Skip to main content
Log in

Optimal control problems with states of bounded variation and hysteresis

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper is concerned with an optimal control problem for measure-driven differential equations with rate independent hysteresis. The latter is modeled by an evolution variational inequality equivalent to the action of the play operator generalized to the case of discontinuous inputs of bounded variation. The control problem we consider is, a priori, singular in the sense that it does not have, in general, optimal solutions in the class of absolutely continuous states and Lebesgue measurable controls. Hence, we extend our problem and consider it in the class of the so-called impulsive optimal control problems. We introduce the notion of a solution for the impulsive control problem with hysteresis and establish a relationship between the solution set of the impulsive system and that of the corresponding singular system. A particular attention is paid to approximation of discontinuous solutions with bounded total variation by absolutely continuous solutions. The existence of an optimal solution to the impulsive control problem with hysteresis is proved. We also propose a variant of the so-called space-time reparametrization adapted to optimal impulsive control problems with hysteresis and discuss a method for obtaining optimality conditions for impulsive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bensoussan, A., Turi, J.: Optimal control of variational inequalities. Commun. Inf. Syst. 10(4), 203–220 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Brezis, H.: Operateurs maximaus monotones et semi-groupes de contractions dans les espace de Hilbert. North-Holland Mathematical Studies, vol. 5. North-Holland Publishing Company, Amsterdam (1973)

    MATH  Google Scholar 

  3. Brokate, M.: Optimal Streuerungen von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ. Peter D. Lang Verlag, Frankfurt am Main (1987)

    MATH  Google Scholar 

  4. Brokate, M., Krejc̆í, P.: Optimal control of ODE systems involving a rate independent variational inequality. Discrete Contin. Dyn. Syst. Ser. B 18(2), 331–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Applied Mathematical Sciences, vol. 121. Springer, New York (1996)

    MATH  Google Scholar 

  6. Colombo, G., Henrion, R., Hoang, N.D., Mordukhovich, B.S.: Optimal control of the sweeping process. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 19, 117–159 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Dorroh, J.R., Ferreyra, G.: A multistate, multicontrol problem with unbounded controls. SIAM J. Control Optim. 32, 1322–1331 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duvaut, D., Lions, J.L.: Inequalities in Mechanics and Phisics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  9. Dykhta, V.A., Samsonyuk, O.N.: Optimal Impulsive Control with Applications, 2nd edn. Fizmatlit, Moscow (2003)

    MATH  Google Scholar 

  10. Dykhta, V.A., Samsonyuk, O.N.: A maximum principle for smooth optimal impulsive control problems with multipoint state constraints. Comput. Math. Math. Phys. 49, 942–957 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dykhta, V.A., Samsonyuk, O.N.: Hamilton–Jacobi Inequalities and Variational Optimality Conditions. ISU, Irkutsk, Russia (2015)

    MATH  Google Scholar 

  12. Filippov, A.F.: On certain questions in the theory of optimal control, Vestnik Moskov. Univ. Ser. I Mat. Meh. 2, 25–32 (1959) (Russian). English translation in J. SIAM Control (A), 1, 76–84 (1962)

  13. Gudovich, A., Quincampoix, M.: Optimal control with hysteresis nonlinearity and multidimensional play operator. SIAM J. Control. Optim. 49(2), 788–807 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gurman, V.I.: The Extension Principle in Optimal Control Problems, 2nd edn. Fizmatlit, Moscow (1997)

    MATH  Google Scholar 

  15. Karamzin, DYu., Oliveira, V.A., Pereira, F.L., Silva, G.N.: On some extension of optimal control theory. Eur. J. Control. 20(6), 284–291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karamzin, DYu., Oliveira, V.A., Pereira, F.L., Silva, G.N.: On the properness of the extension of dynamic optimization problems to allow impulsive controls. ESAIM Control Optim. Calc. Var. 21(3), 857–875 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kopfova, J., Recupero, V.: BV-norm continuity of sweeping processes driven by a set with constant shape. arXiv: 1512.08711 (2016)

  18. Krasnoselskii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, Heidelberg (1989)

    Book  Google Scholar 

  19. Krejc̆í, P.: Vector hysteresis models. Eur. J. Appl. Math. 2, 281–292 (1991)

    Article  MathSciNet  Google Scholar 

  20. Krejc̆í, P.: Convexity and Dissipation in Hyperbolic Equations. Gakuto International Series Mathematical Science and Applications, vol. 8. Gakkōtosho, Tokyo (1996)

    Google Scholar 

  21. Krejc̆í, P., Laurençot, Ph: Generalized variational inequalities. J. Convex Anal. 9, 159–183 (2002)

    MathSciNet  Google Scholar 

  22. Krejc̆í, P., Liero, M.: Rate independent Kurzweil process. Appl. Math. 54, 117–145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krejc̆í, P., Recupero, V.: Comparing BV solutions of rate independent processes. J. Convex. Anal. 21, 121–146 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Krejc̆í, P., Roche, T.: Lipschitz continuous data dependence of sweeping processes in BV spaces. Discrete Contin. Dyn. Syst. Ser. B 15, 637–650 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marques, M.M.: Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction. Progress in Nonlinear Differential Equations and Their Applications, vol. 9. Springer, Birkhüser Basel (1993)

    Book  MATH  Google Scholar 

  26. Miller, B.M., Rubinovich, EYa.: Impulsive Controls in Continuous and Discrete-Continuous Systems. Kluwer Academic Publishers, New York (2003)

    Book  MATH  Google Scholar 

  27. Miller, B.M., Rubinovich, EYa.: Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations. Autom. Remote Control 74, 1969–2006 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Moreau, J.-J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26, 347–374 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Motta, M., Rampazzo, F.: Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls. Differ. Integral Equ. 8, 269–288 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Motta, M., Rampazzo, F.: Dynamic programming for nonlinear systems driven by ordinary and impulsive control. SIAM J. Control Optim. 34, 199–225 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Recupero, V.: On a class of scalar variational inequalities with measure data. Appl. Anal. 88(12), 1739–1753 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Recupero, V.: \({\rm BV}\)-extension of rate independent operators. Math. Nachr. 282, 86–98 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Recupero, V.: \({\rm BV}\) solutions of the rate independent inequalities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. X(5), 269–315 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Recupero, V.: BV continuous sweeping processes. J. Differ. Equ. 259, 4253–4272 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sesekin, A.N., Zavalishchin, S.T.: Dynamic Impulse Systems: Theory and Applications. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  36. Stewart, D.E.: Dynamics with Inequalities: Impacts and Hard Constraints. University of Iowa, Iowa City (2011)

    Book  MATH  Google Scholar 

  37. Visintin, A.: Differential Models of Hysteresis. Applied Mathematical Sciences, vol. 111. Springer, Berlin (1994)

    MATH  Google Scholar 

  38. Warga, J.: Variational problems with unbounded controls. J. SIAM Control Ser. A. 3(3), 424–438 (1987)

    MathSciNet  MATH  Google Scholar 

  39. Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67, 251–282 (1936)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors want to thank the anonymous referees for their valuable suggestions and remarks which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga N. Samsonyuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is partially supported by the Russian Foundation for Basic Research, projects nos 17-01-00733 and 18-01-00026.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonyuk, O.N., Timoshin, S.A. Optimal control problems with states of bounded variation and hysteresis. J Glob Optim 74, 565–596 (2019). https://doi.org/10.1007/s10898-019-00752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00752-7

Keywords

Mathematics Subject Classification

Navigation