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Abstract

This paper analyzes the iteration-complexity of a generalized alternating direction method of multipli-
ers (G-ADMM) for solving linearly constrained convex problems. This ADMM variant, which was first
proposed by Bertsekas and Eckstein, introduces a relaxation parameter α ∈ (0, 2) into the second ADMM
subproblem. Our approach is to show that the G-ADMM is an instance of a hybrid proximal extragradient
framework with some special properties, and, as a by product, we obtain ergodic iteration-complexity for
the G-ADMM with α ∈ (0, 2], improving and complementing related results in the literature. Additionally,
we also present pointwise iteration-complexity for the G-ADMM.
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1 Introduction

This paper considers the following linearly constrained convex optimization problem

min{f(x) + g(y) : Ax+By = b, x ∈ R
n, y ∈ R

p} (1)

where f : Rn → R and g : Rp → R are convex functions, A ∈ R
m×n, B ∈ R

m×p and b ∈ R
m. Problems with

separable structure such as (1) arises in many applications areas, for instance, machine learning, compressive
sensing and image processing. One popular method for solving (1), taking advantages of its special structure,
is the alternating direction method of multipliers (ADMM) [13, 15]; for detailed reviews, see [2, 14]. Many
variants of it have been considered in the literature; see, for example, [5, 8, 10, 12, 18, 19, 20, 21, 23, 27]. The
ADMM variant studied here is the generalized ADMM [11] (G-ADMM) with proximal terms, described as
follows: given (xk−1, yk−1, γk−1) compute (xk, yk, γk) as

xk ∈ argminx

{

f(x)− 〈γk−1, Ax〉+
β

2
‖Ax+Byk−1 − b‖2 + 1

2
‖x− xk−1‖2H1

}

,

yk ∈ argminy

{

g(y)− 〈γk−1, By〉+ β

2
‖α(Axk +Byk−1 − b) +B(y − yk−1)‖2 +

1

2
‖y − yk−1‖2H2

}

,

γk = γk−1 − β [α(Axk + Byk−1 − b) +B(yk − yk−1)] (2)

where β > 0 is a fixed penalty parameter, (H1, H2) ∈ R
n×n × R

p×p are symmetric and positive semi-definite
matrices, α ∈ (0, 2] is a relaxation factor and ‖ · ‖2Hi

:= 〈Hi(·), ·〉, i = 1, 2. Different ADMM variants studied
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in the literature can be seen as particular instances of the G-ADMM by appropriately choosing the matrices
Hi (i = 1, 2) and the relaxation parameter α. By setting (H1, H2) = (0, 0) and α = 1, the G-ADMM reduces
to the standard ADMM. The use of over-relaxation parameter (α > 1) in some applications can accelerate
the standard ADMM; see, for instance, [1, 9]. By choosing (H1, H2) = (τ1In − βA∗A, τ2Ip − βB∗B) for some
τ1 ≥ β‖A‖2 , τ2 ≥ β‖B‖2 (∗ stands for the adjoint operator), the G-ADMM subproblems may become much
easier to solve, since the quadratic terms involving A∗A and B∗B vanish; see, for example, [8, 32, 33] for
discussion. It is well-known that an optimal solution (x∗, y∗) for problem (1) can be obtained by finding a
solution (x∗, y∗, γ∗) of the following Lagrangian system

0 ∈ ∂f(x)−A∗γ, 0 ∈ ∂g(y)−B∗γ, Ax+By − b = 0, (3)

where γ∗ is an associated Lagrange multiplier.
In this paper, we are interested in analyzing iteration-complexity of the G-ADMM to obtain an “approxi-

mate solution” of the Lagrangian system (3). Specifically, for a given tolerance ε > 0, we show that in at most
O(1/ε) iterations of the G-ADMM, we obtain, in the ergodic sense, an “ε-approximate” solution (x̂, ŷ, γ̂) and
a residual v̂ = (v̂1, v̂2, v̂3) of (3) satisfying

v̂1 ∈ ∂ε1f(x̂)−A∗γ̂, v̂2 ∈ ∂ε2g(ŷ)−B∗γ̂, v̂3 = Ax̂+Bŷ − b, ‖v̂‖(H1,H2) ≤ ε, ε1 + ε2 ≤ ε,

where the symbol ∂ε stands for ε−subdiferential, and ‖ · ‖(H1,H2) is a norm (seminorm) depending on the
matrices H1 and H2. Our approach is to show that the G-ADMM is an instance of a hybrid proximal
extragradient (HPE) framework (see [24, 29]) with a very special property, namely, a key parameter sequence
{ρk} associated to the sequence generated by the method is upper bounded by a multiple of d0 (a parameter
measuring, in some sense, the distance of the initial point to the solution set). This result is essential to obtain
the ergodic iteration-complexity of the G-ADMM with relaxation parameter α ∈ (0, 2]. Additionally, we also
present pointwise iteration-complexity for the G-ADMM with α ∈ (0, 2).

Convergence rates of the G-ADMM and related variants have been studied by many authors in differ-
ent contexts. In [12], the authors obtain pointwise and ergodic convergence rate bounds for the G-ADMM
with α ∈ (0, 2). Paper [26] studies linear convergence of the G-ADMM under additional assumptions. Some
strategies are also proposed in order to choose the relaxation and penalty parameters. Linear convergence of
the G-ADMM is also studied in [31] on a general setting. Paper [30] studies the G-ADMM as a particular
case of a general scheme in a Hilbert space and measures, in an ergodic sense, a “partial” primal-dual gap
associated to the augmented Lagrangian of problem (1). Paper [6] studies convergence rates of a generalized
proximal point algorithm and obtains, as a by product, convergence rates of the particular instance of the
G-ADMM in which (H1, H2) = (0, 0). It is worth mentioning that the previous ergodic convergence results
for the G-ADMM are not focused in solving (3) approximately in the sense of our paper. Iteration-complexity
study of the standard ADMM and some variants in the setting of the HPE framework have been considered
in [16, 18, 25]. Finally, convergence rates of ADMM variants using a different approach have been studied in
[7, 8, 18, 20, 21, 22, 23, 26, 27], to name just a few.

Organization of the paper. Section 2 is divided into two subsections, Subsection 2.1 presents our notation
and basic results. Subsection 2.2 is devoted to the study of a modified HPE framework and present its main
iteration-complexity results whose proofs are given in Section A. Section 3 is divided into three subsections.
Subsection 3.1 formally describes the generalized ADMM and Subsection 3.2 contains some auxiliary results.
The pointwise and ergodic iteration-complexity results for the G-ADMM are given in Subsection 3.3.

2 Preliminary results

This section is divided into two subsections: The first one presents our notation and basic results, and the
second one describes a modified HPE framework and present its iteration-complexity bounds.
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2.1 Notation and basic definitions

This subsection presents some definitions, notation and basic results used in this paper.
Let V be a finite-dimensional real vector space with inner product and associated norm denoted by 〈·, ·〉

and ‖ · ‖, respectively. For a given self-adjoint positive semidefinite linear operator Q : V → V , the seminorm
induced by Q on V is defined by ‖ · ‖Q = 〈Q(·), ·〉1/2. Since 〈Q(·), ·〉 is symmetric and bilinear, for all v, ṽ ∈ V ,
we have

2 〈Qv, ṽ〉 ≤ ‖v‖2Q + ‖ṽ‖2Q. (4)

Given a set-valued operator T : V ⇒ V , its domain and graph are defined, respectively, as

DomT := {v ∈ V : T (v) 6= ∅} and Gr(T ) = {(v, ṽ) ∈ V × V | ṽ ∈ T (v)}.

The operator T is said to be monotone if

〈u− v, ũ− ṽ〉 ≥ 0 ∀ (u, ũ), (v, ṽ) ∈ Gr(T ).

Moreover, T is maximal monotone if it is monotone and there is no other monotone operator S such that
Gr(T ) ⊂ Gr(S). Given a scalar ε ≥ 0, the ε-enlargement T [ε] : V ⇒ V of a monotone operator T : V ⇒ V is
defined as

T [ε](v) := {ṽ ∈ V : 〈ṽ − ũ, v − u〉 ≥ −ε, ∀(u, ũ) ∈ Gr(T )} ∀ v ∈ V . (5)

The ε-subdifferential of a proper closed convex function f : V → [−∞,∞] is defined by

∂εf(v) := {u ∈ V : f(ṽ) ≥ f(v) + 〈u, ṽ − v〉 − ε, ∀ ṽ ∈ V} ∀ v ∈ V .

When ε = 0, then ∂0f(v) is denoted by ∂f(v) and is called the subdifferential of f at v. It is well known that
the subdifferential operator of a proper closed convex function is maximal monotone [28].

The next theorem is a consequence of the transportation formula in [4, Theorem 2.3] combined with [3,
Proposition 2(i)].

Theorem 2.1. Suppose T : V ⇒ V is maximal monotone and let ṽi, vi ∈ V, for i = 1, · · · , k, be such that
vi ∈ T (ṽi) and define

ṽak =
1

k

k
∑

i=1

ṽi, vak =
1

k

k
∑

i=1

vi, εak =
1

k

k
∑

i=1

〈vi, ṽi − ṽak〉.

Then, the following hold:

(a) εak ≥ 0 and vak ∈ T [εak](ṽak);

(b) if, in addition, T = ∂f for some proper closed and convex function f , then vak ∈ ∂εa
k
f(ṽak).

2.2 A HPE-type framework

This subsection describes the modified HPE framework and its corresponding pointwise and ergodic iteration-
complexity bounds.

Let Z be a finite-dimensional real vector space with inner product and induced norm denoted by 〈·, ·〉 and
‖ · ‖ =

√

〈·, ·〉, respectively. Our problem of interest in this section is the monotone inclusion problem (MIP)

0 ∈ T (z) (6)

where T : Z ⇒ Z is a maximal monotone operator. We assume that the solution set of (6), denoted by
T−1(0), is nonempty.

We now state the modified HPE framework for solving (6).
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A modified HPE framework for solving (6).

(0) Let z0 ∈ Z, η0 ∈ R+, σ ∈ [0, 1] and a self-adjoint positive semidefinite linear operator M : Z → Z be
given, and set k = 1;

(1) obtain (zk, z̃k, ηk) ∈ Z × Z × R+ such that

M(zk−1 − zk) ∈ T (z̃k), (7)

‖z̃k − zk‖2M + ηk ≤ σ‖z̃k − zk−1‖2M + ηk−1; (8)

(2) set k ← k + 1 and go to step 1.

end

Some remarks about the modified HPE framework are in order. First, it is an instance of the non-Euclidean
HPE framework of [17] with λk = 1, εk = 0 and (dw)z(z

′) = (1/2)‖z − z′‖2M , ∀z, z′ ∈ Z. Second, the way
to obtain (zk, z̃k, ηk) will depend on the particular instance of the framework and properties of the operator
T . In section 3.2, we will show that a generalized ADMM can be seen as an instance of the HPE framework
specifying, in particular, how this triple (zk, z̃k, ηk) can be obtained. Third, if M is positive definite and
σ = η0 = 0, then (8) implies that ηk = 0 and zk = z̃k for every k, and hence that M(zk−1 − zk) ∈ T (zk) in
view of (7). Therefore, the HPE error conditions (7)-(8) can be viewed as a relaxation of an iteration of the
exact proximal point method.

In the following, we present pointwise and ergodic iteration-complexity results for the modified HPE
framework. Let d0 be the distance of z0 to the solution set of T−1(0), i.e.,

d0 = inf{‖z∗ − z0‖2M : z∗ ∈ T−1(0)}. (9)

For convenience of the reader and completeness, the proof of the next two results are presented in Appendix A.

Theorem 2.2. (Pointwise convergence of the HPE) Consider the sequence {(zk, z̃k, ηk)} generated by
the modified HPE framework with σ < 1. Then, for every k ≥ 1, there hold 0 ∈ M(zk − zk−1) + T (z̃k) and
there exists i ≤ k such that

‖zi − zi−1‖M ≤
1√
k

√

2(1 + σ)d0 + 4η0
1− σ

,

where d0 is as defined in (9).

Next, we present the ergodic convergence of the modified HPE framework. Before, let us consider the
following ergodic sequences

z̃ak =
1

k

k
∑

i=1

z̃i, rak =
1

k

k
∑

i=1

(zi − zi−1), εak :=
1

k

k
∑

i=1

〈M(zi − zi−1), z̃
a
k − z̃i〉, ∀k ≥ 1. (10)

Theorem 2.3. (Ergodic convergence of the HPE) Consider the ergodic sequence {(z̃ak , rak, εak)} as in
(10). For every k ≥ 1, there hold εak ≥ 0, 0 ∈Mrak + T [εak](z̃ak) and

‖rak‖M ≤
2
√
d0 + η0
k

, εak ≤
3 [3(d0 + η0) + σρk]

2k
,

where
ρk := max

i=1,...,k
‖z̃i − zi−1‖2M , (11)

and d0 is as defined in (9). Moreover, the sequence {ρk} is bounded under either one of the following situations:

(a) σ < 1, in which case

ρk ≤
d0 + η0
1− σ

; (12)
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(b) DomT is bounded, in which case
ρk ≤ 2[d0 + η0 +D],

where D := sup{‖y′ − y‖2M : y, y′ ∈ DomT }.

If σ < 1 or DomT is bounded, it follows from Theorem 2.3 that {ρk} is bounded and hence max{‖rak‖M , εak} =
O(1/k). However, it may happen that the sequence {ρk} is bounded even when σ = 1. Indeed, in the next
section, we will present a generalized ADMM which is an instance of the modified HPE framework satisfying
this case (see Lemma (3.5)).

3 The generalized ADMM and its convergence rates

The main goal of this section is to describe the generalized ADMM for solving (1) and present pointwise and
ergodic iteration-complexity results for it. Our iteration-complexity bounds are obtained by showing that this
ADMM variant is a special case of the modified HPE framework of Section 2.2.

Throughout this section, we assume that:

A1) the problem (1) has an optimal solution (x∗, y∗) and an associated Lagrange multiplier γ∗, or equivalently,
the inclusion

0 ∈ T (x, y, γ) :=





∂f(x)−A∗γ
∂g(y)−B∗γ
Ax+By − b



 (13)

has a solution (x∗, y∗, γ∗);

3.1 The generalized ADMM

In this subsection, we recall the generalized ADMM first proposed by Eckstein and Bertsekas (see [9, 11, 12])
for solving (1).

Generalized ADMM

(0) Let an initial point (x0, y0, γ0) ∈ R
n×Rp×Rm, a penalty parameter β > 0, a relaxation factor α ∈ (0, 2],

and symmetric positive semidefinite matrices H1 ∈ R
n×n and H2 ∈ R

p×p be given, and set k = 1;

(1) compute an optimal solution xk ∈ R
n of the subproblem

min
x∈Rn

{

f(x)− 〈γk−1, Ax〉+
β

2
‖Ax+Byk−1 − b‖2 + 1

2
‖x− xk−1‖2H1

}

(14)

and compute an optimal solution yk ∈ R
p of the subproblem

min
y∈Rp

{

g(y)− 〈γk−1, By〉+ β

2
‖α(Axk +Byk−1 − b) +B(y − yk−1)‖2 +

1

2
‖y − yk−1‖2H2

}

; (15)

(2) set
γk = γk−1 − β[α(Axk +Byk−1 − b) +B(yk − yk−1)] (16)

and k ← k + 1, and go to step (1).

end

The generalized ADMM has different features depending on the choices of the operators H1, H2, and the
relaxation factor α. For instance, by taking α = 1 and (H1, H2) = (0, 0), it reduces to the standard ADMM,
and α = 1 and (H1, H2) = (τ1In − βA∗A, τ2Ip − βB∗B) with τ1 > β‖A∗A‖ and τ2 > β‖B∗B‖, it reduces to
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the linearized ADMM. The latter method basically consists of canceling the quadratic terms (β/2)‖Ax‖2 and
(β/2)‖By‖2 in (14) and (15), respectively. More specifically, the subproblems (14) and (15) become

min
x∈Rn

{

f(x)− 〈γk−1 − β(Axk−1 +Byk−1 − b), Ax〉+ τ1
2
‖x− xk−1‖2

}

,

min
y∈Rp

{

g(y)− 〈γk−1 − αβ(Axk +Byk−1 − b), By〉+ τ2
2
‖y − yk−1‖2

}

.

In many applications, the above subproblems are much easier to solve or even have closed-form solutions (see
[21, 32, 33] for more details). We also mention that depending on the structure of problem (1), other choices
of H1 and H2 may be recommended; see, for instance, [8] (although the latter reference considers α = 1, it
is clear that the same discussion regarding the choices of H1 and H2 holds for arbitrary α ∈ (0, 2)). The
generalized ADMM with over-relaxation parameter (α > 1) may present computational advantages over the
standard ADMM (see, for example, [9]).

3.2 The generalized ADMM as an instance of the modified HPE framework

Our aim in this subsection is to show that the generalized ADMM is an instance of the modified HPE framework
for solving the inclusion problem (13) and, as a by-product, pointwise and ergodic iteration-complexity bounds
results for the generalized ADMM will be presented in Subsection 3.3.

Let us first introduce the elements required by the setting of Subsection 2.2. Consider the vector space
Z := R

n × R
p × R

m, the linear operator

M :=







H1 0 0

0 (H2 +
β
αB

∗B) (1−α)
α B∗

0 (1−α)
α B 1

αβ Im






, (17)

and the quantity
d0 := inf

(x,y,γ)∈T−1(0)

{

‖(x− x0, y − y0, γ − γ0)‖2M
}

. (18)

It is easy to verify that M is a symmetric positive semidefinite matrix for every β > 0 and α ∈ (0, 2]. Let
{(xk, yk, γk)} be the sequence generated by the generalized ADMM. In order to simplify some relations in the
results below, define the sequence {(∆xk,∆yk,∆γk, γ̃k)} as

∆xk = xk − xk−1, ∆yk = yk − yk−1, ∆γk = γk − γk−1, γ̃k = γk−1 − β(Axk +Byk−1 − b) (19)

for every k ≥ 1.
We next present two technical results on the generalized ADMM.

Lemma 3.1. Let {(xk, yk, γk)} be generated by the generalized ADMM and consider {(∆xk,∆yk,∆γk, γ̃k)}
as in (19). Then, for every k ≥ 1,

γ̃k − γk−1 =
1

α
[∆γk + βB∆yk] , (20)

0 ∈ H1∆xk + [∂f(xk)−A∗γ̃k] , (21)

0 ∈ (H2 +
β

α
B∗B)∆yk +

(1− α)

α
B∗∆γk + [∂g(yk)−B∗γ̃k] , (22)

0 =
(1− α)

α
B∆yk +

1

αβ
∆γk + [Axk +Byk − b] . (23)

As a consequence, zk := (xk, yk, γk) and z̃k := (xk, yk, γ̃k) satisfy the inclusion (7) with T and M as in (13)
and (17), respectively.
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Proof. It follows from definitions of γk and γ̃k in (16) and (19), respectively, that

1

α
(γk − γk−1) +

β

α
B(yk − yk−1) = −β(Axk +Byk−1 − b) = γ̃k − γk−1,

which, combined with definitions of ∆yk and ∆γk in (19), proves (20). From the optimality condition for (14),
we have

0 ∈ ∂f(xk)−A∗(γk−1 − β(Axk +Byk−1 − b)) +H1(xk − xk−1),

which, combined with definitions of γ̃k and ∆xk in (19), yields (21). Similarly, from the optimality condition
for (15) and definitions of γk and ∆yk in (16) and (21), respectively, we obtain

0 ∈ ∂g(yk)−B∗ [γk−1 − βα(Axk +Byk−1 − b) + βB(yk − yk−1)] +H2(yk − yk−1)

= ∂g(yk)−B∗γk +H2∆yk. (24)

On the other hand, note that (20) implies that

γk = γ̃k + (γk − γk−1)− (γ̃k − γk−1) = γ̃k −
(1 − α)

α
∆γk −

β

α
B∆yk,

which in turn, combined with (24), gives (22). The relation (23) follows immediately from (16).
Now, the last statement of the lemma follows directly by (21)–(23) and definitions of T and M given in

(13) and (17), respectively.

Lemma 3.2. The sequences {∆yk} and {∆γk} defined in (19) satisfy

2〈B∆y1,∆γ1〉 ≥ ‖∆y1‖2H2
− 4d0, 2〈B∆yk,∆γk〉 ≥ ‖∆yk‖2H2

− ‖∆yk−1‖2H2
∀k ≥ 2, (25)

where d0 is as in (18).

Proof. Let a point z∗ := (x∗, y∗, γ∗) be such that 0 ∈ T (x∗, y∗, γ∗) (see assumption A1) and consider zi :=
(xi, yi, γi), i = 0, 1. First, note that

0 ≤ β

α
‖B∆y1‖2 +

2

α
〈B∆y1,∆γ1〉+

1

αβ
‖∆γ1‖2,

where ∆y1 and ∆γ1 are as in (19). Hence, by adding ‖∆y1‖2H2
− 2〈B∆y1,∆γ1〉 to both sides of the above

inequality, we obtain

‖∆y1‖2H2
− 2〈B∆y1,∆γ1〉 ≤ ‖∆y1‖2H2

+
β

α
‖B∆y1‖2 + 2

(1− α)

α
〈B∆y1,∆γ1〉+

1

αβ
‖∆γ1‖2

≤ ‖z1 − z0‖2M ≤ 2
(

‖z∗ − z1‖2M + ‖z∗ − z0‖2M
)

, (26)

where M is as in (17) and the last inequality is a consequence of (4) with Q = M . On the other hand, taking
z̃1 = (x1, y1, γ̃1), Lemma 3.1 implies that (z0, z1, z̃1) satisfies (7) with T andM as in (13) and (17), respectively;
namely, M(z0 − z1) ∈ T (z̃1). Hence, since 0 ∈ T (z∗) and T is monotone, we obtain 〈M(z0 − z1), z̃1 − z∗〉 ≥ 0.
Thus, it follows that

‖z∗ − z1‖2M − ‖z∗ − z0‖2M = ‖(z∗ − z̃1) + (z̃1 − z1)‖2M − ‖(z∗ − z̃1) + (z̃1 − z0)‖2M
= ‖z̃1 − z1‖2M + 2〈M(z0 − z1), z

∗ − z̃1〉 − ‖z̃1 − z0‖2M
≤ ‖z̃1 − z1‖2M − ‖z̃1 − z0‖2M . (27)

Combining (19) and (20), we have γ̃1 − γ1 = [(1− α)∆γ1 + βB∆y1]/α. Hence, using the definitions of M , z1
and z̃1, we obtain

‖z̃1 − z1‖2M =
1

αβ
‖γ̃1 − γ1‖2 =

β

α3
‖B∆y1‖2 + 2

(1− α)

α3
〈B∆y1,∆γ1〉+

(1− α)2

α3β
‖∆γ1‖2
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and

‖z̃1 − z0‖2M ≥
β

α
‖B(y1 − y0)‖2 +

2(1− α)

α
〈B(y1 − y0), γ̃1 − γ0〉+

1

αβ
‖γ̃1 − γ0‖2

=

(

β

α
+ 2

(1− α)β

α2
+

β

α3

)

‖B∆y1‖2 + 2

(

(1 − α)

α2
+

1

α3

)

〈B∆y1,∆γ1〉+
1

α3β
‖∆γ1‖2 ,

where the last equality is due to (19) and (20). Hence, it is easy to see that

‖z̃1 − z1‖2M − ‖z̃1 − z0‖2M ≤
(α− 2)

α2

∥

∥

∥

∥

√

βB∆y1 +
1√
β
∆γ1

∥

∥

∥

∥

2

≤ 0.

Thus, it follows from (27) that
‖z∗ − z1‖2M ≤ ‖z∗ − z0‖2M ,

which, combined with (26), yields

‖∆y1‖2H2
− 2〈B∆y1,∆γ1〉 ≤ 4‖z∗ − z0‖2M .

Therefore, the first inequality in (25) follows from definition of d0 (see (18)) and the fact that z∗ ∈ T−1(0) is
arbitrary.

Let us now prove the second inequality in (25). First, from the optimality condition of (15) and (16), we
obtain

B∗γj −H2(yj − yj−1) ∈ ∂g(yj) ∀j ≥ 1.

For every k ≥ 2, using the previous inclusion for j = k − 1 and j = k, it follows from the monotonicity of the
subdifferential of g that

〈B∗(γk − γk−1)−H2(yk − yk−1) +H2(yk−1 − yk−2), yk − yk−1〉 ≥ 0,

which, combined with (19), yields

〈B∆yk,∆γk〉 ≥ ‖∆yk‖2H2
− 〈H2∆yk−1,∆yk〉 ∀k ≥ 2.

To conclude the proof, use the relation (4) with Q = H2.

The following theorem shows that the generalized ADMM is an instance of the modified HPE framework.
Let us consider the following quantity:

σα =
1

1 + α(2 − α)
. (28)

Note that σ2 = 1, and for any α ∈ (0, 2) we have σα ∈ (0, 1).

Theorem 3.3. Let {(xk, yk, γk)} be generated by the generalized ADMM and consider {(∆yk, γ̃k)} and σα as
in (19) and (28), respectively. Define

zk−1 = (xk−1, yk−1, γk−1) z̃k = (xk, yk, γ̃k), ∀ k ≥ 1, (29)

and

η0 =
4(2− α)σα

α
d0, ηk =

(2 − α)σα

α
‖∆yk‖2H2

∀ k ≥ 1, (30)

where d0 is as in (18). Then, the sequence {(zk, z̃k, ηk)} is an instance of the modified HPE framework applied
for solving (13), where σ := σα and M is as in (17).
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Proof. The inclusion (7) follows from the last statement in Lemma 3.1. Let us now show that (8) holds. Using
(19), (20) and (29), we obtain

‖z̃k − zk‖2M =
1

αβ
‖γ̃k − γk‖2 =

1

αβ

∥

∥

∥

∥

1

α
[(1− α)∆γk + βB∆yk]

∥

∥

∥

∥

2

=
1

α3β

[

(1− α)2‖∆γk‖2 + 2(1− α)β〈B∆yk ,∆γk〉+ β2‖B∆yk‖2
]

. (31)

Also, (19) and (29) imply that

‖z̃k − zk−1‖
2

M = ‖∆xk‖
2

H1
+ ‖∆yk‖

2

H2
+

β

α
‖B∆yk‖

2 + 2
(1− α)

α
〈B∆yk, γ̃k − γk−1〉+

1

αβ
‖γ̃k − γk−1‖

2
. (32)

It follows from (20) that

1

αβ
‖γ̃k − γk−1‖2 =

1

α3β

[

‖∆γk‖2 + 2β〈B∆yk,∆γk〉+ β2‖B∆yk‖2
]

,

2
(1− α)

α
〈B∆yk, γ̃k − γk−1〉 = 2

(1− α)

α2

[

〈B∆yk,∆γk〉+ β‖B∆yk‖2
]

which, combined with (32), yields

‖z̃k − zk−1‖2M = ‖∆xk‖2H1
+ ‖∆yk‖2H2

+

(

β

α
+ 2

(1− α)β

α2
+

β

α3

)

‖B∆yk‖2

+ 2

(

(1− α)

α2
+

1

α3

)

〈B∆yk,∆γk〉+
1

α3β
‖∆γk‖2. (33)

Therefore, combining (31) and (33), it is easy to verify that

σα‖z̃k − zk−1‖2M − ‖z̃k − zk‖2M

= σα‖∆xk‖2H1
+ σα‖∆yk‖2H2

+ 2
(2− α)σα

α
〈B∆yk,∆γk〉+

(2 − α)2σα

αβ
‖∆γk‖2

≥ 2
(2− α)σα

α
〈B∆yk,∆γk〉 ≥ ηk − ηk−1 ∀ k ≥ 1,

where σα is as in (28), and the last inequality is due to (25) and (30). Therefore, (8) holds, and then we
conclude that the sequence {(zk, z̃k, ηk)} is an instance of the modified HPE framework.

3.3 Iteration-complexity bounds for the generalized ADMM

In this subsection, we study pointwise and ergodic iteration-complexity bounds for the generalized ADMM.
We start by presenting a pointwise bound under the assumption that the relaxation parameter α belongs to
(0, 2). Then, we consider an auxiliary result which is used to show that the sequence {ρk}, as defined in
Theorem 2.3 with {zk} and {z̃k} as in (29), is bounded even in the extreme case in which α = 2. This latter
result is then used to present the ergodic bounds of the generalized ADMM for any α ∈ (0, 2].

Theorem 3.4. (Pointwise convergence of the generalized ADMM) Let {(xk, yk, γk)} be generated by
the generalized ADMM with α ∈ (0, 2) and consider the sequence {(∆xk,∆yk,∆γk, γ̃k)} as in (19). Then, for
every k ≥ 1,

0 ∈M





∆xk

∆yk
∆γk



+







∂f(xk)−A∗γ̃k

∂g(yk)−B∗γ̃k

Axk +Byk − b






(34)
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and there exists i ≤ k such that

‖(∆xi,∆yi,∆γi)‖M ≤
1√
k

√

2[α(1 + σα) + 8(2− α)σα]d0
α(1 − σα)

,

where M , d0, and σα are as (17), (18) and (28), respectively.

Proof. Since σα ∈ (0, 1) for any α ∈ (0, 2) (see (28)), we obtain by combining Theorems 2.2 and 3.3 that (34)
holds and there exists i ≤ k such that

‖(∆xi,∆yi,∆γi)‖M ≤
1√
k

√

2(1 + σα)d0 + 4η0
1− σα

.

Hence, to conclude the proof use the definition of η0 given in (30).

For a given tolerance ε > 0, Theorem 3.4 implies that in at most O(1/ε2) iterations, the G-ADMM obtains
an “ε-approximate” solution (x, y, γ) and a residual v of (3) satisfying

Mv ∈ T (x, y, γ), ‖v‖M ≤ ε,

where T and M are as (13) and (17), respectively.
Next we consider an auxiliary result which will be used to obtain ergodic iteration-complexity bounds for

the generalized ADMM.

Lemma 3.5. Let {(xk, yk, γk)} be generated by the generalized ADMM and consider {(∆xk,∆yk,∆γk, γ̃k)}
as in (19). Then, the sequence {ρk} given in (11) with M and {(zk, z̃k)} as in (17) and (29), respectively,
satisfies

ρk ≤
4(1 + 2α)[α+ 4(2− α)σα]d0

α3
∀ k ≥ 1,

where d0 is as in (18).

Proof. The same argument used to prove (32) and (33) yields, for every k ≥ 1,

‖z̃k − zk−1‖2M = ‖∆xk‖2H1
+ ‖∆yk‖2H2

+ ξk, (35)

where

ξk :=
β

α3
‖B∆yk‖

2 +
2(1− α)

α3
〈B∆yk,∆γk〉+

1

α3β
‖∆γk‖

2 +
(2− α)

α

[

β

α
‖B∆yk‖

2 +
2

α
〈B∆yk,∆γk〉

]

.

Using the definitions of M and zk given in (17) and (29), respectively, it follow that

ξk ≤
1

α2
‖zk − zk−1‖2M +

(2− α)

α

[

β

α
‖B∆yk‖2 +

2

α
〈B∆yk,∆γk〉

]

=
1

α2
‖zk − zk−1‖2M +

(2− α)

α

[

β

α
‖B∆yk‖2 +

2(1− α)

α
〈B∆yk,∆γk〉

]

+
2(2− α)

α
〈B∆yk,∆γk〉

≤ 1

α2
‖zk − zk−1‖2M +

(2− α)

α
‖zk − zk−1‖2M +

2(1− α)

α
〈B∆yk,∆γk〉+

2

α
〈B∆yk,∆γk〉

≤ 1 + 2α− α2

α2
‖zk − zk−1‖2M +

2(1− α)

α
〈B∆yk,∆γk〉+

β

α
‖B∆yk‖2 +

1

αβ
‖∆γk‖2, (36)

where in the last two inequalities we used the fact that α ∈ (0, 2] and (4) with Q = Im, respectively. Combining
(35), (36) and definitions of M and zk, we obtain, for every k ≥ 1,

‖z̃k − zk−1‖2M ≤
1 + 2α− α2

α2
‖zk − zk−1‖2M + ‖zk − zk−1‖2M =

1 + 2α

α2
‖zk − zk−1‖2M .
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Now, letting z∗ := (x∗, y∗, γ∗) be an arbitrary solution of (13), we obtain from the last inequality and (4) with
Q = M that

‖z̃k − zk−1‖2M ≤
2(1 + 2α)

α2

[

‖z∗ − zk‖2M + ‖z∗ − zk−1‖2M
]

∀k ≥ 1.

Since the generalized ADMM is an instance of the modified HPE framework with σ := σα (see Theorem 3.3
and (28)), it follows from the last inequality and Lemma A.1(b) that

‖z̃k − zk−1‖2M ≤
4(1 + 2α)

α2

[

‖z∗ − z0‖2M + η0
]

∀k ≥ 1.

Since z∗ is an arbitrary solution of (13), the result follows from the definition of ρk, d0, and η0 given in (11),
(18) and (30), respectively.

Next result presentsO(1/k) convergence rate for the ergodic sequence associated to the generalized ADMM.

Theorem 3.6. (Ergodic convergence of the generalized ADMM) Let {(xk, yk, γk)} be the sequence gen-
erated by the generalized ADMM and consider {(∆xk,∆yk,∆γk, γ̃k)} as in (19). Define the ergodic sequences
as

(xa
k, y

a
k , γ

a
k , γ̃

a
k) =

1

k

k
∑

i=1

(xi, yi, γi, γ̃i) , (rak,x, r
a
k,y , r

a
k,γ) =

1

k

k
∑

i=1

(∆xi,∆yi,∆γi), (37)

εak,x =
1

k

k
∑

i=1

〈H1∆xi −A∗γ̃i, x
a
k − xi〉, (38)

εak,y =
1

k

k
∑

i=1

〈(

H2 +
β

α
B∗B

)

∆yi +
(1 − α)

α
B∗∆γi −B∗γ̃i, y

a
k − yi

〉

. (39)

Then, for every k ≥ 1, there hold εak,x ≥ 0, εak,y ≥ 0, and

0 ∈M







rak,x
rak,y
rak,γ






+







∂fεa
k,x

(xa
k)−A∗γ̃a

k

∂gεa
k,y

(yak)−B∗γ̃a
k

Axa
k +Byak − b






, (40)

‖(rak,x, rak,y , rak,γ)‖M ≤
2
√
cαd0
k

, εak,x + εak,y ≤
c̃αd0
k

, (41)

where

cα :=
α+ 4(2− α)σα

α
, c̃α :=

3[3α2 + 4(1 + 2α)σα][α+ 4(2− α)σα]

2α3
, (42)

and M , d0, and σα are as in (17), (18), and (28), respectively.

Proof. It follows from Theorem 3.3 that the generalized ADMM is an instance of the modified HPE where
{(zk, z̃k)} is given by (29). Moreover, it is easy to see that the quantities rak and εak given in (10) satisfy

rak = (rak,x, r
a
k,y , r

a
k,γ), εak =

1

k

k
∑

i=1





〈

M





∆xi

∆yi
∆γi



, (xa
k − xi, y

a
k − yi, γ̃

a
k − γ̃i)

〉



 . (43)

Hence, from Theorems 2.3 and definition of η0 in (30), we have

‖rak‖M ≤
2
√

(α + 4(2− α)σα)d0
k
√
α

, εak ≤
3[3α2 + 4(1 + 2α)σα][α+ 4(2− α)σα]d0

2α3k
, (44)
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where in the last inequality we also used Lemma 3.5. Now, we claim that εak = εak,x + εak,y. Using this claim,
(41) follows immediately from (42) and (44). Hence, to conclude the proof of the theorem, it just remains to
prove the above claim. To this end, note that (38) and (39) yield

εak,x + εak,y =
1

k

k
∑

i=1

[

〈H1∆xi, x
a
k − xi〉+

〈(

H2 +
β

α
B∗B

)

∆yi +
(1− α)

α
B∗∆γi, y

a
k − yi

〉]

+
1

k

k
∑

i=1

〈A (xa
k − xi) +B (yak − yi),−γ̃i〉] . (45)

On the other hand, from (37), we obtain

1

k

k
∑

i=1

〈A(xa
k − xi) +B(yak − yi),−γ̃i〉 =

1

k

k
∑

i=1

〈Axa
k +Byak − b− (Axi +Byi − b), γ̃a

k − γ̃i〉

=
1

k

k
∑

i=1

〈−(Axi +Byi − b), γ̃a
k − γ̃i〉

=
1

k

k
∑

i=1

〈

(1− α)

α
B∆yi +

1

αβ
∆γi, γ̃

a
k − γ̃i

〉

where the last equality is due to (23). Hence, the claim follows by combining (45), and the definitions of M
and εak in (17) and (43), respectively.

For a given tolerance ε > 0, Theorem 3.6 implies that in at most O(1/ε) iterations of the G-ADMM, we
obtain an “ε-approximate” solution (x̂, ŷ, γ̂) and a residual v̂ = (v̂1, v̂2, v̂3) of (3) satisfying

v̂1 ∈ ∂ε1f(x̂)−A∗γ̂, v̂2 ∈ ∂ε2g(ŷ)−B∗γ̂, v̂3 = Ax̂+Bŷ − b, ‖v̂‖∗M ≤ ε, ε1 + ε2 ≤ ε,

where ‖ · ‖∗M is a dual norm (seminorm) associated to M .

A Appendix (Proofs of Theorems 2.2 and 2.3)

The main goal in this section is to present the proofs of Theorems 2.2 and 2.3. Toward this goal, we first
consider a technical lemma.

Lemma A.1. Let {(zk, z̃k, ηk)} be the sequence generated by the modified HPE framework. For every k ≥ 1,
the following statements hold:

(a) for every z ∈ Z, we have

‖z − zk‖2M + ηk ≤ (σ − 1)‖z̃k − zk−1‖2M + ‖z − zk−1‖2M + 2〈M(zk−1 − zk), z − z̃k〉+ ηk−1;

(b) for every z∗ ∈ T−1(0), we have

‖z∗ − zk‖2M + ηk ≤ (σ − 1)‖z̃k − zk−1‖2M + ‖z∗ − zk−1‖2M + ηk−1 ≤ ‖z∗ − zk−1‖2M + ηk−1.

Proof. (a) Note that, for every z ∈ Z,
‖z − zk‖2M − ‖z − zk−1‖2M = ‖(z − z̃k) + (z̃k − zk)‖2M − ‖(z − z̃k) + (z̃k − zk−1)‖2M

= ‖z̃k − zk‖2M − ‖z̃k − zk−1‖2M + 2〈M(zk−1 − zk), z − z̃k〉,
which, combined with (8), proves the desired inequaliy.

(b) Since M(zk−1 − zk) ∈ T (z̃k) and 0 ∈ T (z∗), we have 〈M(zk−1 − zk), z̃k − z∗〉 ≥ 0. Hence, the first
inequality in (b) follows from (a) with z = z∗. Now, the second inequality in (b) follows from the fact that
σ ≤ 1.
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Proof of Theorem 2.2: The inclusion 0 ∈M(zk − zk−1) + T (z̃k) holds due to (7). It follows from (4) with
Q = M that, for every j ≥ 1,

‖zj − zj−1‖2M ≤ 2(‖z̃j − zj−1)‖2M + ‖z̃j − zj‖2M ) ≤ 2(1 + σ)‖z̃j − zj−1‖2M + 2(ηj−1 − ηj)

where the last inequality is due to (8). Now, if z∗ ∈ T−1(0), we obtain from Lemma A.1(b)

(1− σ)‖z̃j − zj−1‖2M ≤ ‖z∗ − zj−1‖2M − ‖z∗ − zj‖2M + ηj−1 − ηj , ∀ j ≥ 1.

Combining the last two inequality, we get

(1 − σ)
k

∑

j=1

‖zj − zj−1‖2M ≤ 2(1 + σ)
(

‖z∗ − z0‖2M − ‖z∗ − zk‖2M + η0 − ηk
)

+ 2(1− σ)(η0 − ηk)

≤ 2(1 + σ)‖z∗ − z0‖2M + 4η0.

Hence, as σ < 1, we obtain

min
i=1,...,k

‖zi − zi−1‖2M ≤
1

k(1 − σ)

(

2(1 + σ)‖z∗ − z0‖2M + 4η0
)

.

Therefore, the desired inequality follows from the latter inequality and the definition of d0 in (9). �

Proof of Theorem 2.3: The inclusion 0 ∈ Mrak + T [εak](z̃ak) follows from (7), (10), and Theorems 2.1(a).
Using (10), it is easy see that for any z∗ ∈ T−1(0)

krak = zk − z0 = (z∗ − z0) + (zk − z∗).

Hence, from inequality (4) with Q = M and Lemma A.1(b), we have

k2‖rak‖2M ≤ 2(‖z∗ − z0‖2M + ‖z∗ − zk‖2M ) ≤ 4(‖z∗ − z0‖2M + η0).

Combining the above inequality with definition of d0, we obtain the bound on ‖rak‖M . Let us now to prove
the bound on εak. From Lemma A.1(a), we have

2

k
∑

i=1

〈M(zi − zi−1), z − z̃i〉 ≤ ‖z − z0‖2M − ‖z − zk‖2M + η0 − ηk ≤ ‖z − z0‖2M + η0,

for every z ∈ Z. Letting z = z̃ak and using (10), we get

2kεak ≤ ‖z̃ak − z0‖2M + η0 ≤
1

k

k
∑

i=1

‖z̃i − z0‖2M + η0 ≤ max
i=1,...,k

‖z̃i − z0‖2M + η0 (46)

where the second inequality is due to convexity of the function ‖ · ‖2M , which also implies that, for every i ≥ 1
and z∗ ∈ T−1(0),

‖z̃i − z0‖2M ≤ 3
[

‖z̃i − zi‖2M + ‖z∗ − zi‖2M + ‖z∗ − z0‖2M
]

.

Hence, using (8) and twice Lemma A.1(b), it follows, for every i ≥ 1 and z∗ ∈ T−1(0), that

‖z̃i − z0‖2M ≤ 3
[

σ‖z̃i − zi−1‖2M + ηi−1 + ‖z∗ − zi−1‖2M + ηi−1 + ‖z∗ − z0‖2M
]

≤ 3
[

σ‖z̃i − zi−1‖2M + 2(‖z∗ − zi−1‖2M + ηi−1) + ‖z∗ − z0‖2M
]

≤ 3
[

σ‖z̃i − zi−1‖2M + 3‖z∗ − z0‖2M + 2η0
]

,
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which, combined with (46) and definitions of ρk in (11), yields

2kεak ≤ 3
[

3‖z∗ − z0‖2M + σρk
]

+ 7η0 ≤ 3
[

3(‖z∗ − z0‖2M + η0) + σρk
]

.

Thus, the bound on εak now follows from the definition of the d0 in (9).
It remains to prove the second part of the theorem.

(a) if σ < 1, then it follows from Lemma A.1(b), for every i ≥ 1 and z∗ ∈ T−1(0), that

(1− σ)‖z̃i − zi−1‖2M ≤ ‖z∗ − zi−1‖2M + ηi−1 ≤ ‖z∗ − z0‖2M + η0.

Hence, in view of definitions of ρk and d0, we obtain (12).
(b) If DomT is bounded, then it follows from inequality (4) with Q = M , and Lemma A.1(b), for every i ≥ 1
and z∗ ∈ T−1(0), that

‖z̃i − zi−1‖2M ≤ 2
[

‖z∗ − zi−1‖2M + ‖z̃i − z∗‖2M
]

≤ 2
[

‖z∗ − z0‖2M + η0 +D
]

which, combined with definitions of ρk and d0, proves the desired result. �

References

[1] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic Press, New York,
1982.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):1–122, 2011.

[3] R. S. Burachik, A. N. Iusem, and B. F. Svaiter. Enlargement of monotone operators with applications to
variational inequalities. Set-Valued Anal., 5(2):159–180, 1997.
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