Skip to main content
Log in

A scalable global optimization algorithm for stochastic nonlinear programs

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We present a global optimization algorithm for two-stage stochastic nonlinear programs (NLPs). The algorithm uses a tailored reduced-space spatial branch and bound (BB) strategy to exploit the nearly decomposable structure of the problem. At each node in the BB scheme, a lower bound is constructed by relaxing the so-called non-anticipativity constraints and an upper bound is constructed by fixing the first-stage variables to the current candidate solution. A key advantage of this approach is that both lower and upper bounds can be computed by solving individual scenario subproblems. Another key property of this approach is that it only needs to perform branching on the first-stage variables to guarantee convergence (branching on the second-stage variables is performed implicitly during the computation of lower and upper bounds). Notably, convergence results for this scheme also hold for two-stage stochastic MINLPs with mixed-integer first-stage variables and continuous recourse variables. We present a serial implementation of the algorithm in Julia, that we call SNGO. The implementation is interfaced to the structured modeling language Plasmo.jl, which facilitates benchmarking and model processing. Our implementation incorporates typical features that help accelerate the BB search such as LP-based lower bounding techniques, local search-based upper bounding techniques, and relaxation-based bounds tightening techniques. These strategies require the solution of extensive forms of the stochastic program but can potentially be solved using structured interior-point solvers (when the problem is an NLP). Numerical experiments are performed for a controller tuning formulation, a parameter estimation formulation for microbial growth models, and a stochastic test set from GLOBALlib. We compare the computational results against SCIP and demonstrate that the proposed approach achieves significant speedups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://github.com/zavalab/Plasmo.jl.

References

  1. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)bb: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming, 2nd edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2013)

    MATH  Google Scholar 

  5. CarøE, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24(1), 37–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dür, M., Horst, R.: Lagrange duality and partitioning techniques in nonconvex global optimization. J. Optim. Theory Appl. 95(2), 347–369 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Epperly, T.G., Pistikopoulos, E.N.: A reduced space branch and bound algorithm for global optimization. J. Glob. Optim. 11(3), 287–311 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fisher, M.L.: The lagrangian relaxation method for solving integer programming problems. Manag. Sci. 27(1), 1–18 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Floudas, C.A., Visweswaran, V.: Primal-relaxed dual global optimization approach. J. Optim. Theory Appl. 78(2), 187–225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guignard, M., Kim, S.: Lagrangean decomposition: a model yielding stronger lagrangean bounds. Math. Program. 39(2), 215–228 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, New York (2013)

    MATH  Google Scholar 

  13. Jalving, J., Abhyankar, S., Kim, K., Hereld, M., Zavala, V.M.: A graph-based computational framework for simulation and optimization of coupled infrastructure networks. Under Review (2016)

  14. Karuppiah, R., Grossmann, I.E.: A lagrangean based branch-and-cut algorithm for global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures. J. Glob. Optim. 41(2), 163–186 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khajavirad, A., Michalek, J.J.: A deterministic lagrangian-based global optimization approach for quasiseparable nonconvex mixed-integer nonlinear programs. J. Mech. Des. 131(5), 051,009 (2009)

    Article  Google Scholar 

  16. Li, X., Tomasgard, A., Barton, P.I.: Nonconvex generalized benders decomposition for stochastic separable mixed-integer nonlinear programs. J. Optim. Theory Appl. 151(3), 425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maher, S.J., Fischer, T., Gally, T., Gamrath, G., Gleixner, A., Gottwald, R.L., Hendel, G., Koch, T., Lübbecke, M.E., Miltenberger, M., et al.: The scip optimization suite 4.0 (2017)

  18. Misener, R., Floudas, C.A.: Antigone: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59(2–3), 503–526 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sherali, H.D., Adams, W.P.: A Reformulation-linearization Technique for Solving Discrete and Continuous Nonconvex Problems, vol. 31. Springer, New York (2013)

    MATH  Google Scholar 

  20. Smith, E.M., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex minlps. Comput. Chem. Eng. 23(4–5), 457–478 (1999)

    Article  Google Scholar 

  21. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the U.S. Department of Energy under Grant DE-SC0014114. We thank Ophelia Venturelli for providing the model and experimental data for the microbial growth estimation problem. We also thank Felipe Serrano and Ambros Gleixner for providing assistance with the use of SCIP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Zavala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Zavala, V.M. A scalable global optimization algorithm for stochastic nonlinear programs. J Glob Optim 75, 393–416 (2019). https://doi.org/10.1007/s10898-019-00769-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00769-y

Keywords

Navigation