Skip to main content
Log in

A topological convergence on power sets well-suited for set optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we supply the power set \({\mathcal {P}}(Z)\) of a partially ordered normed space Z with a transitive and irreflexive binary relation which allows us to introduce a notion of open intervals on \({\mathcal {P}}(Z)\) from which we construct a topology on the set of lower bounded subsets of Z. From this topology, we derive a concept of set convergence that is compatible with the strict ordering on \({\mathcal {P}}(Z)\) and, taking advantage of its properties, we prove several stability results for minimal sets and minimal solutions to set-valued optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions. Math. Program. Ser. A 122(2), 301–347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Braides, A.: A handbook of \(\Gamma \)-convergence. In: Chipot, M., Quittner, P. (eds.) Handbook of Differential Equations. Stationary Partial Differential Equations, vol. 3, pp. 101–213. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  3. De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58(6), 842–850 (1975)

    MathSciNet  MATH  Google Scholar 

  4. Geoffroy, M.H., Marcelin, Y., Nedelcheva, D.: Convergence of relaxed minimizers in set optimization. Optim. Lett. 11(8), 1677–1690 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hernández, E.: A survey of set optimization problems with set solutions. In: Hamel, A., Heyde, F., Löhne, A., Rudloff, B., Schrage, C. (eds.) Set Optimization and Applications - The State of the Art. Springer Proceedings in Mathematics & Statistics, vol. 151. Springer, Berlin, Heidelberg (2015)

    Chapter  Google Scholar 

  6. Hamel, A.H.: Variational principles on metric and uniform spaces. Habilitation thesis, Martin-Luther-Universität Halle-Wittenberg (2005)

  7. Hamel, A.H., Heyde, F., Löhne, A., Rudloff, B., Schrage, C. (eds.): Set optimization—a rather short introduction. In: Set Optimization and Applications - The State of the Art. Springer Proceedings in Mathematics & Statistics, vol. 151. Springer, Berlin, Heidelberg (2015)

  8. Jahn, J.: Vector Optimization. Theory, Applications, and Extensions, 2nd edn. Springer, Berlin (2011)

    MATH  Google Scholar 

  9. Khan, A.A., Tammer, C., Zălinescu, C.: Set-valued Optimization. An Introduction with Applications. Vector Optimization. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  10. Kuroiwa, D., Tanaka, T., Ha, T.X.D.: On cone convexity of set-valued maps. Nonlinear Anal. 30(3), 1487–1496 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuroiwa, D.: The natural criteria in set-valued optimization. In: Research on Nonlinear Analysis and Convex Analysis (Japanese) (Kyoto, 1997). Sūrikaisekikenkyūsho Kōkyūroku No. 1031, pp. 85–90 (1998)

  12. Kuroiwa, D.: On set-valued optimization. Nonlinear Anal. 47(2), 1395–1400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Löhne, A.: Vector Optimization with Infimum and Supremum. Vector Optimization, p. 206. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  14. Loridan, P.: \(\epsilon \)-solutions in vector minimization problems. J. Optim. Theory Appl. 43(2), 265–276 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, New York (1989)

    Google Scholar 

  16. Nishnianidze, Z.G.: Fixed points of monotone multivalued operators. Soobshch. Akad. Nauk Gruzin. SSR 114(3), 489–491 (1984)

    MathSciNet  MATH  Google Scholar 

  17. Peressini, A.L.: Ordered Topological Vector Spaces. Harper & Row Publishers, New York, London (1967)

    MATH  Google Scholar 

  18. Rockafellar, R.T., Wets, R.: Variational Analysis, vol. 317. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  19. Young, R.C.: The algebra of many-valued quantities. Math. Ann. 104(1), 260–290 (1931)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for his/her careful reading of the manuscript and for providing valuable and accurate comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel H. Geoffroy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geoffroy, M.H. A topological convergence on power sets well-suited for set optimization. J Glob Optim 73, 567–581 (2019). https://doi.org/10.1007/s10898-018-0712-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-018-0712-4

Keywords

Mathematics Subject Classification

Navigation