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Abstract

In this article we show that the boundary of the Pareto critical set of an unconstrained
multiobjective optimization problem (MOP) consists of Pareto critical points of subproblems
considering subsets of the objective functions. If the Pareto critical set is completely described
by its boundary (e.g. if we have more objective functions than dimensions in the parameter
space), this can be used to solve the MOP by solving a number of MOPs with fewer objective
functions. If this is not the case, the results can still give insight into the structure of the Pareto
critical set. This technique is especially useful for efficiently solving many-objective optimization
problems by breaking them down into MOPs with a reduced number of objective functions.

1 Introduction

In many applications the problem arises to optimize several functions at once. In production for
example, a typical goal is to maximize the quality of a product and to minimize the production cost
at the same time. If the individual goals are conflicting, there exists no single point that optimizes
all objectives at once, such that scalar optimization theory cannot be applied. Instead, the goal
is to compute the set of optimal compromises, the so-called Pareto set, consisting of all Pareto
optimal points. The task of finding the Pareto set is called multiobjective optimization (MOO).

A popular first-order necessary condition for Pareto optimality is given by Kuhn and Tucker [7].
It states that in a Pareto optimal point of an unconstrained MOP, there exists a convex combination
of the gradients of the objective functions which is zero. Similar to scalar-valued optimization, the
coefficients of this convex combination are called Karush-Kuhn-Tucker (KKT) multipliers. Points
for which such a convex combination exists are called Pareto critical. Roughly speaking, this
condition induces a (possibly set-valued) map from the standard simplex to the Pareto critical set.
So the question arises whether it is possible to derive properties of the Pareto critical set from the
set of KKT multipliers. In particular, we are interested in analyzing properties and computing the
boundaries of the Pareto critical set. This is especially useful for MOPs with a large number of
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objectives, also known as many-objective optimization problems (MaOPs), where the Pareto critical
sets can be very complicated and expensive to compute [16]. It is therefore of great interest to
derive efficient methods to solve MaOPs, e.g. by exploiting this structure. Until now, MaOPs are
mainly being treated by evolutionary approaches [6].

There already exist some results about the structure of Pareto sets. In [14, Chapter 4] relations
between the boundary of the Pareto critical set and subsets of objectives are investigated for a
special class of well-behaved objective functions. There the focus lies on the hierarchical structure
of Pareto sets, meaning that every neglected objective function results in Pareto critical points
that lie on the boundary of the previous problem. In a more theoretical approach, De Melo showed
that there is an open and dense subset of the set of all possible (smooth) objective functions
C∞(Rn,Rk), where the Pareto critical set is a stratification [2]. This means that the Pareto critical
set of a generic smooth objective function is the union of submanifolds of Rn, that the intersections
of these manifolds behave nicely and that the boundaries of these manifolds are unions of lower
dimensional manifolds. In other words, in a generic case the Pareto critical set is a manifold
with boundaries and corners. In the case where all objective functions are convex (and there
are less objective functions than there are dimensions in the parameter space) the Pareto set is
diffeomorphic to a standard simplex and its facets correspond to Pareto sets where a certain number
of objectives has been neglected (see [19, 17]). Lovison and Pecci extended this result in [11] by
showing that for a dense class of smooth (nonconvex) objective functions, the (local) Pareto set is
a Whitney stratification. Many solution methods for MOPs work in the objective space instead of
the parameter space. Consequently, it can be of equal interest to investigate the boundary of the
Pareto front, i.e. the image of the Pareto set under the objective function. This has been done
by Mueller-Gritschneider, Graeb and Schlichtmann in [13] (see also [3, 18]). A related approach is
objective reduction in the context of many-objective optimization, where the goal is to eliminate
objective functions that are either redundant or have only minor influence the Pareto front (see
e.g. [1, 10, 15]).

The goal of this article is to extend the results from [14, Chapter 4] to a much more general
setting. We investigate the hierarchical structure of Pareto critical sets and study properties of
the boundary. We show that the boundary of the standard simplex is mapped to a covering of
the boundary of the Pareto critical set. Since at least one multiplier is zero on the boundary of
the simplex, the boundary of the Pareto critical set can be calculated by omitting the objective
functions corresponding to the zero multipliers. The number of functions that can be omitted
depends on the rank of the Jacobian of the full objective function.

The structure of this article is as follows: We start by giving a short introduction to MOO and
concepts of topology in Section 2. In Section 3 we first classify Pareto critical points by their
respective KKT multipliers by differentiating between Pareto critical points with strictly positive
KKT multipliers (Pint) and critical points where all KKT multipliers have a zero somewhere (P0).
We show some results about the structure and relationships of those sets with varying regularity
assumptions on our objective function. Since we will define the boundary of the Pareto critical
set by properties of tangent cones, we then show some results about tangent cones of the Pareto
critical set. An important technical result will be that if our MOP is regular enough, the tangent
cone of the Pareto critical set is just the projection of the tangent space of the manifold of Pareto
critical points, extended by their KKT multipliers, onto the parameter space. This will be used to
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prove the main result of Section 3, which states that on the boundary of the Pareto critical set, (at
least) one KKT multiplier is zero. In Section 4 we study how many KKT multipliers are zero, or
in other words, how many components of the objective function have to be considered to compute
the boundary of the Pareto critical set. The main result will be that the number of components
required is equal to the maximal rank of the Jacobian on the Pareto critical set. In Section 5, we
draw a conclusion and discuss further directions.

We conclude this introduction with a simple example to show the structure we want to investigate
in this article. Consider the following convex MOP:

min
x∈R2

f(x) = min
x∈R2

f1(x)
f2(x)
f3(x)

 = min
x∈R2

(x1 − 1)2 + (x2 + 1)2

x2
1 + (x2 − 1)2

(x1 + 1)2 + (x2 + 1)2

 . (1)

The objective functions are paraboloids, so the Pareto critical (and in this case Pareto optimal)
set is given by the triangle with corners (−1,−1), (1,−1) and (0, 1). If we omit the third objective
function, the Pareto optimal set of the resulting MOP is the line connecting (−1,−1) and (1,−1),
so it is part of the boundary. In the same way we obtain the other parts of the boundary of the
original Pareto critical set by omitting different objective functions. The situation is depicted in
Figure 1. The Pareto critical set of the subproblem (f1, f2) is shown in red, (f1, f3) in blue and
(f2, f3) in green.
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Figure 1: Pareto critical set of the MOP (1) (left) and Pareto critical sets of all 2-objective
subproblems (right)

2 Multiobjective optimization and topology

In this section we give a short introduction to MOO and some basic concepts of topology.
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2.1 Multiobjective optimization

Consider the unconstrained multiobjective optimization problem

min
x∈Rn

f(x) = min
x∈Rn

 f1(x)
...

fk(x)

 , (MOP)

where f : Rn → Rk is a vector valued objective function with continuously differentiable components
fi : Rn → R, i = 1, ..., k. The space of the parameters x ∈ Rn is called the parameter space and
the function f is a mapping to the k-dimensional objective space. In contrast to single objective
optimization problems, there exists no obvious total order of the objective function values in Rk
for k ≥ 2 (unless the objectives are not conflicting). Therefore, the comparison of values is defined
in the following way [12]:

Definition 2.1. Let v, w ∈ Rk. The vector v is less than w (v <p w), if vi < wi for all i ∈
{1, . . . , k}. The relation ≤p is defined in an analogous way.

A consequence of the lack of a total order is that we cannot expect to find isolated optimal points.
Instead, the solution of (MOP) is the set of optimal compromises, the so-called Pareto set named
after Vilfredo Pareto:

Definition 2.2. (a) A point x∗ ∈ Rn dominates a point x ∈ Rn, if f(x∗) ≤p f(x) and f(x∗) 6=
f(x).

(b) A point x∗ ∈ Rn is called (globally) Pareto optimal if there exists no point x ∈ Rn dominating
x∗.

(c) The set of non-dominated points is called the Pareto set, its image the Pareto front.

Consequently, for each solution that is contained in the Pareto set, one can only improve one
objective by accepting a trade-off in at least one other objective. A more detailed introduction to
multiobjective optimization can be found in [12, 4].

Similar to single objective optimization, a necessary condition for optimality is based on the
gradients of the objective functions. In the multiobjective situation, the corresponding Karush-
Kuhn-Tucker (KKT) condition is as follows [7]:

Theorem 2.3. Let x∗ be a Pareto optimal point of (MOP). Then there is some α ∈ (R≥0)k so
that

k∑
i=1

αi∇fi(x∗) = 0 and
k∑
i=1

αi = 1. (2)

Since this is only a necessary optimality condition, we introduce the following definition as a
generalization of critical points in single objective optimization.
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Definition 2.4. Let x ∈ Rn. If there is some α ∈ (R≥0)k such that Equation (2) holds, then x is
called Pareto critical and α a KKT multiplier of x. The set of Pareto critical points P of (MOP)
is called the Pareto critical set.

The Pareto critical set contains first-order candidates for Pareto optimal points. It is the main
object of interest in this article and some of its properties will be investigated in the following
sections.

2.2 Some concepts of topology

Since we will use some topological terms in the following sections, we will introduce them for sake
of completeness.

Definition 2.5. Let X ⊆ Rn.

a) X◦ := {x ∈ X : ∃ neighborhood U of x with U ⊆ X} is the interior of X.

b) X := {x ∈ Rn : ∃(xi)i ∈ X with limi→∞ xi = x} is the closure of X.

c) ∂X := X \X◦ is the (topological) boundary of X.

It is important to note that in general we are not looking at the topological boundary of Pareto
critical sets. Instead we will look at its “edge” that will be defined in Section 3.

3 The structure of the Pareto critical set

In this section we will investigate the structure of the Pareto critical set P and extend the results
from [14]. There it was assumed that the rank of the Jacobian of the objective function f has rank
k− 1 everywhere. (In particular, the assumption restricts the results to problems with k ≤ n+ 1.)
Due to this, (MOP) has a unique KKT multiplier α for every Pareto critical point x∗ (cf. Lemma
3.13) and we obtain a very nice hierarchical structure of the Pareto critical set (see Figure 2).

(a) (b) (c)

Figure 2: (a) The Pareto set of a convex MOP with four objectives. (b) The union of the Pareto
sets of the four subproblems with three objectives (shown in different colors) forms the boundary
of the original Pareto set. (c) The Pareto sets of the six subproblems with two objectives are shown
in blue.
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Here, we will generalize these results. We begin by classifying Pareto critical points by their
respective KKT multipliers and then revisit the (slightly modified) result of Hillermeier [5] about
the manifold structure of the Pareto critical set extended by the set of KKT multipliers. This result
will be used to show that under certain conditions, the tangent cone to the Pareto critical set is
equal to the projection of the tangent space of the extended Pareto critical set onto the parameter
space. This can be used to show that the edge of the Pareto set – which is defined via the tangent
cone – is a subset of the set of Pareto critical points where (at least) one KKT multiplier is 0
(Theorem 3.17 on p. 16).

3.1 Classifying P via KKT multipliers

3.1.1 Pint and P0

We begin by interpreting the KKT conditions (2) as a nonlinear system of equations: Define
F : Rn × (R≥0)k → Rn+1,

F (x, α) :=

(∑k
i=1 αi∇fi(x)∑k
i=1 αi − 1

)
. (3)

Then x ∈ Rn is Pareto critical if there exists a KKT multiplier α ∈ (R≥0)k with F (x, α) = 0. Let
prx be the projection onto the first n components. The set of Pareto critical points P is then given
by

P = prx(F−1(0)).

In order to investigate the structure of P , we take a closer look at the structure of the set of KKT
multipliers. We distinguish between points x ∈ P for which the corresponding KKT multipliers
have at least one zero component and points that have a strictly positive KKT multiplier:

Definition 3.1. For k > 1 let

P0 :={x ∈ P : ∀α ∈ (R≥0)k with F (x, α) = 0 there is at least one i ∈ {1, ..., k}
with αi = 0}

and Pint := P \ P0.

Remark 3.2. The index int (for interior) has been chosen since we will show that Pint is in fact
something like the “interior” of the Pareto critical set. Until now, Pint is only defined as the set of
Pareto critical points that have a strictly positive KKT multiplier.

Since for k = 1 we have to choose α1 = 1, this distinction does not make sense for single objective
optimization which is why we assume k > 1 from now on.

3.1.2 Geometrical properties

The remainder of this section is dedicated to the question how P0 and Pint are related to differential
geometrical and topological properties of P . We start by simplifying F . Obviously, if F (x, α) = 0
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we must have αi = 1 −
∑

j 6=i αj for all i ∈ {1, ..., k}, i.e. it suffices to consider k − 1 entries of α.
Define

∆k−1 :=

{
α ∈ (R>0)k−1 :

k−1∑
i=1

αi < 1

}
with the closure

∆k−1 =

{
α ∈ (R≥0)k−1 :

k−1∑
i=1

αi ≤ 1

}

and F̃ : Rn ×∆k−1 → Rn via

F̃ (x, α) :=

k−1∑
i=1

αi∇fi(x) + (1−
k−1∑
i=1

αi)∇fk(x)

=
k−1∑
i=1

αi(∇fi(x)−∇fk(x)) +∇fk(x).

Then Pint = prx((F̃ |Rn×∆k−1)−1(0)) by Definition 3.1. Since we want to differentiate F̃ (e.g. to be
able to apply the Implicit Function Theorem), we assume from now on that f is twice continuously
differentiable. Then the first derivatives of F̃ are

DF̃ (x, α) =
(
DxF̃ (x, α), DαF̃ (x, α)

)
∈ Rn×(n+k−1)

with

DxF̃ (x, α) =

k−1∑
i=1

αi∇2fi(x) + (1−
k−1∑
i=1

αi)∇2fk(x) ∈ Rn×n

and
DαF̃ (x, α) =

(
∇f1(x)−∇fk(x), · · · ,∇fk−1(x)−∇fk(x)

)
∈ Rn×(k−1).

By construction x is Pareto critical iff there exists some α ∈ ∆k−1 with F̃ (x, α) = 0. For easier
notation we define by

A(x) := {α ∈ ∆k−1 : F̃ (x, α) = 0} (4)

the set of valid (reduced) KKT multipliers for a fixed point x ∈ P . Consequently, x is Pareto
critical iff A(x) 6= ∅.

The following lemma is a first topological result about the relation between Pint and P .

Lemma 3.3. If DxF̃ (x, α) is invertible for all x ∈ P and α ∈ A(x), then

Pint = P

where Pint is the closure of Pint in Rn.
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Proof. If P = ∅ we also have Pint = ∅, so the assertion holds. Let P 6= ∅, x̄ ∈ P and ᾱ ∈ A(x̄). By
our assumption DxF̃ (x̄, ᾱ) is invertible, so we can apply the Implicit Function Theorem to obtain
neighborhoods U ⊆ Rk−1 of ᾱ, V ⊆ Rn of x̄ and a C1-function φ : U → V with F̃ (x, α) = 0 ⇔
φ(α) = x for all (x, α) ∈ V × U . Now choose some sequence (αi)i ⊆ ∆k−1 ∩ U with αi → ᾱ and
define xi := φ(αi) ∀i ∈ N. Since (αi)i ⊆ ∆k−1 we have (xi)i ⊆ Pint and by continuity of φ we have
limi→∞ xi = limi→∞ φ(αi) = φ(ᾱ) = x̄, hence x̄ ∈ Pint. It follows that P ⊆ Pint and in particular
Pint 6= ∅.
Let (xi)i ⊆ Pint be a sequence that converges to some x̄ in Rn. Then (xi)i induces a sequence (αi)i
with αi ∈ A(xi) for all i ∈ N and since ∆k−1 is bounded we can assume w.l.o.g. that αi → ᾱ ∈ ∆k−1.
Since F̃ is continuous we must have F̃ (x̄, ᾱ) = 0 and x̄ ∈ P . Thus Pint ⊆ P .

If the premise of Lemma 3.3 holds, P0 can be thought of as a “null set” in the set P or a set
with a “lower dimension” than P . In a more general case this does not hold as we will see later
(Example 3.11). From now on assume that P 6= ∅. In particular, Lemma 3.3 shows that Pint 6= ∅ if
P 6= ∅, so this assumption makes sure that we do not have to worry about the existence of points
in Pint.

We will now shift our view from topological to differential geometrical properties of P . An
important and well-known result was given by Hillermeier [5], where it is shown that M :=
(F̃ |Rn×∆k−1)−1(0) (with prx(M) = Pint) is a manifold.

Theorem 3.4. Let M := (F̃ |Rn×∆k−1)−1(0). If rk(DF̃ (x, α)) = n for all (x, α) ∈ M, then M is
a (k − 1)-dimensional C2-submanifold of Rn+k−1 and T(x,α)M = ker(DF̃ (x, α)).

Proof. By our assumption 0 is a regular value of F̃ |Rn×∆k−1 . The assertion follows from the sub-
mersion theorem (see e.g. [9], Corollary 5.24 and Lemma 5.29).

The case that is important for what we want to investigate in this article is the special case
where rk(DxF̃ (x, α)) = n for all (x, α) ∈M. This means that we can apply the Implicit Function
Theorem to locally get a differentiable mapping between the set of KKT multipliers and the Pareto
critical set. If the premise of Theorem 3.4 holds but rk(DxF̃ (x, α)) < n, M is a manifold but we
are missing this local relationship. To show what can happen when the premise of Theorem 3.4
fails to hold consider the following example.

Example 3.5. Consider the MOP minx∈R2f(x) with

f(x) :=

(
−2x1x2 − 2x2

1 − 2x2 + x2
2

x1x2 + x2
1 + x2

)
.

For this problem, M can be calculated analytically:

M = (R× {0} × {1/3}) ∪

{(
1− 3α

7α− 1
,−2

1− 3α

7α− 1
, α

)>
: α ∈ (0, 1), α 6= 1

7

}
.

We see in Figure 3 (a) that M is the union of three smooth curves and that there is an intersection
at (0, 0, 1/3)>. Since the resulting “cross” at (0, 0, 1/3)> is not diffeomorphic to an open subset of
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R, M is not a manifold. With the same argument it follows that

Pint = prx(M) = (R× {0}) ∪ {(t,−2t)> : t ∈ R \ [−1,−1/3]}

is not a manifold (with a cross at (0, 0)>), cf. Figure 3 (b).
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Figure 3: M and Pint for Example 3.5.

Observe that in Example 3.5, M could be made a manifold by removing a single point (in this
case (0, 0, 1/3)>) from M. This is made precise in the following lemma.

Lemma 3.6. Let N := {(x, α) ∈M : rk(DxF̃ (x, α)) ≤ n−1}. ThenM\N is a (k−1)-dimensional
C2-submanifold of Rn+k−1 and T(x,α)(M\N) = ker(DF̃ (x, α)).

Proof. N is closed since rk ◦ DxF̃ is lower semicontinuous as the composition of the lower semi-
continuous function rk : Rn×n → N (see e.g. [8]) and the continuous function DxF̃ . This means
U := (Rn ×∆k−1) \N is open and we can apply the Submersion Theorem to F̃ |U as in the proof
of Theorem 3.4.

Remark 3.7. It would be sufficient to remove the set N ′ := {(x, α) ∈M : rk(DF̃ (x, α)) ≤ n−1} ⊆
N from M if one is only interested in having a manifold structure on M. This follows with the
proof of Lemma 3.6 by replacing N with N ′. But since we want to be able to apply the Implicit
Function Theorem as described above, we remove N instead of N ′.

In other words, if the set of points violating the rank condition rk(DxF̃ (x, α)) = n is removed,
the remaining set is a manifold. This means that M is locally a manifold in all points that satisfy
the rank condition. This has also been observed by Hillermeier [5] in a similar way.

Note that the previous results on manifolds only hold in the augmented (x, α) space. The
following example shows that even if rk(DxF̃ (x, α)) = n everywhere, Pint does not have to be a
manifold:
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Figure 4: Pareto critical set for Example 3.8.

Example 3.8. Consider the MOP minx∈R2 f(x) with

f(x) :=

 x2
1 + x2

2

(x1 − 1)2 + (x2 − 1)4

(x1 − 2)2 + (x2 − 2)2

 .

The Pareto critical set can be calculated analytically and is shown in Figure 4. Pint is given by the
gray area united with the points (1, 1)>, (1− 1√

2
, 1− 1√

2
)> ≈ (1.7071, 1.7071)> and (1+ 1√

2
, 1+ 1√

2
)> ≈

(0.2929, 0.2929)>. Due to these additional points, Pint is not a manifold even though M is.

3.2 Tangent cones and the uniqueness of KKT multipliers

The goal of this section is to show that P0 contains the “boundary” or “edge” of P . To this end,
we will from now on assume that

rk(DxF̃ (x, α)) = n for all (x, α) ∈M, (5)

such that thatM is a manifold with the properties stated in Theorem 3.4. By “edge” we mean the
set of points in P that have a tangent vector (with respect to P ) whose negation is not a tangent
vector. It will be formally defined at a later point (Definition 3.16). Tangent vectors are elements
of the tangent cone which is defined as follows in the general case:

Definition 3.9. Let Y ⊆ Rn and x ∈ Rn. Then

Tan(Y, x) :=

{
v ∈ Rn : ∃(vi)i ⊆ Rn \ {0} : vi → 0, x+ vi ∈ Y,

vi
‖vi‖

→ v

‖v‖

}
∪ {0}

is the tangent cone of Y at x.
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The tangent cone Tan(Y, x) contains the directions in x that point into or alongside Y . Note that
in contrast to the tangent space of a manifold, we do not need any structure to define the tangent
cone of a set. The following lemma will be used in a later proof and shows that if DxF̃ (x, α) is also
invertible for x ∈ P and α ∈ ∂A(x) (the boundary of A(x) in Rk−1), then there are no “isolated”
directions in Tan(P, x).

Lemma 3.10. If DxF̃ (x, α) is invertible for all x ∈ P and α ∈ A(x) then

Tan(Pint, x0) = Tan(P, x0) ∀x0 ∈ Pint.

Proof. We obviously have Tan(Pint, x0) ⊆ Tan(P, x0) since Pint ⊆ P . Let v ∈ Tan(P, x0) \ {0}.
Then there exists a sequence (vi)i ∈ Rn \ {0} as in Definition 3.9. Let di := ‖v‖ vi

‖vi‖ and ti = ‖vi‖
‖v‖ .

Then x0+tidi ∈ P ∀i ∈ N. Since Pint = P by Lemma 3.3, we have a sequence (zi)i with ‖zi−di‖ → 0
and x0+tizi ∈ Pint. Define wi := tizi. Then x0+wi ∈ Pint, wi = (zi−di+di)ti = (zi−di)ti+tidi → 0
and wi

‖wi‖ = zi
‖zi‖ . Finally,

lim
i→∞

di
‖di‖

= lim
i→∞

vi
‖vi‖

=
v

‖v‖
,

and ∥∥∥∥ v

‖v‖
− zi
‖zi‖

∥∥∥∥ ≤ ∥∥∥∥ v

‖v‖
− di
‖di‖

∥∥∥∥+

∥∥∥∥ di
‖di‖

− zi
‖zi‖

∥∥∥∥
=

∥∥∥∥ v

‖v‖
− di
‖di‖

∥∥∥∥+
1

‖di‖‖zi‖

∥∥∥‖zi‖di − ‖di‖zi∥∥∥
≤
∥∥∥∥ v

‖v‖
− di
‖di‖

∥∥∥∥+
1

‖di‖‖zi‖

(
‖zi‖‖di − zi‖+ ‖zi‖

(
‖zi‖ − ‖di‖

))
.

Consequently,

lim
i→∞

zi
‖zi‖

=
v

‖v‖
,

since limi→∞ ‖di‖ > 0 and ‖zi − di‖ → 0.

In order to show the irregularities that may occur in MOPs when DxF̃ (x, α) is not invertible for
x ∈ P and α ∈ ∂A(x), we will now give an example where Lemma 3.10 (and Lemma 3.3) does not
hold.

Example 3.11. Consider the MOP minx∈R2 f(x) with

f(x) :=

x2
1 + (x2 − 1)2

x2
1 + (x2 + 1)2

x2
2

 , Df(x) =

2x1 2(x2 − 1)
2x1 2(x2 + 1)
0 2x2

 .
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Figure 5: Pint (blue) and P0 (red) for Example 3.11.

Let F be as in (3), i.e.

F (x, α) =

 2x1α1 + 2x1α2

2(x2 − 1)α1 + 2(x2 + 1)α2 + 2x2α3

α1 + α2 + α3 − 1


=

 2x1(α1 + α2)
2x2(α1 + α2 + α3) + 2(α2 − α1)

α1 + α2 + α3 − 1

 .

It is easy to see that P = (R× {0}) ∪ ({0} × [−1, 1]). We will now determine Pint and P0 for this
MOP:

• x1 6= 0: F (x, α) = 0 iff x ∈ R× {0} and α = (0, 0, 1)>.

• x1 = 0: F (x, α) = 0 iff x ∈ {0} × [−1, 1] and α ∈ {(λ1, λ1 − x2, 1 − 2λ1 + x2)> : λ1 ∈
[0, 1] ∩ [x2, 1 + x2] ∩ [x22 ,

1+x2
2 ]}.

Thus, Pint = {0}×(−1, 1) and P0 = (R×{0})\{(0, 0)>}∪{(0, 1)>, (0,−1)>}, as depicted in Figure
5. Consequently, Pint = {0} × [−1, 1] 6= P . In (0, 0)> we have Tan(Pint, (0, 0)>) = {0} × R and
Tan(P, (0, 0)>) = ({0} × R) ∪ (R × {0}), hence Tan(Pint, (0, 0)>) 6= Tan(P, (0, 0)>). The reason

for this is that ∇2f3(x) =

(
0 0
0 2

)
, so DxF̃ ((0, 0)>, (0, 0, 1)>) = ∇2f3(x) is not invertible.

We will now take a closer look at the relationship between Tan(Pint, x) = Tan(prx(M), x)
and prx(TpM) for p = (x, α) ∈ M. Note that for a general submanifold M of Rn, we have
Tan(prx(M), x) 6= prx(TpM). For example, ifM = S1 is the sphere in R2 and prx is the projection
onto the first coordinate (i.e. prx(M) = [−1, 1]), then for x̃ = (1, 0)> the (one-dimensional) vector

12



−1 is a tangent vector in prx(x̃) = 1, but v1 = 0 for all tangent vectors v = (v1, v2)> ∈ Tx̃M, so
prx(v) = 0 for all v ∈ Tx̃M. However, for the manifolds that arise in our context, we will show that,
under some conditions, Tan(Pint, x) = prx(TpM). The following lemma will show the first half of
this statement, which is that the projection of a tangent vector ofM is always in the tangent cone
of Pint (without requiring any additional regularity assumption).

Lemma 3.12. prx(T(x0,α0)M) ⊆ Tan(Pint, x0) ∀(x0, α0) ∈M.

Proof. Let p := (x0, α0) ∈M and v ∈ TpM. If prx(v) = 0 we obviously have prx(v) ∈ Tan(Pint, x0).
Let prx(v) 6= 0. By definition there exists a C1-curve γ : (−1, 1)→M with γ(0) = p and γ′(0) = v.
Define vl := prx(γ(1/l))− prx(p). W.l.o.g. assume that vl 6= 0 ∀l ∈ N. We have vl → 0 (since γ is
continuous) and x0 + vl = prx(γ(1/l)) ∈ Pint. Finally,

vl
‖vl‖

=
prx(γ(1/l))− prx(p)

‖prx(γ(1/l))− prx(p)‖

=
1/l

‖prx(γ(1/l))− prx(p)‖
prx(γ(1/l))− prx(p)

1/l

=

∣∣∣∣∣∣∣∣prx(γ(1/l)− p
1/l

)∣∣∣∣∣∣∣∣−1

prx

(
γ(1/l)− p

1/l

)
→ prx(v)

‖prx(v)‖
as l→∞,

and hence, prx(v) ∈ Tan(Pint, x0).

To show the opposite direction, i.e. prx(T(x0,α0)M) ⊇ Tan(Pint, x0), we first require an additional
result about the uniqueness of KKT multipliers.

Lemma 3.13. Let x0 ∈ P .

1. If rk(Df(x0)) = k − 1 then |A(x0)| = 1.

2. If x0 ∈ Pint and |A(x0)| = 1 then rk(Df(x0)) = k − 1.

3. If x0 ∈ Pint and rk(Df(x0)) < k − 1 then |A(x0)| > 1 and A(x0) ∩ ∂∆k−1 6= ∅.

Proof. 1. Since x0 ∈ P we have |A(x0)| > 0. Assume |A(x0)| > 1 and let α1, α2 ∈ A(x0) with
α1 6= α2. Let α̃1 := (α1, 1 −

∑k−1
i=1 α

1
i )
> ∈ Rk and α̃2 := (α2, 1 −

∑k−1
i=1 α

2
i )
> ∈ Rk. By definition

we have α̃1, α̃2 ∈ ker(Df(x0)>) and
∑k

i=1 α̃
1
i =

∑k
i=1 α̃

2
i = 1. If there would be some s ∈ R with

α̃1 = sα̃2 then this would result in

1 = (1, ..., 1)>α̃1 = s(1, ..., 1)>α̃2 = s,

so α̃1 and α̃2 have to be linear independent. Thus dim(ker(Df(x0)>)) > 1 which by Rank-nullity
theorem means rk(Df(x0)) = rk(Df(x0)>) = k − dim(ker(Df(x0)>)) < k − 1.

2. Assume rk(Df(x0)) < k − 1. Let α ∈ A(x0). Then we must have some w ∈ Rk with
Df(x0)>w = 0 such that (α, 1−

∑k−1
i=1 αi)

> ∈ Rk and w are linear independent.

Case 1 :
∑k

i=1wi 6= 0. Assume w.l.o.g.
∑k

i=1wi = 1, from which follows F̃ (x0, (w1, ..., wk−1)>) = 0.
For λ ∈ R define β(λ) := α+ λ((w1, ..., wk−1)> − α). Then we have F̃ (x0, β(λ)) = 0 for all λ ∈ R.
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Since α ∈ ∆k−1 and ∆k−1 is open there has to be some λ 6= 0 such that β(λ) ∈ ∆k−1, i.e. α is not
unique.
Case 2 :

∑k
i=1wi = 0. This means

k∑
i=1

wi∇fi(x0) = 0⇔
k−1∑
i=1

wi∇fi(x0) + (
k−1∑
i=1

−wi)∇fk(x0) = 0

⇔
k−1∑
i=1

wi(∇fi(x0)−∇fk(x0)) = 0.

Define β(λ) := α+λ(w1, ..., wk−1)>. Then F̃ (x0, β(λ)) = 0 for all λ ∈ R. The contradiction follows
as in Case 1.

3. Let α ∈ A(x0) ∩ ∆k−1. From the proof of 2. we know that there is some γ ∈ Rk−1 with
F̃ (x0, α+λγ) = 0 for all λ ∈ R. Since α ∈ ∆k−1 and ∆k−1 is bounded, there has to be some λ ∈ R
such that α+ λγ ∈ ∂∆k−1. In particular |A(x0)| > 1.

Lemma 3.13 has the following obvious implications:

Corollary 3.14. 1. Let x0 ∈ P . If rk(Df(x0)) < k − 1 then A(x0) ∩ ∂∆k−1 6= ∅.

2. Let x0 ∈ Pint. Then rk(Df(x0)) = k − 1 ⇔ |A(x0)| = 1.

We can utilize the results about the uniqueness of the KKT multipliers to show that if the rank
of Df is large enough, the opposite direction of Lemma 3.12 holds as well. For this we require f to
be three times continuously differentiable (by which F̃ is C2) which we will assume from now on.

Lemma 3.15. Let x0 ∈ Pint with rk(Df(x0)) = k − 1. Then there exists α0 ∈ A(x0) ∩∆k−1 with

Tan(Pint, x0) ⊆ prx(T(x0,α0)M).

Proof. Let v ∈ Tan(Pint, x0) and (vi)i be a sequence as in Definition 3.9. Since (x0 + vi)i ⊆ Pint,
this induces a sequence (αi)i ∈ ∆k−1 with F̃ (x0 + vi, αi) = 0 ∀i ∈ N. Since ∆k−1 is bounded,

we can w.l.o.g. assume that αi → α0 ∈ ∆k−1 and by continuity of F̃ we have F̃ (x0, α0) = 0. By
Corollary 3.14 we have α0 ∈ ∆k−1.
Since DxF̃ (x0, α0) is invertible and F̃ is C2, we can apply the Implicit Function Theorem at (x0, α0)
to obtain neighborhoods U ⊆ ∆k−1 of α0, V ⊆ Rn of x0 and a (unique) C2 function φ : U → V
such that F̃ (x, α) = 0 ⇔ φ(α) = x and Dφ(α) = −(DxF̃ (x, α))−1DαF̃ (x, α) ∀(x, α) ∈ V × U .
Since αi → α0 and vi → 0 we can assume w.l.o.g. that αi ∈ U and x0 + vi ∈ V ∀i ∈ N. Thus
φ(αi) = x0 + vi and we get

v

‖v‖
= lim

i→∞

vi
‖vi‖

= lim
i→∞

φ(αi)− φ(α0)

‖vi‖
= lim

i→∞

φ(α0 + ‖vi‖αi−α0
‖vi‖ )− φ(α0)

‖vi‖

= lim
i→∞

(
Dφ(α0)

αi − α0

‖vi‖
+
O(‖αi − α0‖2)

‖vi‖

)
(Taylor)

= lim
i→∞

‖αi − α0‖
‖vi‖

(
Dφ(α0)

αi − α0

‖αi − α0‖
+
O(‖αi − α0‖2)

‖αi − α0‖2
‖αi − α0‖

)
.
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Assume that
(
‖αi−α0‖
‖vi‖

)
i

is unbounded. Then by the above equation we have Dφ(α0) αi−α0
‖αi−α0‖ → 0.

W.l.o.g. assume that αi−α0
‖αi−α0‖ → w, which results in Dφ(α0)w = 0, thus DαF̃ (x0, α0)w = 0 with

‖w‖ = 1. This means

(∇f1(x0)−∇fk(x0))w1 + · · ·+ (∇fk−1(x0)−∇fk(x0))wk−1 = 0

⇔ w1∇f1(x0) + · · ·+ wk−1∇fk−1(x0) +

(
k−1∑
i=1

(−wi)

)
∇fk(x0) = 0

⇔ Df(x0)>

(
w1, ..., wk−1,

k−1∑
i=1

(−wi)

)>
= 0

⇔ w̃ ∈ ker(Df(x0)>)

for w̃ := (w,
∑k−1

i=1 (−wi))> ∈ Rk. Let α̃ := (α, 1 −
∑k−1

i=1 αi)
> ∈ Rk. Then α̃ and w̃ are linear

independent since
∑k

i=1 w̃i = 0 and
∑k

i=1 α̃i = 1. As they are both in ker(Df(x0)>) we must have
rk(Df(x0)) < k − 1, which is a contradiction.

So
(
‖αi−α0‖
‖vi‖

)
i

has to be bounded and we can assume w.l.o.g. that αi−α0
‖vi‖ → vα. Thus

v

‖v‖
= lim

i→∞

φ(α0 + ‖vi‖αi−α0
‖vi‖ )− φ(α0)

‖vi‖
= Dφ(α0)vα

= −(DxF̃ (x0, α0))−1DαF̃ (x0, α0)vα.

From this we obtain
DF̃ (x0, α0)z = 0

with z :=
(

v
‖v‖ , v

α
)>
∈ Rn+k−1. By Theorem 3.4 we have T(x0,α0)M = ker(DF̃ (x0, α0)) which

completes the proof.

3.3 The edge of the Pareto critical set

We are now in the position to extend the results in [14] to a more general situation and show that if
x lies on the “edge” of the Pareto critical set, then there has to be a corresponding KKT multiplier
α with a zero component somewhere. The topological boundary ∂P is in general not suitable for
what we want to describe with the term “edge”, see e.g. Example 3.11 (where ∂P = P ). Instead
we define it in the following way:

Definition 3.16. We call

PE := {x ∈ P : Tan(Pint, x) 6= −Tan(Pint, x)}

the edge of the Pareto critical set. In other words, x0 ∈ PE iff there exists v ∈ Tan(Pint, x0) so
that −v /∈ Tan(Pint, x0).
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Building on Lemma 3.12 and Lemma 3.15, we can now proof the main result of this section,
namely that points on the edge of the Pareto critical set also satisfy the optimality conditions for
a subproblem with at least one neglected objective.

Theorem 3.17. If x0 ∈ PE then A(x0) ∩ ∂∆k−1 6= ∅.

Proof. Assume the assertion does not hold, so x0 ∈ PE and @α ∈ ∆k−1 \∆k−1 with F̃ (x0, α) = 0.
In particular, we get x0 ∈ Pint. Then – according to Lemma 3.13 – α has to be unique and
contained in ∆k−1 and rk(Df(x0)) = k − 1. We can thus apply Lemma 3.12 and Lemma 3.15 to
see that Tan(Pint, x0) = prx(T(x0,α0)M). Since prx(T(x0,α0)M) is a vector space, we obviously have
Tan(Pint, x0) = −Tan(Pint, x0) which contradicts our assumption.

If we additionally assume that the rank of Df is large enough we can use Lemma 3.13 to get the
following corollary:

Corollary 3.18. Let rk(Df(x)) = k − 1 for all x ∈ Pint. Then PE ⊆ P0.

Theorem 3.17 and Corollary 3.18 show that some objective functions may be discarded if we are
only interested in calculating the edge of the Pareto critical set. This will be used in Section 4.

Although ∂P and P0 do not coincide in general, there is a special case where ∂P = P0, as shown
in the following lemma. (In this case, PE is not required to describe the relationship between P0

and P ).

Lemma 3.19. Let rk(Df(x)) = k − 1 = n for all x ∈ P . Then ∂P = P0 (with ∂P defined as in
Definition 2.5).

Proof. By definition we have ∂P = P \P ◦ and P0 = P \Pint. To prove this assertion, we will show
that P = P and P ◦ = Pint.
P = P : Let (xi)i ∈ P be a sequence that converges to some x̄ ∈ Rn and αi ∈ A(xi). Since ∆k−1

is compact we can assume w.l.o.g. that αi converges to some ᾱ ∈ ∆k−1. Since F̃ is continuous, we
have 0 = limi→∞ F̃ (xi, αi) = F̃ (x̄, ᾱ), and hence x̄ ∈ P . Consequently, P = P and ∂P = P \ P ◦.
P ◦ = Pint: Let x ∈ Pint. Assume that for all neighborhoods U of x in Rn there is some y with

y /∈ Pint. This means there is a sequence (yi)i ∈ Rn with limi→∞ yi = x and yi /∈ Pint for all i ∈ N.
By our assumption we have Df(y) ∈ R(n+1)×n, so dim(ker(Df(y)>)) ≥ 1 for all y ∈ Rn. Thus
(yi)i induces a sequence (βi)i ∈ Rn+1 \ {0} with

Df(yi)
>βi = 0⇔

n+1∑
j=1

(βi)j∇fj(yi) = 0 ∀i ∈ N. (6)

Since Equation (6) still holds if we scale every βi with some λi ∈ R>0, we can assume w.l.o.g. that
‖βi‖ = 1 for all i ∈ N and that it converges to some β̄ ∈ ker(Df(x)>) with ‖β̄‖ = 1. Due to the
assumption rk(Df(x)) = n, we have dim(ker(Df(x)>)) = 1 such that α′ := (ᾱ, 1−

∑n
i=1 ᾱi) and

β̄ have to be linear dependent. Since α′ ∈ (R>0)n, there is some N ∈ N and λ ∈ R \ {0} such that
λβi ∈ (R>0)n for i > N and Equation (6) still holds. Consequently, (yi)i ∈ Pint for i > N which is
a contradiction to our assumption. It follows that for all x ∈ Pint, there is a neighborhood U of x
in Rn with U ⊆ P , i.e. Pint = P ◦. By this we obtain the desired result ∂P = P \ Pint = P0.
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4 Calculating the Pareto critical set via lower-dimensional subproblems

In Section 3 we have shown that points on the edge PE of the Pareto critical set have a KKT
multiplier where one component is zero. We want to exploit this and consider the k subproblems
of (MOP) where one objective function is neglected. By the results from Section 3, PE is a subset
of the union of the Pareto critical sets of these k subproblems. (As we will see in Example 4.4,
there are situations where this union contains a lot more than PE .) Furthermore, we are going to
study problems where more than one KKT multiplier is 0.

4.1 Subproblems

The subproblems mentioned above arise by omitting certain objective functions or, in other words,
by only taking a subset of the set of objective functions: For I ⊆ {1, ..., k} we denote by

min
x∈Rn

f I(x) (MOPI)

the MOP where f I(x) := (fi(x))i∈I , i.e. f I contains only those components of the objective function
f with indices in I. Let P I be the set of Pareto critical points of (MOPI) and F I , F̃ I and AI be
defined analogously to F , F̃ and A in Section 3 for (MOPI). Since we have not defined P0 and Pint

for scalar-valued MOPs, we set P I0 := P I and P Iint := ∅ if |I| = 1 for ease of notation. For I = ∅ let
P I := ∅ and Pint := ∅. The following lemma shows that points that are Pareto critical with respect
to a subset of the set of objective functions are also Pareto critical for the full problem:

Lemma 4.1. P I ⊆ P ∀I ⊆ {1, ..., k}.

Proof. Let I = {i1, ..., i|I|} ⊆ {1, ..., k} and x0 ∈ P I . Then

∃αI ∈ (R≥0)|I| : ∇fi1(x0)αI1 + · · ·+∇fi|I|(x0)αI|I| = 0 and

|I|∑
i=1

αIi = 1.

Define α ∈ Rk via

αi :=

{
αIi i ∈ I,
0 otherwise.

Then
∑k

i=1 αi =
∑|I|

j=1 α
|I|
j = 1,

∇f1(x0)α1 + · · ·+∇fk(x0)αk = 0,

and x0 ∈ P which yields the desired result.

Remark 4.2. Lemma 4.1 can be generalized to P J ⊆ PK if J ⊆ K.

In Corollary 3.18 we had to assume that rk(Df(x)) = k− 1 for all x ∈ Pint to see that PE ⊆ P0.
The following lemma shows that if this rank condition is violated, we can still find a subproblem
(MOPI) such that x is Pareto critical with respect to (MOPI) and rk(Df I(x)) = |I| − 1, i.e. that
Corollary 3.18 can be applied to that subproblem. In particular, this induces a decomposition of
(MOP) into subproblems that satisfy the rank condition.
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Lemma 4.3. Let x0 ∈ P . Then there exists some I ⊆ {1, ..., k} with |I| = rk(Df(x0)) + 1 such
that rk(Df I(x0)) = rk(Df(x0)) and x0 ∈ P I . Moreover, if x0 ∈ P0 then x0 ∈ P I0 . In particular,
there is some J ⊆ P({1, ..., k}) with

P =
⋃
I∈J

P I and P0 ⊆
⋃
I∈J

P I0

and ∀x ∈ P∃I ∈ J with rk(Df(x)) = rk(Df I(x)) = |I| − 1.

Proof. If rk(Df(x0)) = k − 1 then we can simply choose I = {1, ..., k}. We therefore now assume
rk(Df(x0)) < k − 1. Let J := {j ∈ {1, ..., k} : rk(Df I\{j}(x0)) < rk(Df(x0))} be the set of
linear independent objectives and K := {1, ..., k} \ J . Then we have αj = 0 for all j ∈ J and all
α ∈ (R≥0)k with F (x0, α) = 0 (since the jth gradient is linear independent). By construction we
have rk(DfJ(x0)) = |J | and

k − 1 > rk(Df(x0)) = rk(DfK(x0)) + |J |
⇔ rk(DfK(x0)) < k − |J | − 1 = |K| − 1.

Consequently, x0 ∈ PK and we can apply Corollary 3.14 to fK to see that there is some α′ ∈
(R≥0)|K| with FK(x0, α

′) = 0 and some l ∈ K with α′l = 0 and rk(DfK\{l}(x0)) = rk(DfK(x0))
(since K := {1, ..., k} \ J). Thus, if we set I = {1, ..., k} \ {l} we have rk(Df I(x0)) = rk(Df(x0))
and x0 ∈ P I .
We will now show that if x0 ∈ P0, then after removing some l as above, there is still a component
where all KKT multipliers are zero. So assume x0 ∈ P0. Let A′(x0) := {α ∈ (R≥0)k :

∑k
i=1 αi =

1 and F (x0, α) = 0}. We will show that after neglecting the lth objective, there still exists some
j ∈ I = {1, ..., k} \ {l} with αj = 0 for all α ∈ A′(x0), so x0 ∈ P I0 . For all α ∈ A′(x0) there is some
j ∈ {1, ..., k} with αj = 0. By the structure of A(x0)′, there has to be j ∈ {1, ..., k} with αj = 0 for
all α ∈ A′(x0). If there are two such indices, we are done since only one element of I is removed.
Hence, assume there is only one such j.
We will show that j ∈ J by contradiction, so assume j /∈ J . Then rk(Df(x0)) = rk(Df I\{j}(x0)),
and there is some β ∈ Rk with βj = 0 and Df(x0)>β = ∇fj(x0). If we set β′ := −β + ej , where
ej is the j-th unit vector (in Cartesian coordinates), then F (x0, β

′) = 0. By the assumption of the
uniqueness of j there has to be some α′ ∈ A′(x0) with α′i > 0 for all i 6= j. So there has to be s > 0
such that γ ∈ A′(x0) where

γ :=
α′ + sβ′

1− s
∑k

i=1 β
′
i

.

But we have γj = s
1−s

∑k
i=1 β

′
i

6= 0 which is a contradiction to αj = 0 for all α ∈ A′(x0), hence j ∈ J .

As a consequence, in the above step j can not be removed since l /∈ J .
Each time we apply the above procedure, |I| is decreased by 1 and rk(Df I(x0)) does not change,
so there has to be some I with |I| − 1 = rk(Df(x0)) and x0 ∈ P I . Also x0 ∈ P I0 if x0 ∈ P0.

Lemma 4.3 also shows that it suffices to solve a number of subproblems with fewer objective
functions instead of the full MOP to get the complete Pareto critical set (and not only the edge)
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if the rank of the Jacobian of f is small (relative to k). (For instance, such a situation always
occurs when k > n+ 1.) This is especially useful since the complexity for solving MOPs in general
increases significantly with the number of objectives. Unfortunately, Lemma 4.3 does not help for
finding the smallest set J of subsets of the objectives that need to be solved, so in general we have
to consider all possible subsets. An example for Lemma 4.3 is shown below:

Example 4.4. a) Consider the MOP minx∈R2 f(x) with

f(x) :=


(x1 + 1)2 + (x2 + 1)2

(x1 − 1)2 + (x2 + 1)2

x2
1 + (x2 − 1)2

x2
1 + x2

2

 .

The Pareto critical set is the triangle with corners (−1,−1), (1,−1) and (0, 1). Since k = 4 and
n = 2, we must have rk(Df(x)) < k− 1 = 3. By Lemma 4.3 we can write P as the union of some
P I . We can choose for example to solve (MOPI) with I ∈ {{1, 2, 4}, {2, 3, 4}, {1, 3, 4}} or with
I = {1, 2, 3}. The situation is depicted in Figure 6. (Note that in general, it will obviously not be
sufficient to only solve one (MOPI) as will be seen in the next example.)
b) Consider the MOP minx∈R2 f(x) with

f(x) :=


(x1 + 1)2 + (x2 + 1)2

(x1 − 1)2 + (x2 + 1)2

(x1 − 1)2 + (x2 − 1)2

(x1 + 1)2 + (x2 − 1)2

 .

The Pareto critical set is the square with corners (−1,−1), (1,−1), (1, 1) and (−1, 1). Here we can
choose for example I ∈ {{1, 2, 4}, {2, 3, 4}} (the bottom-left triangle and the upper-right triangle),
which is depicted in Figure 7. Note that Lemma 4.3 does not state anything about P Iint, so if we apply
it in some x0 ∈ P we generally do not know if there is some I (that satisfies the rank condition)
with x0 ∈ P Iint. In this example there is no I so that (0, 0)> ∈ P Iint although (0, 0)> ∈ Pint.

As described above, Lemma 4.3 states how the complete Pareto critical set can be obtained
by solving subproblems with lesser objective functions. Roughly speaking, these subproblems are
made so that we can apply Theorem 3.17 to see that one additional objective can be omitted to
only get the edge of the critical set. This is done in the following lemma.

Lemma 4.5. Let x0 ∈ PE and m := maxx∈P rk(Df(x)). Then there has to be some I ∈
P({1, ..., k}) with |I| ≤ m+ 1 such that either I = {i} and ∇fi(x0) = 0 or AI(x0) ∩ ∂∆|I|−1 6= ∅.

Proof. Let J be as in Lemma 4.3 and x0 ∈ PE . By construction we have |I| ≤ m+ 1 for all I ∈ J .
If there is some I ∈ J with x0 ∈ P I and |I| = 1 we have ∇fi(x0) = 0 for I = {i} and we are done.
So assume |I| > 1 for all I ∈ J with x0 ∈ P I .
Case 1 : Tan(Pint, x0) 6= Tan(P, x0). We must have v ∈ Tan(P, x0) with v /∈ Tan(Pint, x0). Since
P0 = P \ Pint, this means U ∩ P0 6= ∅ for all neighborhoods U of x0 and thus, x0 ∈ P0. Let
(yj)j ∈ P0 with limj→∞ yj = x0. By Lemma 4.3 and since |J | is finite, there has to be some K ∈ J
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(b) A decomposition of P

Figure 6: P and the decomposition {{1, 2, 4} (red), {2, 3, 4} (green), {1, 3, 4} (blue)} for Example
3.5, a).

with yj ∈ PK0 infinitely many times such that x0 ∈ PK0 . In particular, ∂∆|K|−1 ∩AK(x0) 6= ∅.
Case 2 : Tan(Pint, x0) = Tan(P, x0). This means

Tan(Pint, x0) = Tan(P, x0) = Tan

(⋃
I∈J

P I , x0

)
=
⋃
I∈J

Tan(P I , x0). (7)

For the last equality note that ⊇ is obvious and ⊆ follows from the fact that P I is closed for all
I. Since x0 ∈ PE there has to be I ∈ J with Tan(P I , x0) 6= −Tan(P I , x0). If Tan(P Iint, x0) 6=
Tan(P I , x0), we have x0 ∈ P I0 and we are done as in Case 1. Otherwise, we get x0 ∈ P IE . If
rk(Df I(x0)) = |I| − 1 we can apply Theorem 3.17 to obtain x0 ∈ P I0 (so AI(x0) ⊆ ∂∆|I|−1). If
rk(Df I(x0)) < |I| − 1 we can apply Corollary 3.14 to (MOPI) which yields ∂∆|I|−1 ∩AI(x0) 6= ∅.

By uniting over all possible subsets of {1, ..., k} of appropriate size, the last lemma can be used
to get the following corollary.

Corollary 4.6. Assume m := maxx∈P rk(Df(x)) > 0. Then

PE ⊆
⋃

I∈P({1,...,k}),|I|=m

P I .

Corollary 4.6 is the main result of this section. It basically states that it suffices to consider
|I| = rk(Df) objective functions to compute the edge of the Pareto critical set. We will demonstrate
this in the following examples.
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Figure 7: P and the decomposition {{1, 2, 4} (red), {2, 3, 4} (blue)} for Example 3.5, b).

4.2 Examples

Example 4.7. We again consider the MOPs from Example 4.4.
a) We have rk(Df(x)) = 2 for all x ∈ R2, so by Corollary 4.6 it suffices to consider only pairs of 2
objective functions. The corresponding Pareto critical sets are shown in Figure 8 (a). To compute
PE it would suffice to consider the three subproblems in {{1, 2}, {2, 3}, {1, 3}}.
b) We have rk(Df(x)) = 2 for all x ∈ R2, so again it suffices to consider only pairs of 2 objective
functions. In this case we need to solve the four subproblems in {{1, 2}, {2, 3}, {3, 4}, {4, 1}} to
obtain PE as shown in Figure 8 (b).

The above examples are obviously very simple such that the relation between P , PE , Pint and
P0 is relatively easy to see. We will now consider more complicated examples:

Example 4.8. Consider the MOP minx∈R2 f(x) with

f(x) :=


x4

1 + x4
2

(x1 − 1/3)6 + (x2 − 1/3)2

(x1 − 2/3)2 + (x2 − 2/3)4

0.25(x1 − 1)2 + (x2 − 1)4

 .

By construction the hessian matrices of the individual objectives are diagonal and it is easy to see
that DxF̃ (x, α) is invertible for all (x, α) ∈ R2×∆3, so the assumption (5) is satisfied. The Pareto
critical set is shown in Figure 9 (a), where the black dots indicate the critical points of each objec-
tive individually. Figure 9 (b) shows the solutions to all possible 2-objective subproblems. Figure
10 shows which Pareto critical set corresponds to which 2-objective subproblem.
In contrast to Example 4.7 we see that it is possible for the Pareto critical set of a subproblem to
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Figure 8: Necessary (red) and unnecessary (black) part of Pareto critical set of the subproblems.

be partly on PE and partly inside of P , for example in the case of objective 1 and 3 (green).
Additionally, we see intersections of critical sets outside of the solution of the 1-objective subprob-
lems, for example the intersection of the red and the blue line. This indicates that these points have
two KKT multipliers with different zero components.

The previous example indicates that if we have a “kink” in PE then it is either a critical point
of a (m − 1)-objective subproblem (with m as in Corollary 3.18) or a critical point with multi-
ple KKT multipliers on the boundary of the standard simplex. The classification of those non-
differentiabilities in the boundary of the Pareto critical set highlights an additional advantage of
the approach presented in this paper.

As shown in Lemma 3.6, we can remove points that do not satisfy the assumption (5) from the
extended Pareto critical set M to still have a manifold structure. Since the techniques we used in
Section 3 and 4 were basically of local nature, this encourages that our results can also be applied
to MOPs that do not satisfy assumption (5). This will be done in the following examples.

Example 4.9. Consider the MOP minx∈R2 f(x) with

f(x) :=


0.5(x1 − 1)2 + x2

2

2x2
1 + 2(x2 − 1)2

2(x1 + 1)2 + x5
2

−2x3
1 + 2(x2 + 1)2

 .

Since each objective function is polynomial, it is still (relatively) easy to calculate the Pareto critical
set analytically. The part of interest is shown in Figure 11 (a). Figure 11 (b) additionally shows
the Pareto critical sets to all 2-objective subproblems. Figure 12 shows which Pareto critical set
corrseponds to which 2-objective subproblem.
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(a) P (gray) and PE (black) (b) P (gray) and the solutions of the subproblems
(black)

Figure 9: Pareto critical sets for Example 4.8.

One can see that for this example, it is not necessary to consider the subproblem {1, 4} since its
Pareto critical set is in the interior – i.e. it does not lie on the edge – of the actual Pareto critical
set. (Strictly speaking PE ∩ P {1,4} = {(0,−1)}, but this point is also in P {2,4} and P {3,4}, so it is
already covered). Other than that, all subproblems have to be solved to obtain PE.

The following example from [14, Example 4.1.5] shows how the Pareto critical set can be derived
from PE if additional properties of the objective function are known, like in this case boundedness.

Example 4.10. Consider the MOP minx∈R2f(x) with

f(x) :=

 −6x2
1 + x4

1 + 3x2
2

(x1 − 0.5)2 + 2(x2 − 1)2

(x1 − 1)2 + 2(x2 − 0.5)2

 .

Figure 13 shows the Pareto critical sets of the three 2-objective subproblems. It is possible to show
that rk(Df(x)) = 2 for all x ∈ Pint so that Lemma 3.19 can be applied. The Pareto critical set
of this problem is bounded so we know that it is given by the interior (and boundary) of the two
disconnected sets depicted in Figure 13.
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Figure 10: Pareto critical set for each 2-objective subproblem

(a) P (gray) and PE (black) (b) P (gray) and the solutions of the subproblems
(black)

Figure 11: Pareto critical sets for Example 4.9.
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Figure 12: Pareto critical set for each 2-objective subproblem in Example 4.9.

Figure 13: Pareto critical sets for the three 2-objective subproblems in Example 4.10.
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5 Conclusion and outlook

5.1 Conclusion

We have presented results about the structure of the set of Pareto critical points with respect to
the corresponding KKT multipliers. Our main result is that the boundary of the Pareto critical
set can be covered by Pareto critical sets of subproblems in which we only consider a subset of the
full objective function. The number of components required for the subproblems depends on the
rank of the Jacobian of the objective function. To prove our main result we have investigated the
relationship between tangent cones of the Pareto critical set and the tangent spaces of the manifold
of Pareto critical points extended by their KKT multipliers. The boundary of the Pareto critical set
can give useful insight into the global Pareto set or – if it coincides with the topological boundary
– even describe it completely.

5.2 Outlook

First of all there are some theoretical aspects that could be investigated further, for example the
relationship between ∂P and PE and what the requirements are such that P0 = PE . Additionally,
since we only worked with a first order necessary optimality condition for Pareto optimality, it may
be possible to extend our results by using nondominance tests or information about higher order
derivatives. We also only considered the unconstrained case, so it will be interesting to see how our
results convert to equality and inequality constrained MOPs. Finally, our results may be used to
build new methods for solving MOPs via computation of the boundary of the Pareto critical set.
A first approach in this direction has also been discussed in [14], where the well-known ε-constraint
method was generalized to considering subproblems with fewer objective functions instead of scalar
problems.
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