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On seeking efficient Pareto optimal points in
multi-player minimum cost flow problems with
application to transportation systems

Shuvomoy Das Gupta & Lacra Pavel

Abstract In this paper, we propose a multi-player extension of the minimum cost flow problem
inspired by a transportation problem that arises in modern transportation industry. We associate
one player with each arc of a directed network, each trying to minimize its cost function subject
to the network flow constraints. In our model, the cost function can be any general nonlinear
function, and the flow through each arc is an integer. We present algorithms to compute efficient
Pareto optimal point(s), where the maximum possible number of players (but not all) minimize
their cost functions simultaneously. The computed Pareto optimal points are Nash equilibriums
if the problem is transformed into a finite static game in normal form.

1 Introduction

In recent years, product transportation systems are increasingly being dominated by retailers
such as Amazon, Alibaba, and Walmart, who utilize e-commerce solutions to fulfill customer
supply chain expectations [2, 3, 4, 5]. In the supply chain strategy of these retailers, products
located at different warehouses are shipped to geographically dispersed retail centers by differ-
ent transportation organizations. These transportation organizations (carriers) compete among
themselves and transport goods between warehouses and retail centers over multiple transporta-
tion links. For example, Amazon uses FedEx, UPS (United Parcel Service), AAR (Association
of American Railroads), and other competing organizations to provide transportation services
[6, Chapter 11].

Product shipment from a warehouse to a retail center requires contracting multiple competing
carriers, e.g., a common shipment may comprise of (i) a trucking shipment from the warehouse
to a railhead provided by FedEx, then (ii) a rail shipment provided by AAR, and finally (iii)
a trucking shipment from the rail yard to the retail center provided by UPS. It is common
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that different competing carriers operate over the same transportation link, e.g., both FedEx
and UPS provide trucking shipment services for Amazon over the same transportation link [4,
Section 9.1]. The goal of each carrier is to maximize its profit (minimize its cost). So a relevant
question in this regard is how to determine a good socially-optimal solution for the competing
carriers.

We can formulate the multi-carrier transportation setup described above as a multi-player
extension of the well-known minimum cost flow problems. The transportation setup can be
modeled by a directed network, where a warehouse is a supply node and a retail center is
a demand node. A transportation link is an arc, and a carrier (e.g., FedEx, UPS) in charge
of transporting products over that transportation link is a player. The products transported
over the directed network are modeled as the flow through the network, and customer supply
chain expectations can be modeled as mass-balance constraints. Each of the carriers is trying to
maximize its profit by maximizing the total number of products that it transports. Carriers are
competing for a limited resource, namely the total number of products to be transported. Note
that one carrier making the maximum profit may impact the other carriers in a negative manner
and even violate customer supply chain expectations. Our goal is to define a socially-optimal
solution concept in this setup and to provide algorithms to calculate such a solution.

The problem above can be generalized as a multi-player minimum cost flow problem [1]. We
associate one player with one arc of the directed and connected network graph. Parallel arcs
between two nodes denote two competing carriers over the same transportation link. Each of
the players is trying to minimize its cost function, subject to the network flow constraints. The
flow through each arc is taken to be an integer. This assumption incurs no significant loss of
generality because by suitable scaling we can use the integer model to obtain a real-valued flow
vector to any desired degree of accuracy. Naturally, defining an efficient solution concept is of
interest in such a problem setup.

The unambiguously best choice would be a utopian vector optimal solution, which minimizes
all the objectives simultaneously. However, this is unlikely to exist in practice [7, page 176]. A
generic Pareto optimal point, where none of the objective functions can be improved without
worsening some of the other objective values, is a better solution concept. However, there can
be numerous such generic Pareto optimal points, many of which would be poor in quality or
efficiency [7, Section 4.7.5]. In this paper, we investigate an efficient Pareto optimal point [8,
Section 2.2] as a good compromise solution that finds a balance between the utopian vector
optimality and the generic Pareto optimality. We present algorithms to compute an efficient
Pareto optimal point, i.e., a Pareto optimal point where the maximum possible (but not all)
number of players minimize their cost functions simultaneously.

Related work. The classic version of the minimum cost flow problem has a linear cost function
for which polynomial time algorithms exist [9, Chapter 10], even when the network structure
(e.g., nodes and arcs) is subject to uncertainty [10]. The polynomial runtime can be improved
to a linear runtime when the minimum cost flow problem has a special structure [11]. However,
for nonlinear cost functions, results exist for very specific cases, and no work seems to exist
for arbitrary nonlinear functions. The most commonly used nonlinear cost function is the fixed
charge function, where the cost on the arc is 0 if the flow is zero and affine otherwise. Network
flow problems with fixed charge costs are studied in [12, 13, 14], where the integrality condition
on the flow is not considered. Minimum cost flow problems with concave cost functions are
studied in [15, 16, 17, 18, 19]. Minimum cost flow problems with piece-wise linear cost functions
is investigated in [20, 21, 22]. A dynamic domain contraction algorithm for nonconvex piece-
8wise linear network flow problems is proposed in [23]. A particle swarm optimization based
hybrid algorithm to solve the minimum concave cost network flow problem is investigated in
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[24]. Finding Pareto optimal points in multi-objective network flow problem with integer flows
has been limited so far to linear cost functions and two objectives [25, 26, 27, 28]. A multi-
player minimum cost flow problem with nonconvex cost functions is explored in [1]. Integer
multi-commodity flow problems are investigated in [29, 30, 31]; the underlying problems are
optimization problems in these papers.

Contributions. In this paper, we propose an extension of the minimum cost flow problem to a
multi-player setup and construct algorithms to compute efficient Pareto optimal solutions. Our
problem can be interpreted as a multi-objective optimization problem [7, Section 4.7.5] with the
objective vector consisting of a number of univariate general nonlinear cost functions subject
to the network flow constraints and integer flows. In comparison with existing literature, we do
not require the cost function to be of any specific structure. The only assumption on the cost
functions is that they are proper. In contrast to relevant works in multi-objective network flow
problems, our objective vector has an arbitrary number of components; however, each component
is a function of a decoupled single variable. We extend this setup to a problem class that is strictly
larger than, but that contains the network flow problems. We develop our algorithms for this
larger class.

We show that, although in its original form the problem has coupled constraints binding
every player, there exists an equivalent variable transformation that decouples the optimization
problems for a maximal number of players. Solving these decoupled optimization problems can
potentially lead to a significant reduction in the number of candidate points to be searched.
We use the solutions of these decoupled optimization problems to reduce the size of the set
of candidate efficient Pareto optimal solutions even further using algebraic geometry. Then we
present algorithms to compute efficient Pareto optimal points that depend on a certain semi-
algebraic set being nonempty. We also present a penalty based approach applicable when that
semi-algebraic set is empty; such an approach can be of value to network administrators and
policy makers. To the best of our knowledge, our methodology is novel. The computed efficient
Pareto optimal point has some desirable properties: (i) it is a good compromise solution between
the utopian vector optimality and the generic Pareto optimality, and (ii) it is a Nash equilibrium
if we convert our setup into a finite static game in normal form.

The rest of the paper is organized as follows. Section 1 presents notation and notions used
in the paper. Section 2 describes the problem for directed networks and the extension to a
strictly larger class. In Section 3, we transform the problem under consideration into decoupled
optimization problems for a number of players and reformulate the optimization problems for
the rest of the players using consensus constraints. Section 4 presents algorithms for computing
efficient Pareto optimal points for our problem if a certain semi-algebraic set is nonempty. Section
5 discusses a penalty based approach if the semi-algebraic set is empty. Section 6 presents an
illustrative numerical example of our methodology in a transportation setup. Finally, in Section
7 we present some concluding remarks regarding our methodology. Proofs are provided in
the Appendix.

Notation and notions. We denote the sets of real numbers, integers, and natural numbers
by R, Z, and N, respectively. The ith column, jth row, and (i, j)th component of a matrix
A ∈ Rm×n is denoted by Ai, aTj , and aij , respectively. The submatrix of a matrix A ∈ Rm×n,
which constitutes of its rows r1, r1 + 1, . . . , r2 and columns c1, c1 + 1, . . . , c2, is denoted by
A[r1:r2,c1:c2] ∈ R(r2−r1+1)×(c2−c1+1). If we make two copies of a vector x ∈ Rn, then the copies are
denoted by x(1) and x(2). By Ii,j ∈ Rn×n, we denote a matrix that has a 1 on its (i, j)th position
and 0 everywhere else. If C and D are two nonempty sets, then C+D = {x+y | x ∈ C, y ∈ D}.
If A ∈ Rm×n is a matrix and C is a nonempty set containing n-dimensional points, then
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AC = {Ax | x ∈ C}. The set of consecutive integers from 1 to n is denoted by [n] = {1, 2, . . . , n}
and m to n is denoted by [m : n] = {m,m + 1, . . . , n}. If we have two vectors x, y ∈ Rn, then
x � y means

(∀i ∈ [n]) xi ≥ yi,
and we write x− y ∈ Rn

+. Depending on the context, 0 can represent the scalar zero, a column
vector of zeros, or a matrix with all the entries zero, e.g., if we say x ∈ Rn and x = 0, then 0
represents a column vector of n zeros. On the other hand, if we say A ∈ Rm×n and A = 0, then
0 represents a matrix of m rows and n columns with all entries zero.

Consider a standard form polyhedron {x ∈ Rn | Ax = b, x � 0}, where A ∈ Rm×n is a full
row rank matrix, and b ∈ Rm. A basis matrix of this polyhedron is constructed as follows. We
pick m linearly independent columns of A and construct the m×m invertible square submatrix
out of those columns; the resultant matrix is called a basis matrix. The concept of basis matrix
is pivotal in simplex algorithm, which is used to solve linear programming problem. Suppose we
have a polyhedron defined by linear equality and inequality constraints in Rn. Then x̃ ∈ Rn is
called a basic solution of the polyhedron, if all the equality constraints are active at x̃, and out
of all the active constraints (both equality and inequality) that are active at x̃, there are n of
them that are linearly independent.

2 Problem statement

Let G = (M,A) be a directed connected graph associated with a network, whereM = [m+1] is
the set of nodes, and A = [n] is the set of (directed) arcs. With each arc j ∈ A, we associate one
player, which we call the jth player. The variable controlled by the jth player is the nonnegative
integer flow on arc j, denoted by xj ∈ Z. Each player is trying to minimize a proper cost function
fj : Z → R, subject to the network flow constraints. We assume each of the cost functions is
proper, i.e., for all i ∈ [n] we have −∞ 66∈ fi(Z), and domfi = {xi ∈ Zn | fi(xi) < +∞} 6= ∅.
There is an upper bound uj , which limits how much flow the jth player can carry through arc j.
Without any loss of generality, we take the lower bound on every arc to be 0 [9, Page 39]. The
supply or demand of flow at each node i ∈M is denoted by bi. If bi > 0, then i is a supply node;
if bi < 0, then i is a demand node with a demand of −bi, and if bi = 0, then i is a trans-shipment
node. We allow parallel arcs to exist between two nodes.

In any minimum cost flow problem there are three types of constraints.
(i) Mass balance constraint. The mass balance constraint states that for any node, the outflow

minus inflow must equal the supply/demand of the node. We describe the constraint using the
node-arc incidence matrix. Let us fix a particular ordering of the arcs, and let x ∈ Zn be the
resultant vector of flows. First, we define the augmented node-arc incidence matrix Ã, where
each row corresponds to a node, and each column corresponds to an arc. The symbol ãij denotes
the (i, j)th entry of Ã that corresponds to the ith node and the jth arc; ãij is 1 if i is the start
node of the jth arc, −1 if i is the end node of the jth arc, and 0 otherwise. Note that parallel
arcs will correspond to different columns with same entries in the augmented node-arc incidence
matrix. So every column of Ã has exactly two nonzero entries, one equal to 1 and one equal to −1
indicating the start node and the end node of the associated arc. Denote, b̃ = (b1, . . . , bm, bm+1).
Then in matrix notation, we write the mass balance constraint as: Ãx = b̃. The sum of the rows
of Ã is equal to zero vector, so one of the constraints associated with the rows of the linear
system Ãx − b̃ is redundant, and by removing the last row of the linear system, we can arrive
at a system, Ax = b, where A = Ã[1:m,1:n] is the node-arc incidence matrix, and b = b̃[1:m]. The
vector b is also called the resource vector. Now A is a full row rank matrix under the assumption
of G being connected and

∑
i∈N bi = 0 [32, Corollary 7.1].
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(ii) Flow bound constraint. The flow on any arc must satisfy the lower bound and capacity
constraints, i.e., 0 � x � u. The flow bound constraint can often be relaxed or omitted in
practice [7, pages 550-551]. In such cases, the flow direction is flexible, and overflow is allowed
subject to a suitable penalty.

(iii) Integrality constraint. The flow on any arc is integer-valued, i.e., x ∈ Zn. This does not
incur a significant loss of generality (see Remark 1 below).

So the constraint set, which we denote by P can be written as,

P = {x ∈ Zn | Ax = b, 0 � x � u} , (1)

and the subset of P containing only the equality constraints is denoted by Q, i.e.,

Q = {x ∈ Zn | Ax = b} . (2)

Consider a set of players denoted by [n]. The decision variable controlled by the ith player
is xi ∈ Z, i.e., each player has to take an integer-valued action. The vector formed by all the
decision variables is denoted by x = (x1, x2, . . . , xn) ∈ Zn. By x−i ∈ Zn−1, we denote the vector
formed by all the players decision variables except ith player’s decision variable. To put emphasis
on the ith player’s variable we sometimes write x as (xi, x−i). Each player has a cost function
fi(xi) : Z → R, which depends on its variable xi. The goal of the ith player for i ∈ [n], given
other players’ strategies x−i ∈ Zn−1, is to solve the minimization problem

minimizexi fi (xi)

subject to Aixi +
n∑

j=1,j 6=i
Ajxj = b

0 � (xi, x−i) � u
x ∈ Zn.

(3)

Our objective is to calculate efficient Pareto optimal points for the problem. We define vector
optimal points first, then Pareto optimal point, and finally efficient Pareto optimal point.

Definition 1 (Vector optimal point) In problem (3), a point xvo ∈ P is vector optimal if it
satisfies the following:

(∀x̃ ∈ P ) (∀i ∈ [n]) fi(x̃i) ≥ fi(xvo
i ).

Definition 2 (Pareto optimal point) In problem (3), a point xpo ∈ P is Pareto optimal if it
satisfies the following: there does not exist another point x̃ ∈ P such that

(∀i ∈ [n]) fi(x̃i) ≤ fi(xpo
i ), (4)

with at least one index j ∈ [n] satisfying fj(x̃j) < fj(x
po
j ).

Definition 3 (Efficient Pareto optimal point) In problem (3), a point x∗ is an efficient
Pareto optimal solution, if it is Pareto optimal and it achieves partial vector optimality over a
maximal subset of [n]; i.e., x∗ satisfies (4) and the set S ⊆ [n] that satisfies

(∀x̃ ∈ P ) (∀i ∈ S) fi(x̃i) ≥ fi(x∗i ),

is maximal.
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Remark 1 In our model, we have taken the flow through any arc of the network to be an integer.
However this assumption does not incur a significant loss of generality because we can use our
integer model to obtain a real valued Pareto optimal solution to an arbitrary degree of accuracy
by using the following scaling technique [9, page 545]. Suppose we want a real valued Pareto
optimal solution x∗. Such a real valued Pareto optimal solution corresponds to a modified version
of problem (3) with the last constraint being changed to x ∈ Rn. In practice, we always have
an estimate of how many points after the decimal point we need to consider. So in the modified
problem we substitute each xi for i ∈ [n] with yi/α, where yi ∈ Z, and α is chosen depending
on the desired degree of accuracy (e.g., α=1, 000 or 10, 000 or larger depending on how many
points after the decimal point we are interested in). Then we proceed with our methodology
described in the subsequent sections to compute Pareto optimal solutions over integers. Let y∗

be one such integer-valued Pareto optimal solution. Then x∗ = (x∗i )
n
i=1 =

(
1
αy
∗
i

)n
i=1

corresponds
to a real-valued Pareto optimal solution to the degree of accuracy of 1/α.

Remark 2 We can formulate our problem as an n person finite static game in normal form [33,
pages 88-91]. In problem (3), a player i ∈ [n] has a finite but possibly astronomical number of
alternatives to choose from the feasible set. Let mi be the number of feasible alternatives available
to player i. Furthermore, define the index set Mi = [mi] = {1, . . . ,mi} with a typical element
of the set designated as ni, which corresponds to some flow xi. If player 1 chooses a strategy
n1 ∈M1, player 2 chooses a strategy n2 ∈M2, and so on for all the other players, then the cost
incurred to player i is a single number ain1···nn that can be determined from problem (3). The
ordered tuple of all these numbers (over i ∈ [n]), i.e.,

(
a1
n1···nn , a

2
n1···nn , . . . , a

n
n1···nn

)
, constitutes

the corresponding unique outcome of the game. For a strategy (n1 · · · nn) that violates any of the
constraints in problem (3), the cost is taken as +∞. Players make their decisions independently,
and each player unilaterally seeks the minimum possible loss, of course by also taking into
account the possible rational and feasible choices of the other players. The noncooperative Nash
equilibrium solution concept within the context of this n-person game can be described as follows.

Definition 4 (Noncooperative Nash equilibrium) [33, page 88] An n-tuple of strategies(
nNash

1 , . . . , nNash
n

)
with nNash

i ∈ Mi for all i ∈ [n], is said to constitute a noncooperative Nash
equilibrium solution for the aforementioned n-person nonzero-sum static finite game in normal
form if the following n inequalities are satisfied for all ni ∈Mi and all i ∈ [n]:

ai,Nash = ai
nNash
1 nNash

2 ···nNash
n
≤ ai

nNash
1 nNash

2 ···ni···nNash
n

. (5)

The flow corresponding to
(
nNash

1 , . . . , nNash
n

)
is denoted by xNash =

(
xNash

1 , . . . , xNash
n

)
and is

called the noncooperative Nash equilibrium flow. Here, the n-tuple (a1,Nash, a2,Nash, . . . , an,Nash)
is known as a noncooperative (Nash) equilibrium outcome of the n-person game in normal form.
Note that the strategy associated with an efficient Pareto optimal solution x∗ in Definition 3
also satisfies (5) in Definition 4, thus it is a noncooperative Nash equilibrium flow.

We now extend the class of problems that we are going to investigate, which is strictly larger than
the class defined by problem (3) and contains it. We will develop our algorithms for this larger
class. Everything defined in the previous subsection still holds, and we extend the constraint set
P and the equality constraint set Q as follows. The structure of P is still that of a standard
form integer polyhedron, i.e., P = {x ∈ Zn | Ax = b, 0 � x � u}, where A is a full row rank
matrix, but it may not necessarily be a node-arc incidence matrix only. Denote the convex hull
of the points in P by convP . Consider the relaxed polyhedron relaxedP = {x ∈ Rn | Ax =
b, 0 � x � u}, where we have relaxed the condition of x being an integer-valued vector. We now
impose the following assumption.
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Assumption 1 For any integer-valued b, relaxedP has at least one integer-valued basic solu-
tion.

As vertices of a polyhedron are also basic solutions [32, page 50], if convP and relaxedP
share at least one vertex, Assumption 1 will be satisfied. We can see immediately that if A
is a node-arc incidence matrix, then P will belong to this class as convP = relaxedP for
network flow problems [34, Chapter 19]. In other practical cases of interest, the matrix can
satisfy Assumption 1, e.g., matrices with upper or lower triangular square submatrices with
diagonal entries 1, sparse matrices withm variables appearing only once with coefficients one, etc.
Moreover, at the expense of adding slack variables (thus making a larger dimensional problem),
we can turn the problem under consideration into one satisfying Assumption 1, though the
computational price may be heavy.

In the rest of the paper, whenever we mention (1), (2), and (3), they correspond to this
larger class of problems containing the network flow problems, and the full row rank matrix A
is associated with this larger class. So the results developed in the subsequent sections will hold
for a network flow setup.

Remark 3 Before proceeding any further, we recall that integer programming problems are NP-
hard, and even determining the existence of one feasible point in P is NP hard [35, page 242].
So problem (3) is at least as hard.

3 Problem transformation

In this section, we describe how to transform problem (3) into n −m decoupled optimization
problems for the last n−m players and how to reformulate the optimization problems for the rest
of the players using consensus constraints. These transformation and reformulation are necessary
for the development of our algorithms.

3.1 Decoupling optimization problems for the last n−m players

First, we present the following lemma. Recall that, an integer square matrix is unimodular if its
determinant is ±1.

Lemma 1 Assumption 1 holds if and only if we can extract a unimodular basis matrix from A.

Without any loss of generality, we rearrange the columns of the matrix A so that the unimodular
basis matrix constitutes the first m columns, i.e., if A = [A1 | A2 | . . . | Am | Am+1 | . . . | An],
then det([A1 | A2 | . . . | Am]) = ±1, and we reindex the variables accordingly. Let us denote
[A1 | A2 | . . . | Am] = B, so A = [B | Am+1 | . . . | An]. Next we present the following Lemma.

Lemma 2 Let, C = B−1A and d = B−1b. Then C ∈ Zm×n, d ∈ Zm, and the sets Q and P
(defined in (1) and (2), respectively) have the equivalent representations:

Q = {x ∈ Zn | Cx = d} , (6)
P = {x ∈ Zn | Cx = d, 0 � x � u} . (7)

Before we present the next result, we recall the following definitions and facts. A full row rank
matrix A ∈ Zm×n is in Hermite normal form, if it is of the structure [B|0], where B ∈ Zm×m is
invertible and lower triangular, and 0 represents {0}m×n−m [34, Section 4.1]. Any full row rank
integer matrix can be brought into the Hermite normal form using elementary integer column
operations in polynomial time in the size of the matrix [35, Page 243].
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Lemma 3 The matrix C, as defined in Lemma 2, can be brought into the Hermite normal form
[I|0] by elementary integer column operations, more specifically by adding integer multiple of one
column to another column.

Lemma 4 There exists a unimodular matrix U such that CU = [I | 0].

The following theorem is key in transforming the problem into an equivalent form with m
decoupled optimization problems for players m+ 1,m+ 2, . . . , n.

Theorem 1 The constraint set Q defined in (6) is nonempty. Furthermore, any vector x ∈ Q
can be maximally decomposed in terms of a new variable z ∈ Zn−m as follows:

x ∈ Q⇔ ∃z ∈ Zn−m such that x =



d1 − hT1 z
d2 − hT2 z

...
dm − hTmz

z1
...

zn−m


, (8)

where di is the ith component of d = B−1b, and hTi ∈ Z1×n−m is the ith row of B−1A[1:m,m+1:n].

We can transform our problem using the new variable z. The advantage of this transformation is
that for player m+ 1,m+ 2, . . . , n, we have decoupled optimization problems. By solving these
decoupled problems, we can reduce the constraint set significantly (especially when the number
of minimizers for the constraint set are small).

From Theorem 1, xi = zi−m for i ∈ [m+1 : n]. For problem (3), we can write the optimization
problem for any player m+ i for i ∈ [n−m] as follows.

minimizezi fi(zi)

subject to 0 ≤ zi ≤ ui
zi ∈ Z.

(9)

Each of these optimization problems is a decoupled univariate optimization problem, which
can be easily solved graphically. We can optimize over real numbers, find the minimizers of
the resultant relaxed optimization problem, determine whether the floor or ceiling of such a
minimizer results in the minimum cost, and pick that as a minimizer of the original problem.
Solving n − m decoupled optimization problems immediately reduces the constraint set into
a much smaller set. Let us denote the set of different optimal solutions for player m + i for
i ∈ [n − m] as Di = {zi,1, zi,2, . . . , zi,pi} sorted from smaller to larger, where pi is the total
number of minimizers. Define, D =×n−m

i=1 Di. Note that D 6= ∅ .

3.2 Consensus reformulation for the first m players

In this section, we transform the optimization problems for the first m players using (8) and
consensus constraints. Consider the optimization problems for the first m players in variable z,
which have coupled costs due to (8). We deal with the issue by introducing consensus constraints
[36, Section 5.2]. We provide each player i ∈ [m] with its own local copy of z, denoted by
z(i) ∈ Zn−m, which acts as its decision variable. This local copy has to satisfy the following
conditions. First, using (8) for any i ∈ [m], xi = di−hTi z(i). The copy z(i) has to be in consensus
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with the rest of the first m players, i.e., z(i) = z(j) for all j ∈ [m] \ {i}. Second, the copy z(i) has
to satisfy the flow bound constraints, i.e., 0 ≤ di−hTi z(i) ≤ ui for all i ∈ [m]. Third, for the last
n −m players zi ∈ Di, as obtained from the solutions of the decoupled optimization problems
(9), so z(i) has to be in D, i.e., for all i ∈ [m] we have

z(i) = z ∈ D ⇔ (∀j ∈ [n−m]) z
(i)
j ∈ Dj .

Combining the aforementioned conditions, for all i ∈ [m], the ith player’s optimization problem
in variable z(i) can be written as:

minimizez(i) f̄i

(
z(i)
)

= fi(di − hTi z(i))

subject to z(i) = z(j), j ∈ [m] \ {i}
0 ≤ di − hTi z(i) ≤ ui
z

(i)
j ∈ Dj , j ∈ [n−m].

(10)

An integer linear inequality constraint α ≤ v ≤ β, where α, β, v ∈ Z, is equivalent to v ∈
{α, α + 1, . . . , β} ⇔ (v − α)(v − α − 1) · · · (v − β) = 0. Using this fact, we write the last two
constraints in (10) in polynomial forms as follows.

qi(z
(i)) = (di − hTi z(i))(di − hTi z(i) − 1) · · · (di − hTi z(i) − ui) = 0, (11)

rj(z
(i)) = (z

(i)
j − zj,1)(z

(i)
j − zj,2) . . . (z

(i)
j − zj,pi) = 0, j ∈ [n−m]. (12)

Hence for all i ∈ [m] any feasible z(i) for problem (10) comes from the following set:

F =

m⋂
k=1

{z ∈ Zn−m | qk(z) = 0, and (∀j ∈ [n−m]) rj(z) = 0}

= {z ∈ Zn−m | (∀k ∈ [m]) qk(z) = 0, and (∀j ∈ [n−m]) rj(z) = 0}. (13)

In (13), the intersection in the first line ensures that the consensus constraints are satisfied, and
the second line just expands the first. So the optimization problem (10) is equivalent to

minimizez(i) f̄i

(
z(i)
)

subject to z(i) ∈ F ,
(14)

for i ∈ [m]. Thus each of these players is optimizing over a common constraint set F . So finding
the points in F is of interest, which we discuss next.

4 Algorithms

In this section, first, we review some necessary background on algebraic geometry, and then we
present a theorem to check if F is nonempty and provide an algorithm to compute the points in
a nonempty F . Finally, we present our algorithm to compute efficient Pareto optimal points. In
devising our algorithm, we use algebraic geometry rather than integer programming techniques
for the following reasons. First, in this way, we are able to provide an algebraic geometric
characterization for the set of efficient Pareto optimal solutions for our problem. Second, we can
show that this set is nonempty if and only if the reduced Groebner basis (disucussed in Section
4.1 below) of a certain set associated with the problem is not equal to {1} (Theorem 3). Third,
the mentioned result has an algorithmic significance: the reduced Groebner basis can be used to
construct algorithms to calculate efficient Pareto optimal points.
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4.1 Background on algebraic geometry

A monomial in variables x = (x1, x2, . . . , xn) is a product of the structure xα = xα1
1 · · ·xαn

n ,
where α = (α1, . . . , αn) ∈ Nn. A polynomial is an expression that is the sum of a finite number
of terms with each term being a monomial times a real or complex coefficient. The set of all
real polynomials in x = (x1, . . . , xn) with real and complex coefficients are denoted by R[x]
and C[x], respectively, with the variable ordering x1 > x2 > · · · > xn. The ideal generated by
f1, f2, . . . , fm ∈ C[x] is the set

ideal {f1, . . . , fm} =

{
m∑
i=1

hifi | (∀i ∈ [m]) hi ∈ C[x]

}
.

Consider f1, f2, . . . , fs which are polynomials in C[x]. The affine variety V of f1, f2, . . . , fm is
given by

V (f1, . . . , fm) = {x ∈ Cn | (∀i ∈ [m]) fi(x) = 0} . (15)

A monomial order on C[x1, . . . , xn] is a relation, denoted by �, on the set of monomials
xα, α ∈ Nn satisfying the following. First, it is a total order; second, if xα � xβ and xγ is
any monomial, then xα+γ � xβ+γ ; third, every nonempty subset of Nn has a smallest element
under �. We will use lexicographic order, where we say xα �lex x

β if and only if the left most
nonzero entry of α − β is positive. Suppose that we are given a monomial order � and a
polynomial f(x) =

∑
α∈S fαx

α. The leading term of the polynomial with respect to �, denoted
by lt� (f), is that monomial fαxα with fα 6= 0, such that xα � xβ for all other monomials
xβ with fβ 6= 0. The monomial xα is called the leading monomial of f . Consider a nonzero
ideal I. The set of the leading terms for the polynomials in I is denoted by lt� (I). Thus
lt� (I) = {cxα | (∃f ∈ I) lt�(f) = cxα} . By ideal {lt� (I)} with respect to �, we denote the
ideal generated by the elements of lt� (I).

A Groebner basis G� of an ideal I with respect to the monomial order � is a finite set of
polynomials g1, . . . , gt ∈ I such that ideal {lt� (I)} = ideal {lt� (g1) , . . . , lt� (gt)} . A reduced
Groebner basis Greduced,� for an ideal I is a Groebner basis for I with respect to monomial
order � such that, for any f ∈ Greduced,�, the coefficient associated with lt� (f) is 1, and for all
f ∈ Greduced,�, no monomial of f lies in ideal {lt� (G \ {f})}. For a nonzero ideal I and given
monomial ordering, the reduced Groebner basis is unique [Proposition 6, 37, Page 92]. Suppose
I = ideal {f1, . . . , fm} ⊆ C [x1, . . . , xn]. Then for any l ∈ [n], the lth elimination ideal for I is
defined by Il = I ∩C[xl+1, . . . , xn]. Let I ⊆ C [x1, . . . , xn] be an ideal, and let G be a Groebner
basis of I with respect to lexicographic order with x1 � x2 � . . . � xn. Then for every integer
l ∈ {0, n− 1}, the set Gl = G∩C [xl+1, . . . , xn] is a Groebner basis for the lth elimination ideal
Il.

4.2 Nonemptyness of F

We will use the following theorem in proving the results in this section.

Theorem 2 (Weak Nullstellensatz [Theorem 1, 37, page 170]) Consider f1, f2, . . . , fs as poly-
nomials in C[x1, x2, . . . , xn]. If V (f1, f2, . . . , fm) = ∅ (see (15) for definition of V ), then

ideal{f1, f2, . . . , fm} = C[x1, x2, . . . , xn].

First, we present the following result.
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Theorem 3 The set F is nonempty if and only if

Greduced,� 6= {1},

where Greduced,� is the reduced Groebner basis of ideal {q1, . . . , qm, r1, . . . , rn−m} with respect to
any ordering.

Remark 4 In the proof, we have shown that feasibility of the system (26) in Cn−m is equivalent
to its feasibility in Zn−m. So

V (q1, . . . , qm, r1, . . . , rn−m) ∩ Zn−m = V (q1, . . . , qm, r1, . . . , rn−m) . (16)

If we are interested in just verifying the feasibility of the polynomial system, then calculating
a reduced Groebner basis with respect to any ordering suffices. However, if we are interested in
extracting the feasible points, then we choose lexicographic ordering as lexicographic ordering
allows us to use algebraic elimination theory. There are many computer algebra packages to com-
pute reduced Groebner basis such as Macaulry2, SINGULAR, FGb, Maple, and Mathematica.
We now describe how to extract the points in F .

Suppose Greduced,� 6= {1}. Naturally, the next question is how to compute points in F? In
the next section, we will show that the points in F are related to the efficient Pareto optimal
points that we are seeking. We now briefly discuss systematic methods for extracting F based
on algebraic elimination theory, a branch of computational algebraic geometry. For details on
elimination theory, we refer the interested readers to [37, Chapter 3]. First, we present the
following lemma.

Lemma 5 Suppose Greduced,� 6= {1}. Then F = V (Greduced,�lex) 6= ∅.

Algorithm 1 below calculates all the points in F , when Greduced,�lex 6= {1}. Lemma 6 proves
its accuracy.

Lemma 6 Algorithm 1 correctly calculates all the points in F , when it is nonempty.

4.3 Finding efficient Pareto optimal points from F

Suppose Greduced,�lex 6= {1}, and using Algorithm 1 we have computed F . We now propose
Algorithm 2 and show that the resultant points are Pareto optimal.

We have the following results for Algorithm 2.
Lemma 7 In Algorithm 2, for all i ∈ [m− 1], we have F∗si+1

⊆ F∗si ⊆ F (F∗si defined in (19)).

Lemma 8 In Algorithm 2, for any i ∈ [m], xsi ∈ X∗si (the set X∗i is defined in Step 1, 3 of
Algorithm 2) if and only if z∗ ∈ F∗si . Furthermore, z∗ ∈ F∗si solves the following optimization
problem

minimizez fsi(dsi − hTsiz)
subject to z ∈ F∗si−1

,

for all i ∈ [2 : m].

In Algorithm 2, at no stage can F∗si get empty.
Lemma 9 Suppose F 6= ∅. Then in Algorithm 2, F∗si is nonempty for any i ∈ [m].

Theorem 4 For any z∗ ∈ F∗sm ,

x∗ = (d1 − hT1 z∗, . . . , dm − hTmz∗, z∗1 , . . . , z∗n−m) (21)

is an efficient Pareto optimal point.
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Algorithm 1 Extracting the points in F
Input: Polynomial system qi(z) = 0 for i ∈ [m], and rj(z) = 0 for j ∈ [n−m], Greduced,�lex 6= {1}.
Output: The set F .

Step 1.

– Calculate the set Gn−m−1 = Greduced,�lex ∩C [zn−m] , which is a Groebner basis of the (n−m)th
elimination ideal of ideal {q1, . . . , qm, r1, . . . , rn−m} that consists of univariate polynomials in
zn−m as an implication of [37, page 116, Theorem 2].

– Find the variety of Gn−m−1, denoted by V (Gn−m−1) , which contains the list all possible zn−m
coordinates for the points in F .

Step 2.

– Calculate Gn−m−2 = Greduced,�lex∩C [zn−m−1, zn−m] , which is again a Groebner basis of the (n−
m−1)th elimination ideal of ideal {q1, . . . , qm, r1, . . . , rn−m} and consists of bivariate polynomials
in zn−m and zn−m−1.

– From Step 1, we already have the zn−m coordinates for the points in F . So by substituting those
|V (Gn−m−1)| values in Gn−m−2, we arrive at a set of univariate polynomials in zn−m−1, which
we denote by {Ḡ(i)

n−m−2}
|V (Gn−m−1)|
i=1 .

– For all i = 1, 2, . . . , |V (Gn−m−1)|, find the variety of Ḡ(i)
n−m−2, denoted by V (Ḡ

(i)
n−m−2), which

contains the list all possible zn−m−1 coordinates associated with a particular zn−m ∈ V (Gn−m−1).
We now have all the possible (zn−m−1, zn−m) coordinates of F .

Step 3.

– We repeat this procedure for Gn−m−3, Gn−m−4, . . . , G0. In the end, we have set of all points in
F .

return F .

5 A penalty based approach when F is empty

In the case that F is empty, we design a penalty based approach to solve a penalized version of
problem (14) that can be of use to network administrators and policy makers. First, for i ∈ [m],
using (13), (12), and (11), problem (14) can be written in the following equivalent form:

minimizez(i)∈D f̄i

(
z(i)
)

subject to (∀k ∈ [m]) qk(z
(i)) = 0.

(22)

When F = ∅, we relate the problem above to a penalized version, which is a standard
practice in operations research literature [38, Page 278]. In this penalized version, we disregard
the equality constraints qk(z(i)) = 0 for k ∈ [m], rather we we augment the cost with a term
that penalizes the violation of these equality constraints. So a penalized version of the problem
(22) is as follows:

minimizez(i) f̄i

(
z(i)
)

+
m∑
k=1

γkp
(
qk(z

(i))
)
,

subject to z(i) ∈ D.

(23)
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Algorithm 2 Computing the set of solutions to problem (14).
Input: The optimization problem (14) for any i ∈ [m], F 6= ∅.
Output: Efficient Pareto optimal solutions for problem (3).

Step 1.

for i = 1, . . . ,m

Xi :=
{
di − hTi z(i) | z(i) ∈ F

}
= di − hTi F ,

(∀xi ∈ Xi) (Xi)
−1(xi) := {z(i) ∈ F | xi = di − hTi z(i).} (17)

end for

Step 2.
Sort the elements of the {Xi}mi=1s with respect to cardinality of the elements in a descending order.
Denote the index set of the sorted set by {s1, s2, . . . , sm} such that

|X|s1 ≥ |X|s2 ≥ · · · ≥ |X|sm .

Step 3.

for i ∈ [m]

Solve the univariate optimization problem

minimizexsi
fsi(xsi)

subject to xsi ∈ Xsi ,
(18)

and denote the set of solutions by X∗si . Set

F∗si :=
⋃

xsi
∈X∗

si

(X∗si)
−1(xsi) ⊆ F , (19)

if i ≤ m

Xsi+1 :=
{
dsi+1 − hTsi+1

z | z ∈ F∗si
}
. (20)

end if

end for

return F∗sm .

where p : R→ R+ is a penalty function, and γk is a positive penalty parameter. Some common
penalty functions are:

– exact penalty: p : x 7→ x2,

– power barrier: p : x 7→ |x|, etc.

We have already shown D to be a nonempty set. From a network point of view, the penalized
problem (23) has the following interpretation. For the first m arcs in the directed network under
consideration, rather than having a strict flow bound constraint (see the discussion in Section
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2), we have a penalty when xi < 0 or xi > ui for i ∈ [m]. The flow bound constraint is still
maintained for i ∈ [m + 1 : n]. In this regard, the original problem defined by (3) has the
following penalized version:

minimizexi fi (xi) +

(
penalty for violation of

0 ≤ xi ≤ ui for player i ∈ [m]

)
subject to Ax = A(xi, x−i) = Aixi +

n∑
j=1,j 6=i

Ajxj = b

0 ≤ xi ≤ ui, i ∈ [m+ 1 : n]

x ∈ Zn.

(24)

Problem (24) can be considered as a network flow problem, where flow direction is flexible
or overflow is allowed subject to a suitable penalty, which is a quite realistic scenario in practice
[7, pages 550-551]. With this penalized problem, we can proceed as follows. In the developments
of Section 4.3 set:

f̄i

(
z(i)
)

:= f̄i

(
z(i)
)

+
m∑
k=1

γkp
(
qk(z

(i))
)
,

F := D 6= ∅,

and then apply Algorithm 2, which will calculate efficient Pareto optimal points for the penalized
problem (24).

The described penalty scheme can be of use to network administrators and policy makers to
enforce a decision making architecture. Such an architecture would allow the players to make
independent decisions while ensuring that (i) total amount of flow is conserved in the network
by maintaining the mass balance constraint , (ii) the flow bound constraint is strictly enforced
for the last n −m players and is softened for the first m players by imposing penalty, and yet
(iii) an efficient Pareto optimal point for the penalized problem can be achieved by the players
where none of their objective functions can be improved without worsening some of the other
players’ objective values.

From both the players’ and the policy maker’s point of views, the penalty based approach
makes sense and can be considered fair for the following reason. In the exact version, each of
the last n − m players gets to minimize its optimization problem (9) in a decoupled manner,
whereas each of the first m players is solving a more restrictive optimization problem (18). So
cutting each of the first m players some slack by softening the flow bound constraint, where it
can carry some extra flow or flow in opposite direction by paying a penalty, can be considered
fair.

6 Numerical example

In this section, we present an illustrative numerical example of our methodology in a transporta-
tion setup. We have used Wolfram Mathematica 10 for numerical computation.

Problem setup. Consider the following directed network with 5 nodes and 16 arcs as shown in
Figure 1. Nodes 2 and 4 represent two retail centers with demands for 13 and 11 units of a
certain product. The warehouses are denoted by nodes 1 and 3, which supply 9 and 15 units,
respectively. Node 5 is a trans-shipment node. Different modes of shipment from one node to
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Fig. 1: Network under consideration

other is represented by the arcs in the figure, and these shipments are carried out by different
organizations (carriers). The cost of a certain shipment depends on the number of products
shipped; it is nonlinear and not necessarily convex. With each arc, we associate one carrier
(player).

The cost functions for the players are listed in Table 1. The cost functions associated with
players 5, 7, 10, and 15 are convex, and the cost functions associated with the rest of the players
are nonconvex. Each of the players is trying to minimize its cost. The number of products carried
by each player has to be non-negative, and the capacity of each player is represented by

u = (10, 7, 11, 13, 16, 12, 4, 5, 6, 14, 13, 15, 5, 6, 6, 10),

where ui represents the maximum capacity for the number of products carried by player i.
We seek efficient Pareto optimal points in this setup.

Computing node-arc incidence matrix and resource vector. First, we compute the node-arc inci-
dence matrix associated with the network under consideration by following the procedure men-
tioned in the description of the mass balance constraint in Section 2. The resultant augmented
node-arc incidence matrix of the network is:

Ã =


−1 −1 −1 1 0 0 1 0 0 1 0 0 1 0 0 0
1 0 0 −1 −1 −1 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 −1 −1 −1 0 0 1 0 0 1 0
0 1 0 0 0 0 0 1 0 −1 −1 −1 0 0 0 1
0 0 1 0 0 1 0 0 1 0 0 0 −1 −1 −1 −1
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Player Cost function

1 −x4
1

30 −
13x3

1

15 +
259x2

1

30 − 263x1

15 + 1

2 77x5
2

120 −
247x4

2

24 +
471x3

2

8 − 3365x2
2

24 + 6779x2

60 + 1

3 47x4
3

24 −
133x3

3

4 +
4897x2

3

24 − 2123x3

4 + 485

4 323x5
4

3360 −
2179x4

4

1120 +
47393x3

4

3360 − 48709x2
4

1120 + 7885x4

168 + 5
5 (x5 − 1)2

6 −x4
6

8 +
25x3

6

12 −
71x2

6

8 + 95x6

12 + 10
7 |x7 − 5|
8 11x7

8

1260 −
7x6

8

36 +
119x5

8

72 − 479x4
8

72 +
4609x3

8

360 − 803x2
8

72 + 155x8

28 + 1

9 − 15
16x

3
9 +

365x2
9

16 − 2865x9

16 + 7315
16

10 (x10 − 10)2

11 5x4
11

6 −
35x3

11

3 +
355x2

11

6 − 370x11

3 + 90

12 5x4
12

6 −
25x3

12

3 +
175x2

12

6 − 110x12

3 + 15

13 5x4
13

6 − 15x313 +
595x2

13

6 − 280x13 + 285

14 5x4
14

6 −
85x3

14

3 +
2155x2

14

6 − 6020x14

3 + 4165
15 |x15 − 7|

16


x16 + 1, if 0 ≤ x16 ≤ 3

0, if 4 ≤ x16 ≤ 6

(x16 + 1)3, if 7 ≤ x16 ≤ 9

−x3
16

6 +
13x2

16

2 − 244x16

3 + 330, else

Table 1: Cost functions for the players in the network considered

The vector b̃, where b̃i represents the demand or supply at node i, can be computed by
recording the given demand or supply at each node and is given by b̃ = (9,−13, 15,−11, 0). As
discussed in the description of the mass balance constraint in Section 2, we compute the full row
rank node-arc incidence matrix A by removing the 5th row of Ã and the resource vector b by
removing the last component of b̃, i.e., b = (9,−13, 15,−11). So A has 4 rows and 16 columns,
and it is:

A =


−1 −1 −1 1 0 0 1 0 0 1 0 0 1 0 0 0
1 0 0 −1 −1 −1 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 −1 −1 −1 0 0 1 0 0 1 0
0 1 0 0 0 0 0 1 0 −1 −1 −1 0 0 0 1

 ,

where we associate player i with the ith column of A.

Reindexing the variables. To obtain the notational advantage as discussed in the comment after
Lemma 1, we next rearrange the columns of the matrix A so that the unimodular basis matrix
comprising of the last 4 columns of A constitutes the first 4 columns in the new A i.e., if
A = [A1 | A2 | . . . | A4 | A5 | . . . | A16] then det([A1 | A2 | . . . | A4]) = ±1. We reindex the
variables as follows. The last 4 players are reindexed as the first four players, and players 1 to
12 are reindexed as players 5 to 16. Due to this reindexing procedure, we need to reindex the
upper bound vector u, where the last 4 indices become the first 4 indices, and the indices 1 to
12 become indices 5 to 16, i.e.,

u = (5, 6, 6, 10, 10, 7, 11, 13, 16, 12, 4, 5, 6, 14, 13, 15).
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Note that indices of b would not change due to the reindexing procedure. We perform our
computation on these reindexed variables and then revert the resultant efficient Pareto optimal
solutions to the original indexing.

Problem transformation. Now we are in a position to transform the problem by following the
methodology described in Section 3. First, we decouple the optimization problems for the last
12 players. In order to achieve that, we follow the constructive proofs of Lemma 4 and Theorem
1 to arrive at the following representation of the variable x in terms of the new variable z:

x =



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16



=



z1 + z2 + z3 − z4 − z7 − z10 + 9
−z1 + z4 + z5 + z6 − z11 − 13
−z5 + z7 + z8 + z9 − z12 + 15
−z2 − z8 + z10 + z11 + z12 − 11

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12



, (25)

where the advantage of this transformation is that, for players 5 to 16, we have decoupled
univariate optimization problems of the form (9) in z, and by solving these decoupled problems,
we can reduce the constraint set significantly.

Solving the decoupled optimization problems. Next we solve the aforementioned decoupled uni-
variate optimization problems for the last 12 players by following the procedure described in
the last paragraph of Subsection 3.1. The solution set is given by Table 2; in this table, the sets
of optimal solutions for players 5, 6, . . . , 16 are given by D1, D2, . . . , D12, respectively. Solving
these 12 decoupled optimization problems immediately reduces the constraint set into a much
smaller set, which we define as D =×12

i=1Di.

Consensus reformulation for the first 4 players. Now we are in a position to transform the
optimization problems for the first 4 players using (8) and consensus constraints as described
in Subsection 3.2. By following the straightforward procedure of Subsection 3.2, we arrive at 4
optimization problems of the form (14), where each of the players 1 to 4 is optimizing its cost
function over a common constraint set denoted by F . Next we compute the points in F .

Computing the points in F . To compute the points in F , we follow the methodology described
in Subsection 4.2. Finding the points in F requires computing the reduced Groebner basis with
respect to lexicographic ordering, denoted by Greduced,�lex . We compute Greduced,�lex using the
GroebnerBasis function in Wolfram Mathematica 10, and we find it to be not equal to {1}.
Hence F is nonempty due to Lemma 5. Next we compute the points in F by following Algorithm
1; the list of computed points is given by Table 3.
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D1 {1}
D2 {3}
D3 {5}
D4 {4, 6}
D5 {7, 11}
D6 {10}
D7 {2}
D8 {1}
D9 {3}
D10 {7}
D11 {7}
D12 {4, 5, 6, 10, 11}

Table 2: D for the network under consideration

Elements z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12

1 1 3 5 4 11 10 2 1 3 7 7 4
2 1 3 5 4 11 10 2 1 3 7 7 5
3 1 3 5 4 11 10 2 1 3 7 7 6
4 1 3 5 6 11 10 2 1 3 7 7 4
5 1 3 5 6 11 10 2 1 3 7 7 5
6 1 3 5 6 11 10 2 1 3 7 7 6

Table 3: Table listing elements of F

Computing the efficient Pareto optimal points. The final step is computing the efficient Pareto
optimal points from F by executing the three steps described in Algorithm 2. After applying
Algorithm 2, we arrive at two efficient Pareto optimal points in variable z as follows:

(1, 3, 5, 4, 11, 10, 2, 1, 3, 7, 7, 5),

and
(1, 3, 5, 6, 11, 10, 2, 1, 3, 7, 7, 6).

Using the relationship between x and z in (25), we can express these efficient Pareto optimal
points in variable x as follows:

(5, 4, 5, 4, 1, 3, 5, 4, 11, 10, 2, 1, 3, 7, 7, 5),

and
(3, 6, 4, 5, 1, 3, 5, 6, 11, 10, 2, 1, 3, 7, 7, 6).

Note that these efficient Pareto optimal points above are associated with the reindexed x.
By reversing this reindexing, where indices 5 to 16 will be indices 1 to 12, and indices 1 to 4 will
be indices 13 to 16, we arrive at the efficient Pareto optimal points in our original variable x as
follows:

(1, 3, 5, 4, 11, 10, 2, 1, 3, 7, 7, 5, 5, 4, 5, 4),

and
(1, 3, 5, 6, 11, 10, 2, 1, 3, 7, 7, 6, 3, 6, 4, 5).
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7 Conclusions

In this paper, we have proposed a multi-player extension of the minimum cost flow problem
inspired by a multi-player transportation problem. We have associated one player with each arc
of a directed connected network, each trying to minimize its cost subject to the network flow
constraints. The cost can be any general nonlinear function, and the flow through each arc is
integer-valued. In this multi-player setup, we have presented algorithms to compute an efficient
Pareto optimal point , which is a good compromise solution between the utopian vector optimality
and the generic Pareto optimality and is a Nash equilibrium if our problem is transformed into
an n-person finite static game in normal form.

Some concluding remarks on the limitations of our methodology are as follows. First, at the
heart of our methodology is the transformation provided by Theorem 1, which decouples the
optimization problems for the last n−m players. Each of these decoupled optimization problems
is univariate over a discrete interval and is easy to solve. This can potentially allow us to work
in a much smaller search space. So if we have a system where n−m > m⇔ m < n

2 , then it will
be convenient from a numerical point of view. Second, computation of Pareto optimal points
depends on determining the points in F using Groebner basis. Calculating Groebner basis can
be numerically challenging for large system [37, pages 111-112], though significant speed-up has
been achieved in recent years by computer algebra packages such as Macaulry2, SINGULAR,
FGb, and Mathematica.
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Appendix

Proof of Lemma 1
Any basic solution of relaxedP can be constructed as follows. Take m linearly independent
columns

AB(1), AB(2), . . . , AB(m),

where B(1), B(2), . . . , B(m) are the indices of those columns. Construct the basis matrix

B =
[
AB(1) AB(2) · · · AB(m)

]
.

Set xB = (xB(1), xB(2), . . . , xB(m)) = B−1b, which is called the basic variable in linear pro-
gramming theory. Set the rest of the components of x (called the nonbasic variable) to be zero,
i.e.,

xNB = (xNB(1), xNB(2), . . . , xNB(n−m)) = (0, 0, . . . , 0).

The resultant x will be a basic solution of relaxedP [32, Theorem 2.4].
Suppose there is an integer basic solution in relaxedP . Denote that integer basic solution

by x̄ and the associated basis matrix by B̄. The nonbasic variables are integers (zeros) in every
basic solution, so the basic variables x̄B̄ = B̄−1b has to be an integer vector for any integer b.
Now from Cramer’s rule [35, Proposition 3.1],

(∀b ∈ Zm)

(
x̄B̄ = B̄−1b ∈ Zm ⇔ ∀i ∈ [m] x̄B̄(i) =

det B̄i

det B̄
∈ Z

)
,

where B̄i is the same as B̄, except the ith column has been replaced with b̄. Now det B̄i ∈ Z
because b is an integer vector. So having integer basic solution is equivalent to det B̄ = ±1, i.e.,
B̄ is unimodular. �

Proof of Lemma 2
First, note that unimodularity of B is equivalent to unimodularity of B−1, which we show
easily as follows. First note that, det

(
B−1

)
= 1

detB = 1
±1 = ±1. Each component of B−1 is a

subdeterminant of B divided by detB. As B ∈ Zm×m and detB = ±1, each component of B−1

is an integer. Thus B−1 is a unimodular matrix. Similarly, unimodularity of B−1 implies B is
unimodular.

So C = B−1A ∈ Zm×n and d = B−1b ∈ Zm as A and b are integer matrices. As multiplying
both sides of a linear system by an invertible matrix does not change the solution, we have
Ax = b⇔ B−1Ax = B−1b⇔ Cx = d. Thus we arrive at the claim. �

Proof of Lemma 3
First, recall that the following operations on a matrix are called elementary integer column
operations: (i) adding an integer multiple of one column to another column, (ii) exchanging two
columns, and (iii) multiplying a column by -1.

The matrix C is of the form:

C = B−1A

= B−1 [B | Am+1 | Am+2 | · · · | An]

=


1 0 · · · 0 C1,m+1 C1,m+2 · · · C1,n

0 1 · · · 0 C2,m+1 C2,m+2 · · · C2,n
...
...

...
...

...
...

...
...

0 0 · · · 1 Cm,m+1 Cm,m+2 · · · Cm,n
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Consider the first column of C. For all j = m+ 1,m+ 2, . . . , n, we multiply the first column of
C, C1 = e1 of C by −C1,j and then add it to Ci. Thus C is transformed to

1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 C2,m+1 C2,m+2 · · · C2,n
...
...

...
...

...
...

...
...

0 0 · · · 1 Cm,m+1 Cm,m+2 · · · Cm,n


Similarly for column indices, i = 2, 3, . . . ,m, respectively we do the following. For j = m+1,m+
2, · · · , n, we multiply the ith column ei with −Ci,j and add it to Cj . In the end, the Hermite
normal form becomes: 

1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...
...

...
...
...
...

...
...

0 0 · · · 1 0 0 · · · 0

 .
The steps describing the process in Lemma 3 can be summarized by Algorithm 3, which we

are going to use to prove Lemma 4. �

Algorithm 3 Converting C to [I|0]

1: procedure Converting C to [I|0]
2: for i := 1, 2, . . . ,m do
3: for j := m+ 1,m+ 2, . . . , n do
4: Cj := Cj − Ci,jei
5: end for
6: end for
7: end procedure

Proof of Lemma 4
If we multiply column Ci of a matrix C with an integer factor γ and subsequently add it
to another column Cj , then it is equivalent to right multiplying the matrix C with a matrix
I + γIij (recall that the matrix Iij has a one in (i, j)th position and zero everywhere else). Note
that I + γIij is a triangular matrix with diagonal entries being one, γ being on the (i, j)th
position, and zero everywhere else. As the determinant of a triangular matrix is the product of
its diagonal entries, det(I + γIij) = 1. So I + γIij is a unimodular matrix. Furthermore, step 4
of the procedure above to convert C to Hermite normal form, i.e., Cj = Cj −Ci,jei is equivalent
to left multiplying the current matrix with I −Ci,jIij . So the inner loop of the procedure above
over j = m+ 1,m+ 2, . . . , n (lines 2-4) can be achieved by left multiplying the current matrix
with

Ui =
n∏

j=m+1

(I − CijIij) = (I − Ci,m+1Ii,m+1)(I − Ci,m+2Ii,m+2) · · · (I − Ci,nIi,n)

As each of the matrices in the product is a unimodular matrix and determinant of multiplication
of square matrices of same size is equal to multiplication of determinant of those matrices, we
have det(Ui) = 1. So Ui is a unimodular matrix. Structurally the ith row of Ui, denoted by uTi ,
has a 1 on ith position, has −Ci,j on jth position for j = m + 1,m + 2, . . . , n, and zero every-
where else. Any other kth row (k 6= i) of Ui is eTk . So we can convert C to its Hermite normal
form by repeatedly left multiplying C with U1, U2, . . . , Um, respectively. This is equivalent to
left multiplying C with one single matrix U =

∏m
i=1 Ui. The final matrix U is unimodular as it
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is multiplication of unimodular matrices. �

Proof of Theorem 1
Let y = U−1x. As U is unimodular, U−1 is also unimodular. Hence x ∈ Zn ⇔ y ∈ Zn. Let
y = (y1, y2), where y1 ∈ Zm and y2 ∈ Zn−m. Then

Q 6= ∅
⇔∃x ∈ Zn (Cx = d)

⇔∃y ∈ Zn
(
CUy =

[
I 0
] [y1

y2

]
= y1 = d

)
.

As d = B−1b ∈ Zm (Lemma 2), by taking y =

[
y1

y2

]
=

[
B−1b
z

]
∈ Zn, where z ∈ Zn−m, we

can satisfy the condition above. Thus Q is nonempty.
Now for any x, we can maximally decompose it in terms of z as:

x ∈ Q⇔ x = Uy =

[
Im −B−1A[1:m,m+1:n]

0n−m×m In−m.

] [
B−1b
z

]
=

[
B−1

(
b−A[1:m,m+1:n]z

)
z

]

=



d1 − hT1 z
d2 − hT2 z

...
dm − hTmz

z1
...

zn−m


,

where the last n−m variables are completely decoupled in terms of z. Note that the decompo-
sition is maximal by construction and cannot be extended any further in general cases. �

Proof of Theorem 3
The proof sketch is as follows. The elements of F are the solution of the polynomial system:

(∀i ∈ [m]) qi(z) = 0

(∀j ∈ [n−m]) rj(z) = 0. (26)

We prove in two steps. In step 1, we show that the polynomial system (26) is feasible if and only
if

1 /∈ ideal {q1, . . . , qm, r1, . . . , rn−m} .

Then in step 2, we show that, 1 /∈ ideal {q1, . . . , qm, r1, . . . , rn−m} is equivalent to Greduced,� 6=
{1}.

Step 1. Polynomial system (26) is feasible if and only if 1 /∈ ideal {q1, . . . , qm, r1, . . . , rn−m} .
We prove necessity first and then sufficiency.
(⇒)
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Assume system (26) is feasible, but 1 ∈ ideal {q1, . . . , qm, r1, . . . , rn−m}. That means

(∃h1, . . . , hm, s1, . . . , sn−m ∈ C[z])
(
∀z ∈ Cn−m) 1 =

m∑
i=1

hi(z)qi(z) +

n−m∑
i=1

si(z)ri(z), (27)

and

(
∃z̄ ∈ Zn−m

)(
(∀i ∈ [m]) qi(z̄) = 0,

(∀i ∈ [n−m]) ri(z̄) = 0

)
. (28)

Putting z = z̄ in (27) and using (28) we get 1 = 0, so we have a contradiction.
(⇐)

We want to show that if 1 6∈ ideal{q1, · · · , qm, r1, · · · , rn−m}, then the polynomial system
(26) is feasible. We prove the contrapositive again: if the polynomial system (26) is infeasible in
integers, then 1 ∈ ideal{q1, · · · , qm, r1, · · · , rn−m}.

First, we show that, feasibility of the system in Cn−m is equivalent to feasibility in Zn−m. As
Zn−m ⊂ Cn−m, if the polynomial system is infeasible in Cn−m, it is infeasible in Zn−m. Also,
if the polynomial system is infeasible in Zn−m, then it will be infeasible in Cn−m. We show
this by contradiction. Assume the system system is infeasible in Zn−m but feasible in Cn−m i.e.,
Cn−m \Zn−m. Let that feasible solution be z̃ ∈ Cn−m \Zn−m, so there is at least one component
of it (say ĩ) such that z̃ĩ ∈ C \ Z. Now

rĩ(z̃) = (z̃ĩ − zi,1)(z̃ĩ − zi,2) . . . (z̃ĩ − zi,pi),

where, by construction, each of the elements of the set Di = {zi,1, zi,2, . . . , zi,pi} are integers and
different from each other, so each component in the product rĩ(z̃) are nonzero complex numbers
with the absence of complex conjugates. So rĩ(z̃) 6= 0, which is a contradiction.

If the polynomial system is infeasible in Cn−m, then it is equivalent to saying that,

V (q1, . . . , qm, r1, . . . , rn−m) = ∅,

where V has been defined in (15). Then using the Weak Nullstellensatz, we have

ideal{q1, . . . , qm, r1, . . . , rn−m} = C[z1, z2, . . . , zn−m].

As 1 ∈ C[z1, z2, . . . , zn−m], this means 1 ∈ ideal{q1, . . . , qm, r1, . . . , rn−m}.

Step 2. Now we show 1 /∈ ideal {q1, . . . , qm, r1, . . . , rn−m} is equivalent to Greduced,� 6= {1}. We
have shown that feasibility of the system inCn−m is equivalent to feasibility in Zn−m. As a result,
we can work over complex numbers, which is a algebraically closed field. This allows us to apply
consistency algorithm [37, page 172], which states that 1 /∈ ideal {q1, . . . , qm, r1, . . . , rn−m} if
and only if Greduced,� 6= {1} . �

Proof of Lemma 5
By Theorem 3, we have F 6= ∅. So from the definition of affine variety in (15) and (13) we can
write F as:

F = V (q1, . . . , qm, r1, . . . , rn−m) ∩ Zn−m.
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From the equation above and (16) we have,

F = V (q1, . . . , qm, r1, . . . , rn−m)

6= ∅.

By definition of basis, we have ideal {q1, . . . , qm, r1, . . . , rn−m} = ideal {Greduced,�lex}, which
implies

V (q1, . . . , qm, r1, . . . , rn−m) = V (Greduced,�lex)

due to [Proposition 2, 37, page 32]. So F = V (Greduced,�lex) . �

Proof of Lemma 6
Using Theorem 3, we have Greduced,�lex 6= ∅. So by the elimination theorem [Theorem 2, 37,
page 116] V (Gn−m−1) is nonempty and will contain the list of all possible zn−m coordinates for
the points in F . As Greduced,�lex 6= ∅, when moving from one step to the next, not all the affine
varieties associated with the univariate polynomials (after replacing the previous coordinates
into the elimination ideal) can be empty due to the extension theorem [Theorem 3, 37, page
118]. Using this logic repeatedly, the final step will give us F = V (Greduced,�lex) 6= ∅. �

Proof of Lemma 7
Follows from (19), (17) and (20). �

Proof of Lemma 8
For any i ∈ [m],

xsi ∈ X∗si
⇔dsi − hTsiz ∈ X

∗
si

⇔z ∈ F∗si ,

where the second line follows from (8). So(
minimizexsi fsi(xsi)

subject to xsi ∈ Xsi

)

=

(
minimizexsi fsi(dsi − hTsiz)
subject to z ∈ F∗si−1

)
,

where the second line follows from (20) in Algorithm 2. �

Proof of Lemma 9
As F 6= ∅, Xs1 :=

{
ds1 − hTs1z

(s1) | z(s1) ∈ F
}
6= ∅. Assume, for i ∈ [m], we have F∗si 6= ∅.

Then Xsi+1 :=
{
dsi+1 − hTsi+1

z | z ∈ F∗si
}

= dsi+1 − hTsi+1
F∗si 6= ∅. The subsequent optimization

problem is
minimizexsi+1

fsi+1(xsi+1)

subject to xsi+1 ∈ Xsi+1 .

As we are optimizing over a finite and countable set, a minimizer will exist. So X∗si+1
6= ∅. Hence

F∗si =
⋃
xi∈X∗

si
(X∗si)

−1(xi) 6= ∅. So for any i = 1, . . . ,m, we have F∗si nonempty. �

Proof of Theorem 4
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We want to show that x∗ is feasible, and for every x ∈ P, i ∈ [n] , if we have fi(x∗i ) ≥ fi(xi), then
for every j ∈ [n], fj(x∗j ) = fj(xj). Using (21) and (8), we can translate the Pareto optimality
condition in z as follows. Consider a z ∈ Zn−m such that

(0, . . . , 0) �
((
di − hTi z

)m
i=1

)
, z) � (u1, . . . , un), (29)

and suppose

((
fi(di − hTi z∗)mi=1

)
, (fm+i(z

∗
i ))n−mi=1

)
�
((
fi(di − hTi z)mi=1

)
, (fm+i(zi))

n−m
i=1

)
. (30)

Then we want to show that:((
fi(di − hTi z∗)mi=1

)
, (fm+i(z

∗
i ))n−mi=1

)
=
((
fi(di − hTi z)mi=1

)
, (fm+i(zi))

n−m
i=1

)
(31)

Let us start with the last n − m rows. As, z∗ ∈ F∗sm ⊆ F ⊆ D and by construction,
D =×n−m

i=1 Di, where any element of Di is a minimizer of (9), so

(fm+i(z
∗
i ))n−mi=1 � (fm+i(zi))

n−m
i=1

implies
(fm+i(z

∗
i ))n−mi=1 = (fm+i(zi))

n−m
i=1 .

In the subsequent steps, it suffices to confine z ∈ D, as otherwise last n − m inequalities
of (30) will be violated. Now let us consider the first m inequalities of (30) As discussed in
Section 3.2, any z is in D which obeys the inequalities 0 ≤ di − hTi z ≤ ui for i = 1, . . . ,m; this
is equivalent to z ∈ F ⊆ D. Consider, s1 ∈ [m] . Lemmas 7 and 8 implies that z∗ solves the
following optimization problem minz{fs1(ds1 − hTs1z) | z ∈ F} = minxs1{fs1(xs1) | xs1 ∈ Xs1},
which has solution x∗s1 ∈ X

∗
s1 ⇔ z∗ ∈ F∗s1 ⊇ F

∗
sm . So fs1(ds1 − hTs1z) ≤ fs1(ds1 − hTs1z

∗) implies
fs1(ds1 − hTs1z) = fs1(ds1 − hTs1z

∗) and z ∈ F∗s1 .
Consider s2 ∈ [m] \ {s1}. First, note that z ∈ F∗s1 , otherwise fs1(ds1 − hTs1z) ≤ fs1(ds1 −

hTs1z
∗) will not hold. Now the x∗s2 associated with z∗ solves the following optimization problem

minxs2{fs2(xs2) | xs2 ∈ Xs2} = minz{fs2(ds2−hTs2z) | z ∈ F
∗
s1}, where an optimal solution to the

first line will be in X∗s2 and the optimal solution to the second line will be in F∗s2 (Lemma 8). So
combining fs2(ds2−hTs2z) ≤ fs2(ds2−hTs2z

∗) and z ∈ F∗s1 implies fs2(ds2−hTs2z) = fs2(ds2−hTs2z
∗).

Repeating a similar argument for i = s3, s4, . . . , sm, we can show that

(∀i ∈ {s1, . . . , sm}) fs2(ds2 − hTs2z) = fsi(dsi − hTsiz
∗).

Thus we have arrived at (31). �
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