Skip to main content
Log in

The least squares solution of a class of generalized Sylvester-transpose matrix equations with the norm inequality constraint

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we present an iterative method for finding the least squares solution of a class of generalized Sylvester-transpose matrix equations with the norm inequality constraint. We prove that if the constrained matrix equations are consistent, the solution can be obtained within finite iterative steps in the absence of round-off errors; if constrained matrix equations are inconsistent, the least squares solution can be obtained within finite iterative steps in the absence of round-off errors. Finally, numerical examples are provided to illustrate the efficiency of the proposed method and testify the conclusions suggested in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beik, F.P.A., Salkuyeh, D.K.: The coupled Sylvester-transpose matrix equations over generalized centro-symmetric matrices. Int. J. Comput. Math. 90, 1546–1566 (2013)

    Article  MATH  Google Scholar 

  2. Bjerhammer, A.: Rectangular reciprocal matrices with special reference to geodetic calculations. Kung. Tekn. Hogsk. Handl. Stockh. 45, 1–86 (1951)

    Google Scholar 

  3. Chen, J., Patton, R., Zhang, H.: Design unknown input observers and robust fault detection filter. Int. J. Control 63, 85–105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dai, H.: On the symmetric solutions of linear matrix equations. Linear Algebra Appl. 131, 1–7 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai, L.: Singular Control Systems. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  6. Dehghan, M., Hajarian, M.: An iterative algorithm for the reflexive solutions of the generalized coupled Sylvester matrix equations and its optimal approximation. Appl. Math. Comput. 202, 571–588 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Dehghan, M., Hajarian, M.: The general coupled matrix equations over generalized bisymmetric matrices. Linear Algebra Appl. 432, 1531–1552 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dehghan, M., Hajarian, M.: The generalized Sylvester matrix equations over the generalized bisymmetric and skew-symmetric matrices. Int. J. Syst. Sci. 43, 1580–1590 (2012)

    Article  MATH  Google Scholar 

  9. Dehghan, M., Hajarian, M.: On the generalized bisymmetric and skew-symmetric solutions of the system of generalized Sylvester matrix equations. Linear Multilinear Algebra 59, 1281–1309 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dehghan, M., Hajarian, M.: Construction of an iterative method for solving generalized coupled Sylvester matrix equations. Trans. Inst. Meas. Control 35, 961–970 (2013)

    Article  Google Scholar 

  11. Dehghan, M., Hajarian, M.: An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices. Appl. Math. Modell. 34, 639–654 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, A.J., Chen, G.L.: On the Hermitian positive definite solutions of nonlinear matrix equation \(X^s+\sum \limits _{i=1}^{m}A_i^*X^{-t_i}A_i=Q\). Appl. Math. Comput. 243, 950–959 (2014)

    MathSciNet  Google Scholar 

  13. Liu, A.J., Chen, G.L., Zhang, X.Y.: A new method for the bisymmetric minimum norm solution of the consistent matrix equations \(A_1XB_1=C_1, A_2XB_2=C_2\), J. Appl. Math., Vol. 2013, Article ID 125687, 6 pages

  14. Dehghan, M., Hajarian, M.: The generalized centro-symmetric and least squares generalized centro-symmetric solutions of the matrix equation \(AYB + CY^TD = E\). Math. Methods Appl. Sci. 34, 1562–1579 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding, F., Chen, T.: Iterative least squares solutions of coupled Sylvester matrix equations. Systems Control Lett. 54, 95–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ding, F., Zhang, H.M.: Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems. IET Control Theory Appl. 8, 1588–1595 (2014)

    Article  MathSciNet  Google Scholar 

  17. Duan, G.R., Liu, G.P.: Complete parametric approach for eigenstrutture assignment in a class of second order linear systems. Automatica 38, 725–729 (2002)

    Article  MATH  Google Scholar 

  18. Duan, G.R.: The solution to the matrix equation \(AV + BW = EVJ + R\). Appl. Math. Lett. 17, 1197–1202 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eric Chu, K.W.: Symmetric solutions of linear matrix equations by matrix decompositions. Linear Algebra Appl. 119, 35–50 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fletcher, L.R., Kuatsky, J., Nichols, N.K.: Eigenstructure assignment in descriptor systems. IEEE Trans. Autom. Control 31, 1138–1141 (1986)

    Article  MATH  Google Scholar 

  21. Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—a survey and some new results. Automatica 26, 459–474 (1990)

    Article  MATH  Google Scholar 

  22. Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Solving the trust-region subproblem using the Lanczos method. SIAM J. Optim. 9, 504–525 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hajarian, M.: Solving the general Sylvester discrete-time periodic matrix equations via the gradient based iterative method. Appl. Math. Lett. 52, 87–95 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hajarian, M.: Gradient based iterative algorithm to solve general coupled discrete-time periodic matrix equations over generalized reflexive matrices. Math. Model. Anal. 21, 533–549 (2016)

    Article  MathSciNet  Google Scholar 

  25. Hajarian, M.: Extending the CGLS algorithm for least squares solutions of the generalized Sylvester-transpose matrix equations. J. Frankl. I 353, 1168–1185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hajarian, M.: New finite algorithm for solving the generalized nonhomogeneous Yakubovich-transpose matrix equation. Asian J. Control 19, 164–172 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hajarian, M.: Generalized conjugate direction algorithm for solving the general coupled matrix equations over symmetric matrices. Numer. Algorithms 73, 591–609 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hajarian, M.: Least squares solution of the linear operator equation. J. Optim. Theory Appl. 170, 205–219 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hajarian, M.: Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations. J. Frankl. I 350, 3328–3341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hajarian, M.: Matrix form of the CGS method for solving general coupled matrix equations. Appl. Math. Lett. 34, 37–42 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hajarian, M.: Developing BiCG and BiCR methods to solve generalized Sylvester-transpose matrix equations. Int. J. Autom. Comput. 11, 25–29 (2014)

    Article  Google Scholar 

  32. Hajarian, M.: Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations. Appl. Math. Modell. 39, 6073–6084 (2015)

    Article  MathSciNet  Google Scholar 

  33. Hajarian, M.: Matrix GPBiCG algorithms for solving the general coupled matrix equations. IET Control Theory Appl. 9, 74–81 (2015)

    Article  MathSciNet  Google Scholar 

  34. Hajarian, M.: The generalized QMRCGSTAB algorithm for solving Sylvester-transpose matrix equations. Appl. Math. Lett. 26, 1013–1017 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Henk Don, F.J.: On the symmetric solution of a linear matrix equation. Linear Algebra Appl. 93, 1–7 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stds. 49, 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  37. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)

    Book  MATH  Google Scholar 

  38. Huang, B.H., Ma, C.F.: Symmetric least squares solution of a class of Sylvester matrix equations via MINIRES algorithm. J. Frankl. I 354, 6381–6404 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Huang, B.H., Ma, C.F.: Extending GCR Algorithm for the least squares solutions on a class of Sylvester matrix equations. Numer. Math. Theor. Methods Appl. 11, 138–157 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Huang, B.H., Ma, C.F.: An iterative algorithm for the least Frobenius norm Hermitian and generalized skew Hamiltonian solutions of the generalized coupled Sylvester-conjugate matrix equations. Numer. Algorithms 78, 1271–1301 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Huang, B.H., Ma, C.F.: On the least squares generalized Hamiltonian solution of generalized coupled Sylvester-conjugate matrix equations. Comput. Math. Appl. 74, 532–555 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Huang, N., Ma, C.F.: The iteration solution of matrix equation \(AXB=C\) subject to a linear matrix inequality constraint. Abs. Appl. Anal. 2014, 1–9 (2014)

    MathSciNet  Google Scholar 

  43. Ke, Y.F., Ma, C.F.: An alternating direction method for a class of Sylvester matrix equations with linear matrix inequality constraint. Numer. Funct. Anal. Opt. 39, 257–275 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kwon, B.H., Youn, M.J.: Eigenvalue-generalized eigenvector assignment by output feedback. IEEE Trans. Autom. Control 32, 417–421 (1987)

    Article  MATH  Google Scholar 

  45. Li, H., Gao, Z., Zhao, D.: Least squares solutions of the matrix equation \(AXB + CYD = E\) with the least norm for symmetric arrowhead matrices. Appl. Math. Comput. 226, 719–724 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Li, J.F., Peng, Z.Y., Peng, J.J.: Bisymmetric solution of the matrix equation \(AX=B\) under a matrix inequality constraint. Math. Numer. Sin. 35, 137–150 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Li, J.F., Li, W., Huang, R.: An efficient method for solving a matrix least squares problem over a matrix inequality constraint. Comput. Optim. Appl. 63, 393–423 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Li, J.F., Li, W., Peng, Z.Y.: A hybrid algorithm for solving minimization problem over (\(R\),\(S\))-symmetric matrices with the matrix inequality constraint. Linear Multilinear Algebra 63, 1049–1072 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liang, K.F., Liu, J.Z.: Iterative algorithms for the minimum-norm solution and the least-squares solution of the linear matrix equations \(A_1XB_1+C_1X^TD_1=E_1\), \(A_2XB_2+C_2X^TD_2=E_2\). Appl. Math. Comput. 218, 3166–3175 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Magnus, J.R.: L-structured matrices and linear matrix equation. Linear Multilinear Algebra Appl. 14, 67–88 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  51. Moŕe, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  52. Morris, G.R., Odell, P.L.: Common solutions for n matrix equations with applications. J. Assoc. Comput. Mach. 15, 272–274 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  53. Peng, J.J., Liao, A.P.: Algorithm for inequality-constrained least squares problems. Comput. Appl. Math. 36, 249–258 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Peng, Z.Y., Wang, L., Peng, J.J.: The solutions of matrix equation \(AX=B\) over a matrix inequality constraint. SIAM J. Matrix Anal. Appl. 33, 554–568 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ramadan, M.A., El-Danaf, T.S., Bayoumi, A.M.E.: A relaxed gradient based algorithm for solving extended Sylvester-conjugate matrix equations. Asian J. Control 16, 1–8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Rojas, M., Sorensen, D.C.: A trust-region approach to the regularization of large-scale discrete forms of ill-posed problems. SIAM J. Sci. Comput. 23, 1842–1860 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Song, C., Wang, X.D., Feng, J., Zhao, J.L.: Parametric solutions to the generalized discrete Yakubovich-transpose matrix equation. Asian J. Control 16, 1133–1140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tian, Z.L., Tian, M.Y., Gu, C.Q., Hao, X.N.: An accelerated Jacobi-gradient based iterative algorithm for solving Sylvester matrix equations. Filomat 31, 2381–2390 (2017)

    Article  MathSciNet  Google Scholar 

  59. Tsui, C.C.: New approach to robust observer design. Int. J. Control 47, 745–751 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang, Q.W., Sun, J.H., Li, S.Z.: Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra. Linear Algebra Appl. 353, 169–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wu, A.G., Duan, G.R., Fu, Y.M., Wu, W.J.: Finite iterative algorithms for the generalized Sylvester-conjugate matrix equation \(AX + BY = EXF + S\). Computing 89, 147–170 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  62. Xie, D.X., Xu, A.B., Peng, Z.Y.: Least squares symmetric solution to the matrix equation \(AXB=C\) with the norm inequality constraint. Int. J. Comput. Math. 93, 1564–1578 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Xie, L., Liu, Y.J., Yang, H.Z.: Gradient based and least squares based iterative algorithms for matrix equations \(AXB + CX^TD = F\). Appl. Math. Comput. 217, 2191–2199 (2010)

    MathSciNet  MATH  Google Scholar 

  64. Xie, Y.J., Ma, C.F.: The accelerated gradient based iterative algorithm for solving a class of generalized Sylvester-transpose matrix equation. Appl. Math. Comput. 273, 1257–1269 (2016)

    MathSciNet  MATH  Google Scholar 

  65. Yang, C., Liu, J., Liu, Y.: Solutions of the generalized Sylvester matrix equation and the application in eigenstructure assignment. Asian J. Control 14, 1669–1675 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  66. Yuan, Y.X.: Least squares solutions of matrix equation \(AXB=E\), \(CXD=F\). J. East China Shipbuild. Inst. 18, 29–31 (2004)

    MATH  Google Scholar 

  67. Zhang, H.M., Ding, F.: Iterative algorithms for \(X+A^TX^{-1}A =I\) by using the hierarchical identification principle. J. Frankl. I 353, 1132–1146 (2016)

    Article  MATH  Google Scholar 

  68. Liu, A.J., Chen, G.L.: On the Hermitian positive definite solutions of nonlinear matrix equation \(X^s+\sum \limits_{i=1}^{m}A_i^*X^{-t_i}A_i=Q\). Appl. Math. Comput. 243, 950–959 (2014)

    MathSciNet  Google Scholar 

  69. Liu, A.J. L., Chen G.L., Zhang X.Y.: A new method for the bisymmetric minimum norm solution of the consistent matrix equations\(A_1XB_1=C_1, A_2XB_2=C_2\). J. Appl. Math., 125687 (2013)

Download references

Acknowledgements

The authors deeply thank the anonymous referees for helping to improve the original manuscript by valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfeng Ma.

Additional information

Supported by National Science Foundation of China (41725017), National Basic Research Program of China under Grant No. 2014CB845906. It is also partially supported by the CAS/CAFEA international partnership Program for creative research teams (Nos. KZZD-EW-TZ-19, KZZD-EW-TZ-15), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB18010202).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Ma, C. The least squares solution of a class of generalized Sylvester-transpose matrix equations with the norm inequality constraint. J Glob Optim 73, 193–221 (2019). https://doi.org/10.1007/s10898-018-0692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0692-4

Keywords

Navigation