if the (real square) A is positive
stable. See [7] for properties of P-transformations and further examples. We
now extend this notion to a pair of transformations.
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Definition 3 A pair of linear transformations {A,B} is said to be a P-pair
over V if

x and y operator commute
x ◦ y ≤ 0

Ax+By = 0



 ⇒ (x, y) = (0, 0).

Below, we collect some properties of such pairs.

Proposition 7 Suppose {A,B} is a P-pair. Then, the following statements
hold.

(a) A and B are invertible.
(b) −B−1A and −A−1B are P-transformations.
(c) {A,B} is an R-pair.
(d) For all (w, q) ∈ V+ × V , wHLCP(A,B,w, q) has a nonempty compact so-

lution set.

Proof. (a) If Ax = 0 for some x, then

[
x and 0 operator commute, x ◦ 0 = 0, Ax+B0 = 0

]
⇒ (x, 0) = (0, 0).

This shows that A is invertible. Similarly B is invertible.
(b) Let M := −B−1A. If x and Mx operator commute and x ◦Mx ≤ 0, then,
with y := Mx = −B−1Ax, we see that: x and y operator commute, x ◦ y ≤ 0,
and Ax + By = 0. Hence (x, y) = (0, 0) and so x = 0. Thus, −B−1A is a
P-transformation. Similarly, −A−1B is also a P-transformation.
(c) We now show that {A,B} is an R-pair. First, {A,B} is an R0-pair: When
x ⊓ y = 0 and Ax + By = 0, by Proposition 2, x and y operator commute,
x ◦ y = 0, and Ax+By = 0; so, (x, y) = (0, 0) by the definition of a P-pair.

Now let p := Be, where e denotes the unit element in V . Clearly, (0, e)
is a solution of HLCP(A,B, p). We show that this is the only solution. Let
(x, y) be any solution of HLCP(A,B, p) so that x and y operator commute,
x, y ≥ 0, and x ◦ y = 0. This implies that x and y − e operator commute
and x ◦ (y − e) = −x ≤ 0. Since we also have Ax + B(y − e) = 0, by the
definition of P-pair, (x, y − e) = (0, 0). This implies that (x, y) = (0, e). Since
0+ e = e > 0, we see that conditions (a) and (b) in Definition 2 hold. We now
verify condition (c) in that definition. If (x, y) is close to (0, e), then x − y is
close to −e and so ΠV+

(x− y) = 0. In this case, x ⊓ y = x−ΠV+
(x− y) = x.

Hence, for all z = (x, y) near z := (0, e),

G(z) :=

[
x

Ax+By −Be

]
and G′(z) :=

[
I 0
A B

]
.

In view of Proposition 3 and the invertibility of B, G′(z) is nonsingular.
(d) This follows from Proposition 6 and Theorem 1. ⊓⊔

Example 3 Let V = Sn, the Euclidean Jordan algebra of all n× n real sym-
metric matrices with 〈X,Y 〉 := trace(XY ) and X ◦ Y := XY + Y X . Here,
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Sn
+ is the ‘semidefinite cone’ consisting of positive semidefinite matrices in Sn.

We write X � 0 and X ≻ 0, respectively, to denote elements of V+ and its
interior. Let A be an n× n real matrix which is positive stable (which means
that every eigenvalue of A has positive real part). Then, the Lyapunov trans-
formation X 7→ AX + XAT is a P-transformation on Sn [7]. Consequently,
for any W ≻ 0, the following system has a solution:

X ≻ 0, Y ≻ 0, X ◦ Y = W, and Y = AX +XAT .

While the existence of an X ≻ 0 with AX +XAT ≻ 0 is already covered in
the Lyapunov theory of dynamical systems, what is new here is that such an
X can be found satisfying an additional condition X ◦ (AX + XAT ) = W
where W ≻ 0 is arbitrary! One can make statements similar to the above for
the Stein transformation X 7→ X − BXBT , where B is an n × n real Schur
stable matrix (which means that every eigenvalue of B has absolute value less
than one) [7].

7 P-pairs over R
n

We now consider V = R
n and prove a uniqueness result.

Theorem 3 Let V = R
n. Then, the following statements are equivalent:

(a) {A,B} is a P-pair.
(b) wHLCP(A,B,w, q) has a unique solution for every (w, q) ∈ R

n
+ × R

n.
(c) HLCP(A,B, q) has a unique solution for every q ∈ R

n.

Proof (a) ⇒ (b): The solvability of wHLCP(A,B,w, q) has been addressed
in the previous result. We now prove uniqueness. Suppose that (x1, y1) and
(x2, y2) are any two solutions of wHLCP(A,B,w, q), i.e.,





x1 ≥ 0, y1 ≥ 0
x1 ∗ y1 = w
Ax1 +By1 = q

and





x2 ≥ 0, y2 ≥ 0
x2 ∗ y2 = w
Ax2 +By2 = q.

As w ≥ 0, let

α := {i : wi > 0} and β := {i : wi = 0}.

Then,

(x1 ∗ y1)i = (x2 ∗ y2)i = wi > 0, ∀ i ∈ α,
(x1 ∗ y1)i = (x2 ∗ y2)i = wi = 0, ∀ i ∈ β.
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Now considering the componentwise product (only) over the α indices, we have

(x1 − x2) ∗ (y1 − y2)
= x1 ∗ y1 + x2 ∗ y2 − x1 ∗ y2 − x2 ∗ y1
= x1 ∗ y1 + x1 ∗ y1 − x1 ∗

(
x1 ∗ y1
x2

)
− x2 ∗ y1

= (x1 − x2) ∗ y1 +
(
x1 ∗ y1
x2

)
∗ (x2 − x1)

= (x2 − x1) ∗
(
x1 ∗ y1
x2

− y1

)

= − y1
x2

(x1 − x2)
2

≤ 0.

And over the β indices,

(x1 − x2) ∗ (y1 − y2)
= x1 ∗ y1 + x2 ∗ y2 − x1 ∗ y2 − x2 ∗ y1
= 0 + 0− x1 ∗ y2 − x2 ∗ y1
≤ 0.

Therefore, we have

(x1 − x2) ∗ (y1 − y2) ≤ 0,
A(x1 − x2) +B(y1 − y2) = 0.

As {A,B} is a P-pair and vectors in R
n always operator commute, we see

that x1 = x2 and y1 = y2. Thus we have uniqueness of solution in any
wHLCP(A,B,w, q).
(b) ⇒ (c) : This is obvious by taking w = 0.
(c) ⇒ (a) : Suppose (x, y) 6= (0, 0) with x ◦ y ≤ 0 and Ax + By = 0. For
q := Ax+ + By+ = Ax− + By−, we see that (x+, y+) and (x−, y−) are two
distinct solutions of HLCP(A,B, q). This contradicts condition (c). ⊓⊔

We remark that such a uniqueness result may not prevail over general Eu-
clidean Jordan algebras even for P-transformations, see the remarks following
Theorem 14 in [7].
The above result, especially Item (c), allows us to connect P-pairs to the so-
called W property for a pair of matrices, see [16].

Concluding Remarks. In this paper, we have presented some existence and
uniqueness results for weighted horizontal linear complementarity problems
over Euclidean Jordan algebras. These are established for R0-pairs of linear
transformations satisfying a (nonzero) degree condition. The novelty here is
the use of ‘weighted’ Fischer-Burmeister map and degree theory techniques.
We hope to consider applications, algorithms, and non R0-pairs in a future
study.
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