Skip to main content
Log in

Minimum variance allocation among constrained intervals

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We propose a weighted minimum variance allocation model, denoted by WMVA, which distributes an amount of a divisible resource as fairly as possible while satisfying all demand intervals. We show that the problem WMVA has a unique optimal solution and it can be characterized by the uniform distribution property (UDP in short). Based on the UDP property, we develop an efficient algorithm. Theoretically, our algorithm has a worst-case \(O(n^2)\) complexity, but we prove that, subject to slight conditions, the worst case cannot happen on a 64-bit computer when the problem dimension is greater than 129. We provide extensive simulation results to support the argument and it explains why, in practice, our algorithm runs significantly faster than most existing algorithms, including many O(n) algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973). https://doi.org/10.1016/S0022-0000(73)80033-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Brucker, P.: An \(O(n)\) algorithm for quadratic knapsack problems. Oper. Res. Lett. 3(3), 163–166 (1984). https://doi.org/10.1016/0167-6377(84)90010-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Calamai, P.H., Moré, J.J.: Quasi–Newton updates with bounds. SIAM J. Numer. Anal. 24(6), 1434–1441 (1987). https://doi.org/10.1137/0724092

    Article  MathSciNet  MATH  Google Scholar 

  4. Cominetti, R., Mascarenhas, W.F., Silva, P.J.S.: A Newton’s method for the continuous quadratic knapsack problem. Math. Program. Comput. 6(2), 151–169 (2014). https://doi.org/10.1007/s12532-014-0066-y

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai, Y.-H., Fletcher, R.: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. Math. Program. 106(3), 403–421 (2006). https://doi.org/10.1007/s10107-005-0595-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Davis, T.A., Hager, W.W., Hungerford, J.T.: An efficient hybrid algorithm for the separable convex quadratic knapsack problem. ACM Trans. Math. Softw. 42(3), 25pp (2016). https://doi.org/10.1145/2828635. Article 22

    Article  MathSciNet  MATH  Google Scholar 

  7. Helgason, R., Kennington, J., Lall, H.: A polynomially bounded algorithm for a singly constrained quadratic program. Math. Program. 18(1), 338–343 (1980). https://doi.org/10.1007/BF01588328

    Article  MathSciNet  MATH  Google Scholar 

  8. Ibaraki, T., Katoh, N.: Resource Allocation Problems: Algorithmic Approaches. No. 4 in Foundations of Computing Series. The MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  9. Kiwiel, K.C.: On linear-time algorithms for the continuous quadratic knapsack problem. J. Optim. Theory Appl. 134(3), 549–554 (2007). https://doi.org/10.1007/s10957-007-9259-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Kiwiel, K.C.: Breakpoint searching algorithms for the continuous quadratic knapsack problem. Math. Program. 112(2), 473–491 (2008). https://doi.org/10.1007/s10107-006-0050-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Kiwiel, K.C.: Variable fixing algorithms for the continuous quadratic knapsack problem. J. Optim. Theory Appl. 136(3), 445–458 (2008). https://doi.org/10.1007/s10957-007-9317-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Pardalos, P.M., Kovoor, N.: An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds. Math. Program. 46(1), 321–328 (1990). https://doi.org/10.1007/BF01585748

    Article  MathSciNet  MATH  Google Scholar 

  13. Pardalos, P.M., Ye, Y., Han, C.-G.: Algorithms for the solution of quadratic knapsack problems. Linear Algebra Appl. 152(1), 69–91 (1991). https://doi.org/10.1016/0024-3795(91)90267-Z

    Article  MathSciNet  MATH  Google Scholar 

  14. Patriksson, M.: A survey on the continuous nonlinear resource allocation problem. Eur. J. Oper. Res. 185(1), 1–46 (2008). https://doi.org/10.1016/j.ejor.2006.12.006

    Article  MathSciNet  MATH  Google Scholar 

  15. Patriksson, M., Strömberg, C.: Algorithms for the continuous nonlinear resource allocation problem—new implementations and numerical studies. Eur. J. Oper. Res. 243(3), 703–722 (2015). https://doi.org/10.1016/j.ejor.2015.01.029

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for reading this article and for making suggestions. Thanks also to Professor Silva for providing the source codes for experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Min Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, HM., Sheu, RL. Minimum variance allocation among constrained intervals. J Glob Optim 74, 21–44 (2019). https://doi.org/10.1007/s10898-019-00748-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00748-3

Keywords

Mathematics Subject Classification

Navigation