
ar
X

iv
:1

60
8.

02
09

6v
3 

 [
m

at
h.

O
C

] 
 1

6 
Se

p 
20

17

Second Order Cone Constrained Convex Relaxations for Nonconvex

Quadratically Constrained Quadratic Programming

Rujun Jiang∗ Duan Li†

September 19, 2017

Abstract

In this paper, we present new convex relaxations for nonconvex quadratically constrained

quadratic programming (QCQP) problems. While recent research has focused on strengthen-

ing convex relaxations using reformulation-linearization technique (RLT), the state-of-the-art

methods lose their effectiveness when dealing with (multiple) nonconvex quadratic constraints

in QCQP. In this research, we decompose and relax each nonconvex constraint to two second

order cone (SOC) constraints and then linearize the products of the SOC constraints and linear

constraints to construct some effective new valid constraints. Moreover, we extend the reach

of the RLT-like techniques for almost all different types of constraint-pairs (including valid in-

equalities by linearizing the product of a pair of SOC constraints, and the Hadamard product

or the Kronecker product of two respective valid linear matrix inequalities), examine dominance

relationships among different valid inequalities, and explore almost all possibilities of gaining

benefits from generating valid constraints. Especially, we successfully demonstrate that apply-

ing RLT-like techniques to additional redundant linear constraints could reduce the relaxation

gap significantly. We demonstrate the efficiency of our results with numerical experiments.

1 Introduction.

We consider in this paper the following class of quadratically constrained quadratic programming

(QCQP) problems:

(P) min xTQ0x+ cT0 x

s.t. xTQix+ cTi x+ di ≤ 0, i = 1, . . . , l,

aTj x ≤ bj , j = 1, . . . ,m,

where Qi is an n×n symmetric matrix, ci ∈ ℜn, i = 0 . . . , l, di ∈ ℜ, i = 1 . . . , l and aj ∈ ℜn, bj ∈ ℜ,
j = 1, . . . ,m. Without loss of generality, we assume that Qi is not a zero matrix for i = 1, . . . , l.
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We further partition the quadratic constraints into the following two groups:

C = {i : Qi is positive semidefinite, i = 1, . . . , l},
N = {i : Qi is not positive semidefinite, i = 1, . . . , l}.

Without loss of generality, we assume in this paper the cardinality of C is k (k ≤ l). QCQP prob-

lems arise in various areas, for example, combinatorial optimization, portfolio selection problems,

economic equilibria, 0–1 integer programming and various applications in engineering. In the past

few decades, QCQP has been widely investigated in the literature (see, e.g., [2, 8, 28, 6, 15, 19, 20,

30, 31]), due to its elegance in formulation and a wide spectra of applications.

QCQP in general is NP-har [23], even when it only has linear constraints [21], although some

special cases of QCQP are polynomially solvable [4, 5, 10, 27, 7]. As a global optimal solution

of QCQP is generally hard to compute due to its NP-hardness, based on various kinds of relax-

ations, branch and bound methods have been developed in the literature to find exact solutions

for QCQP problems; see, e.g., [20, 12]. It is well known that the efficiency of a branch and bound

method depends on two major factors: the quality of the relaxation bound and its associated com-

putational cost. Recent decades have witnessed an increasing attention on constructing convex

relaxations enhanced with various valid inequalities. The survey paper [6] compared the computa-

tional speed and quality of the gaps of various semidefinite programming (SDP) relaxations with

different valid inequalities for QCQP problems. Sherali and Adams [24] first introduced the con-

cept of “reformulation-linearization technique” (RLT) to achieve a lower bound of problem (P).

Anstreicher in [1] proposed a theoretical analysis for successfully applying RLT constraints to re-

move a large portion of the feasible region for the relaxation, and suggested that a combination of

SDP and RLT constraints leads to a tighter bound. This standpoint holds true for the relaxations

with all other valid inequalities based on the idea behind RLT in this paper. Sturm and Zhang

[27] developed the so-called SOC-RLT constraints (or called rank-2 second-order inequalities in

[29, 31]) to solve the problem of minimizing a quadratic objective function subject to a convex

quadratic constraint and a linear constraint exactly when combined with its SDP relaxation. More

specifically, they rewrote a convex quadratic constraint as a second order cone (SOC) constraint

and linearized the product of the SOC and linear constraints. Burer and Saxena [11] discussed

how to utilize the SOC-RLT constraints to get a tighter bound than the SDP+RLT relaxation

for general mixed integer QCQP problems. Recently, Burer and Yang [13] demonstrated that the

SDP+RLT+(SOC-RLT) relaxation has no gap in an extended trust region problem of minimiz-

ing a quadratic function subject to a unit ball and multiple linear constraints, where the linear

constraints do not intersect with each other in the interior of the ball.

However, all methods mentioned above lose their effectiveness when dealing with (multiple)

nonconvex quadratic constraints in QCQP problems. The state-of-the-art in dealing with non-

convex quadratic constraints is to directly lift the quadratic terms as the basic SDP relaxation

does. This recognition and the success of combining SDP relaxations with RLT and SOC-RLT

constraints (for convex quadratic constraints) motivate our study in this paper. Using the basic

ideas behind SOC-RLT constraints, our method constructs valid inequalities based on linearizing

the product of the nonconvex quadratic constraints and linear constraints, and performs better
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than the state-of-the-art convex relaxations for problem (P). We call our newly developed valid

inequalities Generalized SOC-RLT (GSRT) constraints. For simplicity of analysis, we call any non-

convex quadratic constraint type-A and a nonconvex quadratic constraint xTQix + cTi x + di ≤ 0

type-B if ci ∈ Range(Qi). Although this range condition for type-B could be numerically hard

to check in general, it can be readily verified in some special cases, e.g., Qi is nonsingular or

ci ∈ Range(Qi) is known to hold in advance for some specific problem data set. To construct

GSRT constraints, we first introduce a new augmented variable zi corresponding to each noncon-

vex constraint xTQix + cTi x + di ≤ 0, i ∈ N , and then decompose the matrix Qi according to

the signs of its eigenvalues such that Qi = LT
i Li − MT

i Mi. Depending on different techniques in

handling the linear term, the decomposition of xTQix+ cTi x+di ≤ 0 further results in two types of

GSRT, i.e., type-A GSRT constraint (GSRT-A) and type-B GSRT constraint (GSRT-B) as follows.

GSRT-A is derived from the equivalence between xTQix + cTi x + di ≤ 0 and the following two

constraints,
∥∥∥∥∥

(
Lix

1
2
(cTi x+ di + 1)

)∥∥∥∥∥ ≤ zi, (1)

∥∥∥∥∥

(
Mix

1
2
(cTi x+ di − 1)

)∥∥∥∥∥ = zi, (2)

where the equivalence is easily derived by substituting (2) into (1). If a type-B quadratic constraint

holds for index i with ci ∈ Range(Qi), GSRT-B constraints are then constructed by decomposing

xTQix+ cTi x+ di ≤ 0 in one of the following two different ways:

• i) if 1

4
(cTi Q

†
i ci)− di ≥ 0, we decompose xTQix+ cTi x+ di ≤ 0 as

‖Li(x+ x0)‖ ≤ zi,∥∥∥∥∥

(
Mi(x+ x0)

∆

)∥∥∥∥∥ = zi,
(3)

where ∆ =
√

1
4
(cTi Q

†
i ci)− di, x0 = 1

2
Q†

ici and A† denotes the Moore–Penrose pseudoinverse

for matrix A.

• ii) if 1
4
(cTi Q

†
ici)− di < 0, we decompose xTQix+ cTi x+ di ≤ 0 as

∥∥∥∥∥

(
Li(x+ x0)

∆

)∥∥∥∥∥ ≤ zi,

‖Mi(x+ x0)‖ = zi,

(4)

where ∆ =
√

di − 1
4
(cTi Q

†
i ci), x0 =

1
2
Q†

ici.

Since the equality constraint (2) is nonconvex and intractable, we relax (2) to an inequality to

obtain an SOC constraint (which is convex and tractable),
∥∥∥∥∥

(
Mix

1
2
(cTi x+ di − 1)

)∥∥∥∥∥ ≤ zi. (5)
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Multiplying any linear constraint to both sides of the above two kinds of SOC constraints in (1)

and (5), respectively, and linearizing the products lead to additional valid inequalities. Moreover,

we construct valid equalities by linearizing the squared form of (2), i.e., linearizing the following

equality,

xMT
i Mix+

1

4
(cTi x+ di − 1)2 = z2i . (6)

The GSRT-A constraints consist of SOC constraints in (1) and (5), the linearization of the products

of SOC constraints in (1) and (5) with any original linear constraint, and the linearization of

(6). With similar techniques, we can construct GSRT-B constraints according to the different

decomposition schemes of xTQix + cTi x + di ≤ 0, given in (3) and (4), respectively. Note that

GSRT-A constraints can be generated from any pair of a nonconvex quadratic constraint and a

linear constraint, but GSRT-B constraints can only be generated from those pairs under the range

condition ci ∈ Range(Qi). That is, we can always construct GSRT-A, but have limited ability

to construct GSRT-B only under the range condition ci ∈ Range(Qi). We then prove that the

GSRT relaxation, which stands for the SDP relaxation enhanced with RLT, SOC-RLT and GSRT

constraints, achieves a much tighter lower bound for problem (P) than the sate-of-the-art relaxation

in the literature.

Another RLT-based technique in the literature is to introduce and attach additional redundant

linear constraints to the original QCQP problem and then apply the RLT and SOC-RLT tech-

niques. Zheng et al. [31] proposed a decomposition-approximation method for generating convex

relaxations to get a tighter lower bound than the SDP+RLT+(SOC-RLT) bound. Enlightened

by the decomposition-approximation method in [31], we introduce a new relaxation by generating

extra RLT, SOC-RLT and GSRT constraints with extra redundant linear inequalities. We further

demonstrate that this relaxation dominates the decomposition-approximation method in [31] for

problem (P) with an extra nonnegativity constraint x ≥ 0.

Inspired by the GSRT constraints, we also explore and construct a new class of valid inequalities

by linearizing the product of any pair of SOC constraints, termed SOC-SOC-RLT (SST) constraint.

Moreover, we demonstrate that this new class of valid inequalities is equivalent to a valid linear

matrix inequality (LMI) formed by a submatrix of the Kronecker product constraint proposed in [3],

termed Kronecker SOC-RLT (KSOC) constraint. However, as the KSOC constraint is a large-scale

LMI, its dimensionality may prevent its direct application from practical implementation. We thus

discuss the tradeoff between using KSOC and its submatrices with respect to the bound quality

and computational costs. We also investigate several other KSOC constraints and their dominance

relationship with the valid inequalities discussed in this paper.

We illustrate below the different kinds of valid inequalities generated by RLT-like technique,

i.e., linearizing the product of the left hand side yields the valid inequalities on the right hand side,

and also indicate in the list the sections (or subsections) in which different RLT-like techniques are
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developed,

L× L =⇒ RLT ([22]) Section 2.1,

SOC(convex)× L =⇒ SOC-RLT ([25]) Section 2.1,

SOC(nonconvex)× L =⇒ GSRT Section 2.2,

M(� 0) ◦M(� 0) =⇒ HSOC ([29]) Section 3,

SOC× SOC =⇒ SST Section 4,

M(� 0)⊗M(� 0) =⇒ KSOC(� 0) ([3] and this paper) Section 5,

where L represents a linear inequality constraint, SOC(convex) (SOC(nonconvex), respectively)

represents an SOC constraint generated from a convex (nonconvex, respectively) constraint, M(� 0)

represents an LMI, HSOC represents the valid inequalities generated by linearizing the Hadamard

product of two valid LMIs (expressed in (34) later in the paper) in [31] and KSOC represents the

valid inequalities generated by linearizing the Kronecker product of two valid LMIs first derived in

[3].

In general, there is no dominance relationship among the valid inequalities RLT, SOC-RLT,

GSRT and KSOC. Furthermore, although SST, HSOC and the valid LMI given in (51) later in

the paper are not dominated by RLT, SOC-RLT and GSRT, they are all dominated by a KSOC

valid inequality as we will prove in Section 5. When a new valid inequality has no dominance

relationship with the existing constraints in the formulation, adding this additional valid inequality

to the constraints should yield a tighter relaxation. So the guiding principle of our research is to

extend the RLT-like technique to derive effective valid inequalities to strengthen the SDP relaxation,

especially to develop effective valid inequalities from nonconvex quadratic constraints.

We summarize now the main contributions of this paper in the following three aspects.

• We derive the GSRT constraints, which represent the first attempt in the literature to con-

struct new valid inequalities for nonconvex quadratic constraints using RLT-like techniques.

• We extend the reach of the RLT-like techniques for almost all different types of constraint-

pairs and explore almost all possibilities of gaining benefits from generating valid constraints.

We also successfully demonstrate that applying RLT-like techniques to additional redundant

linear constraints could reduce the relaxation gap.

• We examine possible dominance relationships among different valid inequalities generated

from various RLT-like techniques. We also discuss the tradeoff between the tightness of the

bound and the computational cost.

The rest of the paper is organized as follows. In Section 2, we first review existing convex

relaxations with various valid inequalities in the literature and then propose our novel GSRT

constraints. In Section 3, we apply RLT-like techniques to additional redundant linear constraint

and demonstrate a dominance relationship of our method over the method in [31]. We propose

in Section 4 another class of valid inequalities, SST constraints, by linearizing the product of two

SOC constraints. In Section 5, we introduce KSOC constraints in the recent literature and show
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their relationships with the previous constraints discussed in the paper. After we demonstrate good

performance of GSRT from numerical tests in Section 6, we offer our concluding remarks in Section

7.

Notation We use v(·) to denote the optimal value of problem (·). Let ‖x‖ denote the Euclidean

norm of x, i.e., ‖x‖ =
√
xTx, and ‖A‖F denote the Frobenius norm of a matrix A, i.e., ‖A‖F =√

tr(ATA). The notation A � 0 refers that matrix A is positive semidefinite and the notation

A � B implies that A − B � 0. The inner product of two symmetric matrices is defined by

A · B =
∑

i,j=1,...,nAijBij, where Aij and Bij are the (i, j) entries of A and B, respectively. We

also use Ai,· and A·,i to denote the ith row and column of matrix A, respectively. Notation rank(A)

denotes the rank of matrix A. We use diag(v), where v is a column vector, to denote a diagonal

matrix with its ith diagonal entry being vi and Diag(A) to denote the column vector with its ith

entry being Aii. For a positive semidefinite matrix A with spectral decomposition A = UTDU ,

where D is a diagonal matrix, we use notation A
1

2 to denote UTD
1

2U , where D
1

2 is a diagonal

matrix with
√
Dii being its ith entry.

2 Generalized SOC-RLT constraints

In this section, we first present the basic SDP relaxation for problem (P) and its strengthened

variants with RLT and SOC-RLT constraints in the literature and then propose the new GSRT

constraints.

2.1 Preliminary

Let us now first review some existing relaxations for problem (P) in the literature. By lifting x to

matrix X = xxT and relaxing X = xxT to X � xxT , which is further equivalent to

(
1 xT

x X

)
� 0

due to the Schur complement, we have the following basic SDP relaxation for problem (P):

(SDP) min Q0 ·X + cT0 x

s.t. Qi ·X + cTi x+ di ≤ 0, i = 1, . . . , l, (7)

aTj x ≤ bj , j = 1, . . . ,m, (8)
(

1 xT

x X

)
� 0, (9)

where Qi ·X = trace(QiX) is the inner product of matrices Qi and X. Note that the Lagrangian

dual problem of problem (P) is

(L) max τ

s.t.

(
Q0

c0
2

cT0
2

−τ

)
−

l∑

i

λi

(
Qi

ci
2

cT
i

2
di

)
−

m∑

i

µj

(
0

aj
2

aT
j

2
−bj

)
� 0,

λi ≥ 0, i = 1, . . . , l, µj ≥ 0, j = 1, . . . ,m,
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which is also known as the Shor’s relaxation [26]. It is well known (see, e.g., [9]) that (L) is the

conic dual of (SDP) and (SDP) and (L) have the same optimal value when the strong duality holds

for (SDP). Furthermore, the strong duality holds for (SDP) when (SDP) is bounded from below

and Slater condition holds for (SDP). When the Slater condition holds true for problem (P), i.e.,

there exists a strictly feasible solution x̂ such that x̂TQix̂+ cTi x̂ + di < 0, i = 1, . . . , l and aTj x̂ ≤
bj, j = 1, . . . ,m, the Slater condition for (SDP) automatically holds, e.g., by letting X̂ = x̂x̂T + ǫI,

for sufficiently small ǫ > 0 such that Qi · X̂ + cTi x̂+ di ≤ xTQix̂+ cTi x̂+ di + ǫλmax(Qi) < 0, where

λmax(Qi) is the maximum eigenvalue of matrix Qi.

As the basic SDP relaxation is often too loose, valid inequalities have been considered to

strengthen (SDP) in the literature. One widely used technique in strengthening the basic SDP

relaxation is the RLT [24], which linearizes the product of any pair of linear constraints, i.e.,

(bi − aTi x)(bj − aTj x) = bibj − (bja
T
i + bia

T
j )x+ aTi xx

Taj ≥ 0.

By linearizing xxT to X, we get a tighter (SDP) relaxation enhanced with the RLT constraints for

problem (P):

(SDPRLT) min Q0 ·X + cT0 x

s.t. (7), (8), (9),

aia
T
j ·X + bibj − bja

T
i x− bia

T
j x ≥ 0, ∀1 ≤ i < j ≤ m. (10)

Note that when i = j, the RLT constraint aia
T
j ·X + bibj − bja

T
i x− bia

T
j x ≥ 0 is dominated by (9)

and can be omitted.

Moreover, it has been shown in [11] and [27] that SOC-RLT constraints can be used to strengthen

the convex relaxation (SDPRLT) for problem (P). In particular, decomposing a positive semidefinite

matrix Qi as Qi = BT
i Bi, i ∈ C, we can rewrite the convex quadratic constraint in an SOC form,

i.e.,

xTQix ≤ −di − cTi x ⇒ −di − cTi x ≥ 0

xTQix ≤ −di − cTi x

}
⇒

∥∥∥∥∥

(
Bix

1
2
(−di − cTi x− 1)

)∥∥∥∥∥ ≤ 1

2
(−di − cTi x+ 1). (11)

Multiplying the linear term bj − aTj x ≥ 0 to both sides of the above SOC yields the following valid

inequality,

(bj − aTj x)

(∥∥∥∥∥

(
Bix

1
2
(1 + di + cTi x)

)∥∥∥∥∥

)
≤ 1

2
(bj − aTj x)(1− di − cTi x),

whose linearization becomes the following SOC-RLT constraint,

∥∥∥∥∥

(
Bi(bjx−Xaj)

1

2
(−cTi Xaj + (bjc

T
i − dia

T
j − aTj )x+ (1 + di)bj)

)∥∥∥∥∥
≤ 1

2
(cTi Xaj + (dia

T
j − aTj − bjc

T
i )x+ (1− di)bj), i ∈ C, j = 1, . . . ,m.

(12)
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So enhancing (SDPRLT) with the SOC-RLT constraints, we get a tighter relaxation for problem

(P):

(SDPSOC-RLT) min Q0 ·X + cT0 x

s.t. (7), (8), (9), (10), (12).

We have the following theorem due to the obvious inclusion relationship of the feasible regions

of the three different relaxations, (SDPSOC-RLT), (SDPRLT) and (SDP).

Theorem 2.1. v(P) ≥ v(SDPSOC-RLT) ≥ v(SDPRLT) ≥ v(SDP).

2.2 GSRT constraints

Stimulated by the construction of SOC-RLT constraints, which is only applicable to convex quadratic

constraints, we derive the GSRT constraints in this section for general (nonconvex) quadratic con-

straints.

2.2.1 GSRT-A constraints

To construct the GSRT-A constraints for nonconvex quadratic constraints, we first decompose

each indefinite matrix in quadratic constraints according to the signs of its eigenvalues, i.e., Qi =

LT
i Li − MT

i Mi, i ∈ N , where Li is corresponding to the positive eigenvalues and Mi is corre-

sponding to the negative eigenvalues. One of such decompositions is the spectral decomposition,

Qi =
∑n−p+r

j=1 λijvijv
T
ij
, where λi1 ≥ λi2 · · ·λir > 0 > λip+1

≥ · · · ≥ λin , 0 ≤ r ≤ p < n, , and cor-

respondingly Li = (
√

λi1vi1 , . . . ,
√

λirvir)
T , Mi = (

√
−λip+1

vip+1
,
√

−λinvin). A straightforward

idea in applying SOC-RLT is to multiply the linear constraints and the equivalent formula of the

nonconvex quadratic constraints resulted from the above decomposition,
∥∥∥∥∥

(
Lix

1
2
(cTi x+ di + 1)

)∥∥∥∥∥ ≤
∥∥∥∥∥

(
Mix

1
2
(cTi x+ di − 1)

)∥∥∥∥∥ , i ∈ N . (13)

Unfortunately, (13) is intractable because of its nonconvexity. To overcome this difficulty, we

introduce l−k auxiliary variables zi, where l−k is the number of nonconvex quadratic constraints,

to replace the right hand side of (13),

zi =

√

xTMT
i Mix+

(
cTi x+ di − 1

2

)2

≥
√

xTLT
i Lix+

(
cTi x+ di + 1

2

)2

.

We thus get an SOC constraint,
∥∥∥∥∥

(
Lix

1

2
(cTi x+ di + 1)

)∥∥∥∥∥ ≤ zi, (14)

and a nonconvex equality constraint,
∥∥∥∥∥

(
Mix

1
2
(cTi x+ di − 1)

)∥∥∥∥∥ = zi. (15)

8



We then obtain the following reformulation of problem (P):

(RP) minxTQ0x+ cT0 x

s.t. xTQix+ cTi x+ di ≤ 0, i = 1, . . . , l,∥∥∥∥∥

(
Lix

1
2
(cTi x+ di + 1)

)∥∥∥∥∥ ≤ zi, i ∈ N ,

∥∥∥∥∥

(
Mix

1
2
(cTi x+ di − 1)

)∥∥∥∥∥ = zi, i ∈ N ,

aTj x ≤ bj , j = 1, . . . ,m.

We next construct a convex relaxation by generalizing the SOC-RLT constraints for (RP). First

we lift the problem into a matrix space by denoting

(
X S

ST Z

)
=

(
x

z

)
(xT zT ). We then relax

the intractable nonconvex constraint

(
X S

ST Z

)
=

(
x

z

)
(xT zT ) to

(
X S

ST Z

)
�
(

x

z

)
(xT zT ),

which is equivalent to the following LMI, by the Schur complement,



1 xT zT

x X S

z ST Z


 � 0.

By multiplying bj − aTj x and
∥∥Lix,

1
2
(cTi x+ di + 1)

∥∥ ≤ zi, we further get
∥∥∥∥∥

(
Lix(bj − aTj x)

1
2
(cTi x+ di + 1)(bj − aTj x)

)∥∥∥∥∥ ≤ zi(bj − aTj x),

i.e.,

∥∥∥∥∥

(
Libjx− Lixx

Taj
1

2
(cTi (bjx− xxTaj) + (di + 1)(bj − aTj x))

)∥∥∥∥∥ ≤ zibj − zix
Taj .

Then the linearization of the above formula gives rise to
∥∥∥∥∥

(
Libjx− LiXaj

1
2
(cTi (bjx−Xaj) + (di + 1)(bj − aTj x))

)∥∥∥∥∥ ≤ zibj − ST
·,iaj . (16)

Since the equality constraint (15) is nonconvex and intractable, relaxing (15) to inequality yields

the following tractable SOC constraint,
∥∥∥∥∥

(
Mix

1

2
(cTi x+ di − 1)

)∥∥∥∥∥ ≤ zi. (17)

Similarly, we get the following valid inequalities by linearizing the product of (17) and bj − aTj x,
∥∥∥∥∥

(
Mibjx−MiXaj

1
2
(cTi (bjx−Xaj) + (di − 1)(bj − aTj x))

)∥∥∥∥∥ ≤ zibj − ST
·,iaj . (18)

We also linearize the quadratic form of (15),
∥∥∥∥∥

(
Mix

1
2
(cTi x+ di − 1)

)∥∥∥∥∥

2

= z2i ,

9



to a tractable linearization,

Zi−k,i−k = X ·MT
i Mi +

1

4
(cic

T
i ·X + (di − 1)2 + 2cTi x(di − 1)). (19)

The above constraints connect the variables Z, S, X, z and x, which are essential in strengthening

the SDP relaxation. Without (19), S, Z and z would be unbounded and have no impact on the

relaxation.

Finally, (14), (16), (17), (18) and (19) together make up the GSRT-A constraints. With the

GSRT-A constraint, we strengthen (SDPRLT) to the following tighter relaxation:

(SDPGSRT-A) min Q0 ·X + cT0 x

s.t. (7), (8), (10), (12), (14), (16), (17), (18), (19)



1 xT zT

x X S

z ST Z


 � 0.

The GSRT-A constraints truly strengthen (SDPSOC−RLT) because the projection of the feasible

set of problem (SDPGSRT-A) on (x, X) is smaller than the feasible set of (SDPSOC-RLT). From

the above paragraph, we know that GSRT-A constraints consist of five types of constraints: (14)

and (17) are the new SOC constraints decomposed from the nonconvex quadratic constraints; (16)

(respectively, (18)) is the linearization of the product of (14) (respectively, (17)) and the linear

constraints bj − aTj x; and (19) is the linearization of the quadratic form of (15).

The following theorem, which shows the relationship among all the above convex relaxations,

is obvious due to the nested inclusion relationship of the feasible regions for this sequence of the

relaxations.

Theorem 2.2. v(P) ≥ v(SDPGSRT-A) ≥ v(SDPSOC-RLT) ≥ v(SDPRLT) ≥ v(SDP).

The GSRT-A constraints introduce 2(l − k) × (m + 1) extra SOC constraints, where l − k

and m are the number of nonconvex quadratic constraints and the number of linear constraints,

respectively, in problem (P), and the solution process could become time consuming when either

or both of l − k and m are large, from which RLT-like methods often suffer. We next present two

examples with the same notations as in problem (P) to show that GSRT-A constraints are possible

to achieve a strictly tighter lower bound.

Example 1 Q0 =



0.3 0 0

0 −2 0

0 0 2.4


; Q1 =



1 0 0

0 1 0

0 0 −1


; a1 =




−0.6

−2

0.8


; b1 = −0.5; c0 =



−0.2

0.8

0.2


; c1 = 0; d1 = −1.

The optimal value is v(P) = −1.21788 with optimal solution x∗ = (0.05256, 1.00646,−0.125414)T .

In this example, v(P) = −1.21788 > v(SDPGSRT-A) = −1.2249 > v(SDP) = −1.9900. A strict

inequality holds between v(SDPGSRT-A) and v(SDP).
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Example 2 Parameters Q0, Q1, c0, c1, d1, a1 and b1 remain the same as in Example 1, but

there is an extra linear constraint with a2 = (0.3, 0.2, 0.6)T and b2 = −0.3.

The optimal solution is v(P) = −0.7449 with optimal solution x∗ = (−0.1264, 1.3250,−0.8785)T .

In this example, v(P) = −0.7449 = v(SDPGSRT-A) = −0.7449 > v(SDPRLT) = −1.9252 >

v(SDP) = −1.9900. A strict inequality holds between (SDPGSRT-A) and (SDPRLT). Moreover,

v(SDPGSRT-A) = −0.7449 attains the optimal value, but neither v(SDPRLT) = −1.9252 nor

v(SDP) = −1.9900 does.

Note that the above two examples only involve nonconvex quadratic constraints, so the SOC-

RLT constraints are not applicable here. Furthermore, in Example 1, there are only one linear

constraint and one nonconvex quadratic constraint, so the RLT constraints are not applicable

either.

2.2.2 GSRT-B constraints

For any type-B constraint satisfying ci ∈ Range(Qi), there is an alternative way to express such a

nonconvex quadratic constraint,

xTQix+ cTi x+ di = (x+
1

2
Q†

i c)
TQi(x+

1

2
Q†

i ci) + di −
1

4
cTi Q

†
ici.

Linearizing the product of the linear term and the SOC constraints generated from type-B non-

convex quadratic constraints yields the kind of GSRT-B constraints. Note that this combination

fails if ci /∈ Range(Qi), under which only GSRT-A constraints apply. For the sake of convenience,

we assume type-B constraint holds for all indices i ∈ N , in the following of this section.

Using techniques similar to GSRT-A constraints, we can construct GSRT-B constraints as

follows:

• i) If 1
4
(cTi Q

†
ici) − di > 0, define ∆ =

√
1
4
(cTi Q

†
i ci)− di. We then have the following type of

GSRT-B constraints, termed GSRT-B1 for simplicity,

∥∥∥∥Li(x+
1

2
Q†

ici)

∥∥∥∥ ≤ zi, (20)

∥∥∥∥∥

(
Mi(x+ 1

2
Q†

i ci)

∆

)∥∥∥∥∥ ≤ zi, (21)

Zi,i = MT
i Mi · (X +

1

4
Q†

icic
T
i Q

†
i +Q†

i cix
T ) + ∆2, (22)

∥∥∥∥Li(bjx−Xaj +
1

2
Q†

i ci(bj − aTj x))

∥∥∥∥ ≤ zibj − aTj S·,i, (23)

∥∥∥∥∥

(
Mi(bjx−Xaj +

1
2
Q†

ici(bj − aTj x))

∆(bj − aTj x)

)∥∥∥∥∥ ≤ zibj − aTj S·,i, (24)

i ∈ N , j = 1, · · · ,m;

• ii) If 1
4
(cTi Q

†
ici) − di ≤ 0, define ∆ =

√
di − 1

4
(cTi Q

†
ici). We then have the following type of

11



GSRT-B constraints, termed GSRT-B2 for simplicity,
∥∥∥∥∥

(
Li(x+ 1

2
Q†

ici)

∆

)∥∥∥∥∥ ≤ zi, (25)

∥∥∥∥Mi(x+
1

2
Q†

ici)

∥∥∥∥ ≤ zi, (26)

Zi,i = MT
i Mi · (X +

1

4
Q†

icic
T
i Q

†
i +Q†

i cix
T ), (27)

∥∥∥∥∥

(
Li(bjx−Xaj +

1
2
Q†

ici(bj − aTj x))

∆(bj − aTj x)

)∥∥∥∥∥ ≤ zibj − aTj S·,i, (28)

∥∥∥∥Mi(bjx−Xaj +
1

2
Q†

ici(bj − aTj x))

∥∥∥∥ ≤ zibj − aTj S·,i, (29)

i ∈ N , j = 1, · · · ,m.

For the sake of completeness, we provide a derivation of (GSRT-B1) as follows: We first de-

compose each non-positive definite matrix in quadratic constraints according to the signs of its

eigenvalues, i.e., Qi = LT
i Li−MT

i Mi, i ∈ N , as we do for the GSRT-A constraints. The constraint

xTQix+ cTi x+ di ≤ 0 then reduces to

(x+
1

2
Q†

i ci)
T (LT

i Li −MT
i Mi)(x+

1

2
Q†

ici) + di −
1

4
(cTi Q

†
ici) ≤ 0,

and we further have

(x+
1

2
Q†

ici)
T (LT

i Li)(x+
1

2
Q†

ici) ≤ (x+
1

2
Q†

ici)
TMT

i Mi(x+
1

2
Q†

ici) +
1

4
(cTi Q

†
ici)− di.

Since 1
4
(cTi Q

†
i ci) − di is a nonnegative real number and ∆ =

√
1
4
(cTi Q

†
i ci)− di as defined, we can

then introduce l − k augmented variables zi to rewrite the above nonconvex constraints as

zi =

√
(x+

1

2
Q†

ici)
TMT

i Mi(x+
1

2
Q†

ici) + ∆2

≥
√

(x+
1

2
Q†

ici)
TLT

i Li(x+
1

2
Q†

ici),

where l − k is the number of nonconvex quadratic constraints. We thus obtain an SOC constraint

(20) from the second inequality, and a nonconvex equality constraint,
∥∥∥∥∥

(
Mi(x+ 1

2
Q†

ici)

∆

)∥∥∥∥∥ = zi. (30)

Similarly to the GSRT-A constraints case, we lift the problem by the following matrix inequality,




1 xT zT

x X S

z ST Z


 � 0.

We then obtain (22) by linearizing the quadratic form of (30), i.e.,

∥∥∥∥∥

(
Mi(x+ 1

2
Q†

ici)

∆

)∥∥∥∥∥

2

= z2i .

12



Relaxing the equality in (30) to inequality yields the SOC constraint (21). Similar to the GSRT-A

constraints, by linearizing the product of bj − aTj x and (20) ((21), respectively), we further get the

SOC constraint (23) ((24), respectively).

All the constraints (20), (21), (22), (23) and (24) together make up the (GSRT-B1) constraints.

The (GSRT-B2) constraints can be derived in a similar way, whose derivation is omitted for sim-

plicity.

Now we can construct the GSRT-B relaxation for problem (P):

(SDPGSRT-B) min Q0 ·X + cT0 x

s.t. (7), (8), (10), (12),

(20 − 24) or (25− 29),



1 xT zT

x X S

z ST Z


 � 0.

Similar to Theorem 2.2, the following theorem shows the dominance relationship among different

relaxations.

Theorem 2.3. v(P) ≥ v(SDPGSRT-B) ≥ v(SDPSOC-RLT) ≥ v(SDPRLT) ≥ v(SDP).

Remark 2.4. Although we cannot prove the dominance between GSRT-A and GSRT-B constraints,

our numerical experiments show an interesting result: the SDP relaxation enhanced with GSRT-B

constraints is always tighter (and faster in most cases) than that enhanced with GSRT-A constraints,

i.e., v(SDPGSRT-B) ≥ v(SDPGSRT-A). However, the GSRT-A constraints have their advantages

over the GSRT-B constraints, as GSRT-A can be applied to any nonconvex quadratic constraint,

while GSRT-B is not applicable to the nonconvex quadratic constraints with ci /∈ Range(Qi).

Note that the GSRT-B2 constraint corresponding to index i does not need an auxiliary variable

in a special case where 1
4
(cTi Q

†
i ci) − di ≤ 0, Mi(x + 1

2
Q†

i ci) is a scalar and Mi(x + 1
2
Q†

i ci) ≥ 0. In

such a case, the corresponding GSRT-B2 constraint reduces to
∥∥∥∥∥

(
Li(x+ 1

2
Q†

i ci)

∆

)∥∥∥∥∥ ≤ Mi(x+
1

2
Q†

ici),

∥∥∥∥∥

(
Li(bjx−Xaj +

1
2
Q†

ici(bj − aTj x))

∆(bj − aTj x)

)∥∥∥∥∥ ≤ Mi(bjx−Xaj +
1

2
Q†

ici(bj − aTj x)),

j = 1, · · · ,m,

where ∆ = di − 1
4
(cTi Q

†
i ci) > 0. Under the above conditions, the relaxation (SDPGSRT-B) reduces

to an interesting subcase with a zero duality gap, i.e., minimizing a quadratic function subject to

an SOC constraint,

xTJ xJ ≤ (a1 + aT2 x)
2,

where xJ is a subvector of x with index set J ⊆ {1, 2, . . . , n}, and a special linear constraint,

a1 + aT2 x ≥ a3,

13



where a1, a3 ∈ ℜ with a3 > 0 and a2 ∈ ℜn, or subject to two special parallel linear constraints,

a4 ≥ a1 + aT2 x ≥ a3,

where a4 ∈ ℜ. This result was first proved, to the best of our knowledge, in [18].

The construction scheme for GSRT-B constraints can also be applied to the convex quadratic

constraints if the type-B constraint condition holds, i.e., ci ∈ Range(Qi). For such type-B convex

quadratic constraints, we prove in the following theorem that the SDP relaxation enhanced with

type-B SOC-RLT (SOC-RLT-B) constraints achieves the same optimal value as that enhanced

with the conventional SOC-RLT in the literature. On the other hand, the SDP relaxation with

SOC-RLT-B constraints demonstrates a faster computational speed, which was observed in our

numerical tests.

Theorem 2.5. Assume i ∈ C, ci ∈ Range(Qi) and Qi � 0, and the following SOC-RLT-B

constraint, ∥∥∥∥Bi(bjx−Xaj +
1

2
Q†

ici(bj − aTj x))

∥∥∥∥ ≤ ∆(bj − aTj x), (31)

is generated from linearizing the product of bj − aTj x ≥ 0 and
∥∥∥∥Bix+

1

2
Q†

i ci

∥∥∥∥ ≤ ∆, (32)

where ∆ =
√

1
4
(cTi Q

†
i ci)− di. Then the (31) is equivalent to the SOC-RLT constraint (12).

Proof. Recall that the SOC-RLT constraint is equivalent to

‖Bi(bjx−Xaj)‖2 +
∥∥∥∥
1

2
(−cTi Xaj + (bjc

T
i − dia

T
j − aTj )x+ (1 + di)bj)

∥∥∥∥
2

≤
∥∥∥∥
1

2
(cTi Xaj + (dia

T
j − aTj − bjc

T
i )x+ (1 − di)bj)

∥∥∥∥
2

.

Using the following fact,
∥∥∥∥
1

2
(cTi Xaj + (dia

T
j − aTj − bjc

T
i )x+ (1− di)bj)

∥∥∥∥
2

−
∥∥∥∥
1

2
(−cTi Xaj + (bjc

T
i − dia

T
j − aTj )x+ (1 + di)bj)

∥∥∥∥
2

= (bj − aTj x)(c
T
i Xaj + (dia

T
j − bjc

T
i )x− dibj),

we obtain ‖Bi(bjx−Xaj)‖2 ≤ (bj − aTj x)(c
T
i Xaj + (dia

T
j − bjc

T
i )x− dibj).

Similarly, the SOC-RLT-B constraint (31) can be proved to be equivalent to

‖Bi(bjx−Xaj)‖2 ≤ (bj − aTj x)(c
T
i Xaj + (dia

T
j − bjc

T
i )x− dibj).

�

To summarize, we demonstrated in this section how to construct GSRT-A and GSRT-B con-

straints to strengthen the SDP relaxations for problem (P). Numerical tests on these two relaxations

will be reported in Section 6 to further verify our theoretical results.
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3 Improvement and extension of the decomposition-approximation

method

In this section, we will introduce an artificial linear valid inequality for problem (P), which was

first proposed by Zheng et al. [31]. We then propose a new relaxation by introducing RLT,

SOC-RLT and GSRT constraints associated with this new linear valid inequality and show its

dominance over the decomposition-approximation method in [31]. Adopting the setting in [31]

in the following of this section, we consider problem (P) with nonnegativity constraint x ≥ 0.

To simplify the notations, we include the constraint x ≥ 0 implicitly in the linear constraints

bTj x ≤ aj , j = 1, . . . ,m.

Zheng et al. [31] proposed a decomposition-approximation method, by constructing valid

inequalities using convex quadratic constraints and an artificial linear constraint. More specifi-

cally, they first introduced an artificial inequality, αu = max{uTx | x ∈ Ω} > 0, with a chosen

u ∈ ℜn
++ = {y ∈ ℜn | yi > 0, i = 1, . . . , n}, where Ω is some suitable set that contains the feasible

region. Although the artificial inequality is redundant itself, it is shown in [31] that the following

fact, (
diag(u)diag(x) diag(u)x

xTdiag(u) αu

)
� 0 ⇔ αu ≥ uTx,

yields the following valid LMI that can tighten the SDP relaxation for problem (P),

X � αudiag(u)
−1diag(x). (33)

Moreover, using the fact,

0 �
(

−In Bix

xTBT
i cTi x+ di

)
⇔ xTBT

i Bix+ cTi x+ di ≤ 0, i ∈ C,

where Bi is a decomposition of the positive semidefinite matrix Qi with Qi = BT
i Bi as given in

Section 2, the authors in [31] then developed the following LMI using the Hadamard product,

0 �
(

−In Bix

xTBT
i cTi x+ di

)
◦
(

diag(u)diag(x) diag(u)x

xTdiag(u) αu

)
(34)

=

(
−diag(u)diag(x) diag(u)Diag(Bixx

T )

(Diag(Bixx
T ))Tdiag(u) αu(c

T
i x+ di)

)
. (35)

Linearizing (35) gives rise to the following HSOC valid inequality,
(

−diag(u)diag(x) diag(u)Diag(BiX)

(Diag(BiX))Tdiag(u) αu(c
T
i x+ di)

)
� 0. (36)

The authors in [31] demonstrated that both constraints in (33) and (36) can be used to reduce the

relaxation gap of (SDPSOC-RLT). In the following of this section, we will demonstrate that (33)

and (36) are redundant for the SDP+RLT+(SOC-RLT) relaxation if we include αu ≥ uTx as an

extra linear constraint in problem (P).

We first demonstrate that (33) is redundant when having RLT constraints associated with

αu ≥ uTx as an extra linear constraint.
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Theorem 3.1. The valid inequality (33) is dominated by the RLT constraints generated by x ≥ 0

and αu ≥ uTx, i.e., αuxi ≥ uTX·i, i = 1, . . . , n.

Proof. From the RLT constraints derived from αu ≥ uTx and xi ≥ 0, i.e, αuxi ≥ uTX·i, we can

conclude

αudiag(u)
−1diag(x) =




αux1/u1
. . .

αuxn/un




�




uTX·1/u1
. . .

uTX·n/un


 .

By noting (
uiXij/uj

ujXij/ui

)
�
(

Xij

Xij

)
, ∀ 1 ≤ i < j ≤ n,

and uTX·,j =
∑n

i=1 uiXij, we immediately have

αudiag(u)
−1diag(x) �




uTX·1/u1
. . .

uTX·n/un


 � X,

which is exactly (33). �

Next, we demonstrate in the following theorem that the HSOC (36) is redundant when having

SOC-RLT constraints.

Theorem 3.2. The HSOC valid inequality (36) is dominated by the SOC-RLT constraints gener-

ated by x ≥ 0, αu ≥ uTx and ‖Bix‖2 ≤ −cTi x− di, i.e.,

∥∥∥∥∥

(
BiX·,j

1
2
(xj + cTi X·,j + dixj)

)∥∥∥∥∥ ≤ 1

2
(xj − cTi X·,j − dixj) (37)

and
∥∥∥∥∥

(
αuBix−BiXu

1
2
(αu(1 + cTi x+ di)− (1 + di)u

Tx− uTXci)

)∥∥∥∥∥

≤ 1

2
(αu(1− cTi x− di)− (1 − di)u

Tx+ uTXci). (38)

Proof. By defining 0

0
= 0, due to the Schur complement, (36) is equivalent to

− αu(c
T
i x+ di) ≥

n∑

j=1

(ujBijX·,j)
2

ujxj
, (39)
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where Bij is the jth row of the matrix Bi. Since x ≥ 0 and −(cTi x+ di) ≥ xTBT
i Bix = ‖Bix‖2, we

have the SOC-RLT constraints (37), which is equivalent to

‖BiX·,j‖2
xj

≤ −(cTi X·,j + dixj). (40)

From u > 0, we further have

u2j ‖BiX·,j‖2

ujxj
≤ −uj(c

T
i X·,j + dixj).

Multiplying uj to both sides of the above inequality and adding the results from 1 to n yield

n∑

j=1

(ujBijX·,j)
2

ujxj
≤

n∑

t=1

−ut(c
T
i X·t + dixt) = −(uTXci + diu

Tx). (41)

Thus (41) implies (39) because −αu(c
T
i x + di) ≥ −uTXci + diu

Tx is hidden in the SOC-RLT

constraint,

(−αu(c
T
i x+ di) + uTXci + diu

Tx)(αu − uTx) ≥ ‖αuBix−BiXu‖ ,

which is further equivalent to (37). We complete our proof by noting the above SOC-RLT constraint

is linearized from

−1

2
(αu − uTx)(cTi x+ di − 1) ≥ (αu − uTx)

∥∥∥∥Bix,
1

2
(cTi x+ di + 1)

∥∥∥∥ .

�

In fact, if the matrix in (36) is derived from the SOC constraints in any one of (11), (32), (14),

(17), (20), (21), (25) and (26), we can still prove the resulted HSOC valid inequality is redundant.

For simplicity, we term general SOC (GSOC) constraints for (11), (32), (14), (17), (20), (21), (25)

and (26) and rewrite them in the following unified form,

‖Csx+ ξs‖ ≤ ls(x, z), s = 1, . . . , 2l − k, (42)

where Cs can be either Bi, Li or Mi in the above SOC constraints, ξs is the corresponding constant

in the norm of the left hand side of the SOC constraints, ls(x, z) = (ζs)Tx+ (ηs)T z+ θs is a linear

function of x and z, ζs ∈ ℜn, ηs ∈ ℜl−k and θs ∈ ℜ. Note that the constraint number 2l− k comes

from the cardinality of convex constraints, k, the number of nonconvex constraints, l − k, and the

fact that each nonconvex constraint generates two SOC constraints. More specifically, every convex

constraint xTQix+ cTi x+ di ≤ 0, i ∈ C, can be reduced to an SOC constraint in the form of (42)

with li(x, z) = 1
2
(−di − cTi x + 1). In particular, we can set either li(x, z) = 1

2
(−di − cTi x + 1) or

li(x, z) = 1, if ci ∈ Range(Qi). Besides, every nonconvex constraint xTQix+ cTi x+ di ≤ 0, i ∈ N ,

can be reduced to two SOC constraints in the form of (42) with li1(x, z) = li2(x, z) = zi under both

type-A or type-B constraint conditions for some 1 ≤ i1, i2 ≤ 2l − k. With a similar analysis, we

can extend Theorem 3.2 to the following corollary.
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Corollary 3.3. The linearization of the following matrix inequality,

(
lsI Csx+ ξs

(Csx+ ξs)T ls

)
◦
(

diag(u)diag(x) diag(u)x

xTdiag(u) αu

)
� 0, (43)

is dominated by the GSRT constraints generated by x ≥ 0, αu ≥ uTx and ‖(Csx+ ξs)‖ ≤ ls(x, z),

s = 1, . . . , 2l − k.

Remark 3.4. In fact, the HSOC valid inequality (36) is very loose because, from (40), one can

find that every entry of the right hand side of (41) is larger than the left hand side of (41).

Theorem 3.5. Assume that the relaxation (SDPαGSRT) is obtained by applying RLT, SOC-RLT,

and GSRT constraints to problem (P) with a redundant linear constraint uTx ≤ αu. Then we have

v(SDPαGSRT) ≥ v(SDPGSRT) due to the additional valid inequalities in (SDPαGSRT) compared to

(SDPGSRT).

Remark 3.6. In general, the selected vector u is not necessary to be positive. An interesting

research direction is how to identify suitable uTx ≤ αu to generate active RLT, SOC-RLT and

GSRT constraints.

Next we discuss two toy examples to show good performance of the relaxation (SDPαGSRT).

The numerical results are shown in Tables 1 and 2. The notation (SDP) denotes the basic SDP

relaxation; (SDPRLT) the SDP+RLT relaxation; (SDPSOC-RLT) the SDP+RLT+(SOC-RLT) re-

laxation; (SDPαu
) (SDPRLT) enhanced by (33); (SDPrtc) (SDPRLT) enhanced by (33) and (36).

Moreover, the notation (SDPGSRT-A) ((SDPGSRT-B), respectively) is (SDPSOC-RLT) enhanced with

GSRT-A constraints (GSRT-B constraints, respectively). Relaxations (SDPαRLT), (SDPαSOC-RLT),

(SDPαGSRT-A) and (SDPαGSRT-B) are (SDPRLT), (SDPSOC-RLT), (SDPGSRT-A) and (SDPGSRT-B)

enhanced with RLT, SOC-RLT, and GSRT constraints corresponding to the extra linear constraint

uTx ≤ αu.

Example 3 [31]

min 21x21 + 34x1x2 − 24x22 + 2x1 − 14x2

s.t 2x21 + 4x1x2 + 2x22 + 8x1 + 6x2 − 9 ≤ 0,

−5x21 − 8x1x2 − 5x22 − 4x1 + 4x2 + 4 ≤ 0,

x1 + 2x2 ≤ 2,

x ∈ [0, 1]2.

The optimal value of Example 3 is v∗ = −3.327 with optimal solution x∗ = (0.427, 0.588)T .

In [31], Zheng et al. set u = (1, 2)T , and obtained αu = 1.8029. Strengthening (SDPSOC-RLT)

with the decomposition-approximation method, they got a tighter bound v(SDPαu
) = −10.86,

compared with (SDP), (SDPRLT) and (SDPSOC-RLT). We obtain much tighter bounds with our

GSRT constraints when compared to (SDPαu
). The best lower bound -3.327, which is also the

optimal value, is achieved by (SDPαGSRT-B), i.e., the combination of RLT, SOC-RLT and GSRT-B

constraints with an extra linear constraint uTx ≤ αu. It is also remarkable that (SDPGSRT-B)
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Table 1: SDP bounds for Example 3

SDP relaxation Lower bound Extra linear constraint Lower bound

(SDP) -20.28 — —

(SDPRLT) -16.23 (SDPαRLT) -11.66

(SDPSOC-RLT) -13.99 (SDPαSOC-RLT) -8.445

(SDPαu
) -10.86 — —

(SDPGSRT-A) -6.011 (SDPαGSRT-A) -4.887

(SDPGSRT-B) -3.331 (SDPαGSRT-B) -3.327

achieves a very good lower bound with -3.331, which demonstrates good performance of GSRT

constraints.

Example 4 [31]

min −8x21 − x1x2 − 13x22 − 6x1 − x2

s.t x21 + x1x2 + 2x22 − 3x1 − 3x2 − 7 ≤ 0,

2x1x2 + 33x1 + 15x2 − 10 ≤ 0,

x1 + 2x2 ≤ 6,

x ≥ 0.

The optimal value of Example 4 is v∗ = −6.4444 with optimal solution x∗ = (0, 0.6667)T . Zheng

Table 2: SDP bounds for Example 4

SDP relaxation Lower bound Extra linear constraint Lower bound

(SDP) -103.43 — —

(SDPRLT) -26.67 (SDPαRLT) -6.4447

(SDPSOC-RLT) -24.63 (SDPαSOC-RLT) -6.4447

(SDPrtc) -19.61 — —

(SDPGSRT-A) -24.08 (SDPαGSRT-A) -6.4445

(SDPGSRT-B) -6.4444 (SDPαGSRT-B) -6.4444

et al. in [31] set u = (1, 1)T , obtained αu = 0.6667, and got a tighter bound v(SDPrtc) = −19.61,

by strengthening (SDPSOC-RLT) with constraints (33) and (35). For this example, (SDPGSRT-B)

shows its good quality by achieving a lower bound −6.4444 with x = (0, 0.6667)T , which is exactly

the optimal solution.

The numerical result that (SDPαSOC-RLT) is tighter than (SDPαu
) and (SDPrtc) verifies the

theoretical results in Theorems 3.1 and 3.2. Furthermore, our numerical tests reveal that the

GSRT constraints can improve the quality of the lower bounds when generated with an extra linear
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constraint uTx ≤ αu. The fact that in both examples our relaxations achieve the optimal values

demonstrates a good quality of the GSRT constraints.

4 Valid inequalities generated from a pair of SOC constraints

Recall in Section 2, we construct the GSRT constraint by linearizing the product of an SOC

constraint and a linear constraint. A natural extension is to apply a similar idea to linearize the

product of a pair of SOC constraints. However, to the best to our knowledge, there is no literature

that mentions this kind of valid inequalities. In this section, we will show that valid inequalities

generated from the product of any pair of SOC constraints can indeed tighten the bound for the

corresponding SDP relaxation, except for the cases where the two SOC constraints are both derived

from type-B convex quadratic constraints.

Let us generalize the idea in GSRT constraints to linearize the product of any two SOC con-

straints. Multiplying two SOC constraints in the form of (42) yields the valid inequality

∥∥CsxxT (Ct)T + Csx(ξt)T + ξsxT (Ct)T + ξs(ξt)T
∥∥
F
≤ lslt. (44)

Linearizing (44) yields the following constraint, termed SOC-SOC-RLT (SST) constraint in our

paper, ∥∥CsX(Ct)T + Csx(ξt)T + ξsxT (Ct)T + ξs(ξt)T
∥∥
F
≤ βs,t, (45)

where βs,t(X,S,Z) = (ζs)TXζt+(ζs)TSηt+(ζt)TSηs+(ηs)TZηt+(θsζt+θtζs)Tx+(θsηt+θtηs)T z+

θsθt is a linear function of variables s, z,X, S, Z, which is linearized from ls(x, z)lt(x, z).

Enhanced with valid inequalities (45), we have the following convex relaxation formulation,

(SDPR+SST) min
x,X∈R

Q0 ·X + cT0 x

s.t.
∥∥CsX(Ct)T +Csx(ξt)T + ξsxT (Ct)T + ξs(ξt)T

∥∥
F
≤ βs,t,

∀1 ≤ s < t ≤ 2l − k,

where R is the feasible set of either (SDPGSRT-A) or (SDPGSRT-B). Formulation (SDPR+SST)

introduces (2l− k)× (2l− k− 1) extra matrix norm constraints, which are SOC representable, and

thus will be time consuming when l, the number of quadratic constraints, becomes large, which is

a common drawback of RLT-like methods.

The fact that extra valid inequalities yield a tighter lower bound leads to the following theorem.

Theorem 4.1. v(P) ≥ v(SDPR+SST) ≥ v(SDPR).

To illustrate the SST constraints, consider the following two examples with the same notations

in problem (P). For simplicity we only introduce SST constraints for relaxations with GSRT-A

valid inequalities.
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Example 5 The parameters in the objective function and quadratic constraints are

Q0 =




41.6520 8.7389 −3.5465

8.7389 0.4619 13.3579

−3.5465 13.3579 44.4321


 , Q1 =




24.2809 3.5542 −5.7609

3.5542 47.4552 1.0912

−5.7609 1.0912 36.9438


 ,

Q2 =




7.6077 16.3267 −13.0655

16.3267 12.6145 −25.3959

−13.0655 −25.3959 8.0877


 , Q3 =



14.3004 2.7738 12.8803

2.7738 −18.2473 9.5673

12.8803 9.5673 −14.8695


 ,

c0 =




−45.2696

46.8522

46.4408


, c1 =




−43.7159

23.8375

39.8978


, c2 =




−38.1502

1.7085

37.0175


, c3 =




−31.8133

−12.8676

−29.7478


,

d1 = −80.4758, d2 = 25.4805, d3 = 12.1182, and there is only one linear constraint with a =

(34.8268, − 22.3518, − 2.6805)T , b = 22.0463.

Our numerical tests show that for Example 5, v(SDPGSRT-A) = −21.3379 and v(SDPGSRT-A+SST) =

−21.3151, where (SDPGSRT-A) is defined in Section 2 and (SDPGSRT-A+SST) is (SDPGSRT-A) en-

hanced with SST constraints (45). Thus, SST constraints indeed tighten the relaxation.

Example 6 The parameters in the objective function and quadratic constraints are

Q0 =




21.4825 −7.7033 −0.6240

−7.7033 −29.8039 −4.1089

−0.6240 −4.1089 22.6975


 , Q1 =




37.4987 −1.0583 −1.8307

−1.0583 37.1551 0.7109

−1.8307 0.7109 44.4416


 ,

Q2 =



−13.5847 −0.4516 4.0519

−0.4516 −4.7512 −17.1011

4.0519 −17.1011 −12.0858


 , Q3 =



−16.9084 18.5030 12.8217

18.5030 −30.1639 8.2985

12.8217 8.2985 −33.1997


 ,

c0 =




34.6975

7.5415

9.8691


, c1 =




−33.9746

−16.6183

−23.3710


, c2 =




0.5738

41.9009

37.4547


, c3 =




40.2865

29.6597

−44.0517


, d1 = −7.0418,

d2 = 5.4327, d3 = −32.8994, and there is only one linear constraint with a = (−7.2229, 45.1322, 25.0139)T ,

b = 37.8832.

Numerical tests show that for Example 6, v(SDPGSRT-A) = −5.51378 and v(SDPGSRT-A+SST) =

−5.3560. Thus, SST constraints indeed tighten the relaxation.

The good performance of our relaxation in the above examples demonstrates that the SST

constraints can strengthen the SDP relaxation for problem (P) with a significant improvement.

However there is a special case when the SST constraints become being dominated. In the

following we will prove an important theorem to show that (45) is dominated for the basic SDP

relaxation when the two SOC constraints are both derived from two type-B convex quadratic con-

straints with ci ∈ Range(Qi) and cj ∈ Range(Qj) (where i and j are the indices of the corresponding

convex constraints). This fact could be a main hidden reason why no literature mentions SST-type

valid inequality. The following lemma helps us prove this result.
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Lemma 4.2. If A and B are both n×n positive semidefinite matrices, then tr(AB) ≤ tr(A)tr(B).

Proof. For any vector u, let us define ‖u‖2 =
√∑

i u
2
i and ‖u‖1 =

∑
i |ui|. Since A and B are

both positive semidefinite, we have ‖λA‖1 = tr(A) and ‖λB‖1 = tr(B), where λA and λB are the

vectors formed by all eigenvalues of matrix A and B, respectively. We complete the proof using

the following fact,

tr(AB) =
∑

i,j

AijBij ≤ ‖A‖F ‖B‖F

= ‖λA‖2 ‖λB‖2 ≤ ‖λA‖1 ‖λB‖1 = tr(A)tr(B),

where the first inequality is due to Cauchy-Schwarz inequality. �

Let us define Type-A SOC constraint if it has the form of (11), which can be generated from

any convex quadratic constraint, and Type-B SOC constraint if it has the form of (32), which is

generated from type-B convex quadratic constraint. Using the above lemma, we will show in the

next theorem that the SST constraints generated by two Type-B SOC constraints that both are

derived from convex constraints are dominated by the linearization of the two associated convex

quadratic constraints.

Theorem 4.3. The SST constraint
∥∥∥∥Q

1

2

i XQ
1

2

j +Q
1

2

i x(ξ
j)T + ξixTQ

1

2

j + ξi(ξj)T
∥∥∥∥
F

≤ lilj,

which is generated by

∥∥∥∥Q
1

2

i (x+ ξi)

∥∥∥∥ ≤ li and

∥∥∥∥Q
1

2

j (x+ ξj)

∥∥∥∥ ≤ lj , i 6= j, i, j ∈ C, is dominated by

Qi ·X + cTi x+ di ≤ 0 and Qj ·X + cTj x+ dj ≤ 0,

where ξt = Q†
tct and lt =

1
4
cTt Q

†
tct − dt is a constant, t = i or j.

Proof. Define y =

(
1

x

)
, Y =

(
1 xT

x X

)
, Di = Q

1

2

i (ξ
i I) and Dj = Q

1

2

j (ξ
j I). Then

∥∥∥∥Q
1

2

i (x+ ξi)

∥∥∥∥ ≤ li and

∥∥∥∥Q
1

2

j (x+ ξj)

∥∥∥∥ ≤ lj are equivalent to ‖Diy‖ ≤ li and ‖Djy‖ ≤ lj . Also, the

SST constraint ∥∥∥∥Q
1

2

i XQ
1

2

j +Q
1

2

i x(ξ
j)T + ξixTQ

1

2

j + ξi(ξj)T
∥∥∥∥
F

≤ lilj

is equivalent to
∥∥∥DiY DT

j

∥∥∥
F
≤ lilj. On the other hand, directly lifting xxT to X for

xTQix+ cTi x+ di ≤ 0 and xTQjx+ cTj x+ dj ≤ 0

yields

Qi ·X + cTi x+ di ≤ 0 and Qj ·X + cTj x+ di ≤ 0,

which are equivalent to tr(DiY DT
i ) ≤ l2i and tr(DjY DT

j ) ≤ l2j .
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Using the fact tr(XY ) = tr(Y X) for any matrix X ∈ ℜm×n and Y ∈ ℜn×m, we complete the

proof with the following inequality,

‖DiY Dj‖2F = tr((DiY DT
j )

T (DiY DT
j ))

= tr(DjY
1

2Y
1

2DT
i DiY

1

2Y
1

2DT
j )

= tr(Y
1

2DT
i DiY

1

2Y
1

2DT
j DjY

1

2 )

≤ tr(Y
1

2DT
i DiY

1

2 )tr(Y
1

2DT
j DjY

1

2 ) (46)

= tr(DiY DT
i )tr(DjY DT

j )

≤ l2i l
2
j .

Note that Lemma 4.2 and the fact that A and B are positive semidefinite matrices, where A =

Y
1

2DT
i DiY

1

2 and B = Y
1

2DT
j DjY

1

2 , are used in the proof of (46). �

Remark 4.4. Note that in Theorem 4.3, the structure of lt =
1

4
cTt Q

†
tct−di indicates that the SOCs

are generated from convex quadratic constraints. When the SST valid inequality is generated by two

type-A SOC constraints, or a type-A and a type-B SOC constraints and both the SOC constraints

are derived from convex constraints, our numerical experiments show that the SST valid inequality

is still dominated by

Qi ·X + cTi x+ di ≤ 0 and Qj ·X + cTj x+ dj ≤ 0, i, j ∈ C.

As we are unable to prove the above observation theoretically, this remains as an open problem in

this stage.

Note that in both Examples 5 and 6 the resulted SST constraints are derived from two SOCs

at least one of which is not generated from a convex constraint, and our numerical results show

that SST constraints indeed help reduce the relaxation gap. On the other hand, Theorem 4.3

and Remark 4.4 suggest us not to generate SST constraints from two SOCs derived from convex

quadratic constraints, in a purpose to avoid generating redundant inequalities.

5 Valid inequalities in LMI form

In this section, we introduce and extend valid inequalities in a form of LMI, i.e., the KSOC valid

inequalities, by linearizing the Kronecker products of semidefinite matrices derived from valid SOC

constraints, which is motivated by the recent work in [3]. We will further show in this section that

these KSOC valid inequalities dominate the HSOC valid inequalities (36) (which is linearized from

(34)) and the SST valid inequalities (45) discussed in Sections 3 and 4, respectively. Moreover, these

valid inequalities also shed light on how to generate valid inequalities that can be easily calculated.

Anstreicher [3] introduced a new kind of constraint with an RLT-like technique for the well-
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known CDT problem [14],

min xTBx+ bTx

s.t. ‖x‖ ≤ 1,

‖Ax+ c‖ ≤ 1,

where B is an n × n symmetric matrix and A is an m × n matrix with full row rank. By the

Schur complement, it is easy to verify that the two quadratic constraints in the CDT problem are

equivalent to the following LMIs,

(
I x

xT 1

)
� 0 and

(
I Ax+ c

(Ax+ c)T 1

)
� 0. (47)

Anstreicher [3] proposed a valid LMI by linearizing the Kronecker product of the above two matrices,

because the Kronecker product of any two positive semidefinite matrices is positive semidefinite.

To reduce the large dimension of the Kronecker matrix, he further proposed KSOC cuts to handle

the problem of dimensionality.

We next extend the method in [3] to the following two semidefinite matrices,

(
ls(x, z)Ip hs(x)

(hs(x))T ls(x, z)

)
and

(
lt(x, z)Iq ht(x)

(ht(x))T lt(x, z)

)
, (48)

which are derived from (and equivalent to) GSOC constraints in (42) by Schur complement, where

hj(x) = Cjx + ξj , j = s, t. We also point out that the following discussion for (48) can also be

applied to the case of a pair of two type-A SOC constraints or a type-A SOC constraint and a

GSOC constraint, i.e., the following Kronecker product,

(
−I Bix

xTBT
i cTi x+ d

)
⊗
(

lt(x, z)Iq ht(x)

(ht(x))T lt(x, z)

)
.

Due to the space consideration, we omit detailed discussion for these cases.

Enlightened by the Kronecker product constraint in [3], we consider the following Tracy–Singh

product, which is just a permutation of the Kronecker product, of the two matrices in (48) (with

this reason, we abuse the notation ⊗ to denote the Tracy–Singh product for simplicity),

Ss =

(
ls(x, z)Ip hs(x)

hs(x)T ls(x, z)

)
⊗
(

lt(x, z)Iq ht(x)

ht(x)T lt(x, z)

)

=




lsIp ⊗ ltIq ls(x, z)Ip ⊗ ht(x) hs(x)⊗ lt(x, z)Iq hs(x)⊗ ht(x)

∗ ls(x, z)Ip ⊗ lt(x, z) hs(x)⊗ ht(x)T hs(x)⊗ lt(x, z)

∗ ∗ ls(x, z)⊗ lt(x, z)Iq ls(x, z) ⊗ ht(x)

∗ ∗ ∗ ls(x, z) ⊗ lt(x, z)




,

where the notation ∗ is used to simplify the expressions of the entries in the lower triangle which

are symmetric to the upper triangle. Linearizing the above matrix yields the following KSOC
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constraint,

S̃s =




βstIq K1 J1 H1

. . .
...

...
...

βstIq Kp Jp Hp

∗ · · · ∗ βstIp Lst M ts

∗ · · · ∗ ∗ βstIq M st

∗ · · · ∗ ∗ ∗ βst




� 0, (49)

where the notations are defined as follows,

M st := CtXζs+CtSηs+θsCtx+ lsξ
t is a vector linearized from lsh

t = ((ζs)Tx+(ηs)T z+θs)(Ctx+

ξt),

Ki := M steTi , i = 1, . . . , p, with ei being the vector with the ith entry being 1 and all others being

0s,

J i := M st
i Iq, i = 1, . . . , p,

H i := CtX(Cs
i,·)

T + ξsiC
tx+Cs

i,·xξ
t + ξsi ξ

t is a vector linearized from hsih
t = (Cs

i,·x+ ξsi )(C
tx+ ξt),

Lst := CsX(Ct)T + Csx(ξt)T + ξsCtx + ξs(ξt)T is a matrix linearized from hs(x) ⊗ ht(x)T =

hs(ht)T = (Csx+ ξs)(Ctx+ ξt)T .

The KSOC cuts in [3] remain effective to handle the KSOC constraint S̃s � 0 when the di-

mension becomes large. In addition, an interesting observation is that the SST constraint can be

derived from a submatrix of S̃s. Specifically, we consider the following submatrix of S̃s,




βstIq H1

. . .
...

βstIq Hp

∗ · · · ∗ βst




. (50)

By invoking the Schur complement, (50) yields
∑p

j=1
HjTHj

βst
≤ βst. With the following fact,

p∑

j=1

(Hj)THj =

p∑

j=1

∥∥(Ctx+ ξt)j(C
sx+ ξs)

∥∥2

=
∥∥(Ctx+ ξt)(Csx+ ξs)T

∥∥2
F
≤ β2

st,

we conclude that (50) is equivalent to (45). Moreover the following matrix inequality,




βstIp Lst M ts

∗ βstIq M st

∗ ∗ βst


 � 0, (51)

which is a submatrix of S̃s with a medium size (2n + 1) × (2n + 1), can also be used to tighten

relaxations for problem (P).

To summarize, we have invoked the KSOC constraints in [3] to derive valid inequalities for SOC

and GSOC constraints. Since the dimension of the Kronecker product matrix increases rapidly

as n increases, we intend to adopt computationally cheap valid inequalities via its submatrices to
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strike a balance between the time cost and bound quality. More specifically, although (51) and

SST constraint (45) are submatrices of S̃s in (49), we may still prefer using these submatrices of

KSOC, instead of using (49), to generate computationally tractable valid inequalities. We point out

that, for a relaxation with a large number of SOC constraints, a practical way is to combine these

two methods in an iterative fashion, i.e., solving the relaxation with SST constraints in Section

4 or various submatrices in this section first, and then finding the Kronecker constraints which

violate the semidefiniteness at the current solution (x, z,X, S, Z), and generating KSOC cuts by

the method in [3].

In Section 3, we have demonstrated that the valid inequalities generated by the Hadamard

products in (34) and (43) are redundant. In the following, we will generate valid inequalities

by replacing the Hadamard products in (34) and (43) with Kronecker products. Although the

Kronecker product matrices include the Hadamard product matrices as submatrices (and thus the

corresponding Kronecker product LMIs dominate (34) and (43), respectively), we will prove that

the two kinds of Kronecker product LMIs are also redundant. Let us define

Ti =

(
−I Bix

xTBT
i cTi x+ d

)
⊗
(

diag(u)diag(x) diag(u)x

xTdiag(u) αu

)

=

(
−I ⊗ Φ (Bix)⊗ Φ

(xTBT
i )⊗ Φ (cTi x+ d)⊗ Φ

)
,

where i ∈ C and Φ =

(
diag(u)diag(x) diag(u)x

xTdiag(u) αu

)
. We then define

V i
j =

(
diag(u)diag(XBT

ij) diag(u)XBT
ij)

BijXdiag(u) αuBijx

)

and

W i =

(
diag(u)diag(Xci + dix) diag(u)(Xci + di)

(Xci + di)
Tdiag(u) αu(c

T
i x+ d)

)

as linearizations of (Bijx) ⊗ Φ and (cTi x + d) ⊗ Φ, respectively. Thus linearizing Ti yields the

following KSOC valid inequality

T̃i =




−Φ V i
1

. . .
...

−Φ V i
n

∗ · · · ∗ W i




� 0. (52)

One may guess the valid inequality T̃i � 0 can be used to strengthen relaxations for problem (P)

as T̃i � 0 dominates the HSOC (36) (note that (36) is linearized from (34)), which is a submatrix

of T̃i. But, unfortunately, it is redundant, if the relaxation involves SOC-RLT constraints with the

artificially introduced redundant linear inequality αu ≥ uTx, as proved in the following theorem.

Theorem 5.1. The KSOC inequality T̃i � 0 is dominated by the SOC-RLT constraints generated

by x ≥ 0, αu ≥ uTx and ‖Bix‖2 ≤ −cTi x− di, i.e., (37) and (38).
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Proof. Define P :=

(
Ip −e

1

)
with e being the all one vector. It is easy to verify the following

facts,

Φ′ := P TΦP =

(
diag(u)diag(x)

αu − uTx

)
,

V i
j

′
:= P TV i

j P =

(
diag(u)diag(XBT

ij)

αuBijx− uTXBT
ij

)
,

W i′ := P TW iP =

(
diag(u)diag(Xci + dix)

αu(c
T
i x+ d)− uT (Xci + dix)

)
.

So we have the following transformation,

(I ⊗ P )T T̃i(I ⊗ P ) =




−Φ′ V i
1

′

. . .
...

−Φ′ V i
n
′

∗ · · · ∗ W i′




. (53)

From the Schur complement, (53) � 0 is equivalent to W i′ � 0 and

T̄i := W i′ − (V i
1

′ · · · V i
n

′
)diag(−Φ′, · · · ,−Φ′)†(V i

1

′ · · · V i
n

′
)T

= W i′ +
n∑

j=1

V i
j

′
Φ′†V i

j � 0.

Together with the fact that T̄i is a diagonal matrix (since W i′, Φ′ and V i
j

′
are all diagonal), T̄i � 0

is equivalent to

αu(c
T
i x+ d)− uT (Xci + dix) +

∑n
j=1(αuBijx− uTXBT

ij)
2

αu − uTx
≤ 0

and

ut(Xci + dix)t +

∑n
j=1[ut(XBij)t]

2

utxt
≤ 0, t = 1 . . . , n,

The former equation is equivalent to (38), and the latter equations are equivalent to, by eliminating

ut, (37). �

Similarly we have the following result for the KSOC constraint generated from a GSOC and

Φ. Although the KSOC constraint dominates the HSOC constraint generated by (43), the KSOC

constraint is redundant when having GSRT constraints.

Corollary 5.2. The KSOC constraint generated by the following Kronecker product

(
ls(x, z)I hs(x)

(hs(x))T ls(x, z)

)
⊗
(

diag(u)diag(x) diag(u)x

xTdiag(u) αu

)
(54)

is dominated by the GSRT constraints generated by x ≥ 0, αu ≥ uTx and ‖(Csx+ ξs)‖ ≤ ls(x, z).

27



With a similar analysis, we can prove the KSOC constraint generated by the following Kronecker

product

(
ls(x, z)I hs(x)

(hs(x))T ls(x, z)

)
⊗
(

diag(u)diag(x) diag(u)x

xTdiag(u) uTx

)
� 0 (55)

is also dominated by GSRT constraints generated from x ≥ 0, and ‖(Csx+ ξs)‖ ≤ ls(x, z).

In summary, we have demonstrated that the two valid inequalities generated by the Kronecker

products in (52) and (54) are redundant, although they are more general than the associated HSOC

constraints (36) in Theorem 3.2 and (43) in Corollary 3.3.

6 Numerical results

In this section, we report our numerical tests on SDP bounds generated by (SDPRLT), (SDPSOC-RLT)

and (SDPGSRT). The numerical tests in Table 3 were implemented in Matlab 2013a, 64bit and was

run on a Linux machine with 48GB RAM, 2.60GHz cpu and 64-bit CentOS Release 5.5. And

the numerical tests in Figures 1–3 were implemented in Matlab2016a and was run on a PC with

8GB RAM, 3.30GHz cpu and 64-bit Windows 7. The mixed SDP and SOCP problems in all our

numerical examples are modeled by CVX 2.1 [16, 17], and solved by SDPT3 4.0 within CVX.

The examples in Table 3 were generated in the following way, which is similar to Set 1 in [31]

but without the box constraint [0, 1]n. The test problems have nonconvex objective function, k

convex quadratic constraints, l−k nonconvex quadratic constraints and m linear constraints. In the

following, we use ξ ∈u [a, b] to represent a random number ξ uniformly distributed in the interval

[a, b] and round(·) to represent the value after rounding for a matrix, vector, or scalar. To invoke

the GSRT-B valid inequalities, we choose the instances whose nonconvex quadratic constraints

correspond to nonsingular matrices.

• Q0 = round(P0T0P0), Qi = PiTiPi (1 ≤ i ≤ l); Pi = Ui1Ui2Ui3, Uit = I − 2
wtw

T
t

‖wt‖2
, i = 0, . . . , l,

t = 1, 2, 3, wt = (wt1, . . . , wtn)
T , wtk ∈u [−1, 1].

• For 1 ≤ i ≤ k, Ti = diag(Ti1, . . . , Tin) with Tit ∈u [0, 50], for t = 1, . . . , n; For k + 1 ≤ i ≤ l,

Tit ∈u [−50, 0] for t = 1, . . . , n
2
and Tit ∈u [0, 50] for t = n

2
+ 1, . . . , n; T0t ∈u [−50, 50], for

t = 1, . . . , n. Also, ci = (ci1, . . . , cin)
T with c0t ∈u [−50, 50], cit ∈u [−100, 0] for 1 ≤ i ≤ k and

cit ∈u [0, 100] for k + 1 ≤ i ≤ l, t = 1, . . . , n. And di ∈u [−100 + θi, θi] for 1 ≤ i ≤ k and

di ∈u [−10 + θi, θi] for k + 1 ≤ i ≤ l, where θi = −eT1 Qie− bTi e1 with e1 = (1, 0, . . . , 0)T .

• For 1 ≤ j ≤ m, aj = round(aj1, . . . , ajn)
T , ajt ∈u [−50, 50], bj = round(θj), where θj ∈u

[−10− ϑj,−ϑj ] with ϑj = 0.5
∑n

j=1max{0, ajt}, for t = 1, . . . , n.

We use the name “set-n-l-k-m” to denote different sets of test problems, where n denotes the

dimension of decision variable x, l denotes the number of quadratic constraints, k denotes the

number of convex quadratic constraints, and m denotes the number of linear constraints. We test
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Table 3: Numerical tests for different convex relaxations

Instance Lower bound CPU time

RLT SOC-RLT GSRT-A GSRT-B RLT SOC-RLT GSRT-A GSRT-B

set-30-2-1-59 -972.354 -971.983 -971.836 -971.346 68.5823 110.394 273.571 243.123

set-30-3-1-6 -6049.13 -4650.05 -4635.05 -4497.73 1.73537 5.69738 15.9725 13.4898

set-30-3-2-20 -901.782 -890.771 -890.474 -882.626 12.769 28.4496 63.3376 53.7678

set-30-4-1-27 -3697.12 -3574.71 -3573.84 -3497.22 23.4023 28.2477 134.541 123.743

set-30-4-2-58 -1044.52 -1044.17 -1044.04 -1042.2 69.5229 168.242 454.528 471.841

set-30-4-3-50 -813.949 -748.958 -748.958 -744.291 46.3874 178.628 346.418 285.502

set-30-5-2-60 -828.387 -820.734 -820.734 -818.061 70.6086 177.594 766.148 735.596

set-30-5-3-33 -510.902 -494.661 -494.661 -493.585 22.2189 93.7847 247.071 218.586

set-30-5-4-46 -520.127 -511.427 -511.346 -509.775 67.1995 283.42 559.463 563.919

set-30-6-1-10 -1027.64 -1023.3 -1023.24 -1021.25 2.27227 11.5146 70.6774 58.1292

set-30-6-3-44 -703.572 -702.96 -702.96 -700.314 34.1835 140.288 521.788 530.05

set-30-6-4-25 -448.76 -445.707 -445.673 -444.336 14.1767 77.667 185.765 161.619

set-30-7-1-42 -1773.83 -1746.49 -1742.23 -1637.49 35.5206 63.4244 630.688 592.466

set-30-7-2-55 -1486.3 -1448.24 -1448.24 -1442.07 63.6699 139.714 983.371 939.227

set-30-7-6-43 -194.096 -193.064 -193.064 -191.185 37.2041 265.017 541.029 560.087

set-30-8-1-25 -1659.66 -1531.5 -1531.5 -1515.58 22.1517 25.6327 404.225 311.929

set-30-8-2-58 -1010.24 -1009.01 -1008.49 -999.31 70.9503 171.326 1188.2 1258.59

set-30-8-6-60 -386.848 -386.538 -386.538 -386.326 76.0659 461.669 1060.4 1013.67

set-30-9-2-60 -969.073 -953.641 -953.641 -949.923 75.0906 179.733 1468.48 1335.38

set-30-9-5-30 -273.552 -273.307 -273.307 -272.705 38.512 131.216 421.553 382.539

set-30-9-7-58 -282.216 -279.421 -279.421 -279.101 85.9947 579.015 1134.66 1140.53

set-30-10-2-29 -565.335 -563.997 -563.919 -561.784 33.2646 52.5847 557.768 470.508

set-30-10-3-31 -506.954 -481.015 -481.015 -478.257 20.9386 77.4038 632.39 542.151

set-30-10-8-60 -371.855 -371.216 -371.195 -371.061 87.6211 702.363 1391.21 1329.4

numerical experiments with l changing from 1 to 10, k changing from 1 to l − 1 and m changing

from 1 to 60, and report numerical results in Table 3 with the examples whose (SDPGSRT) have

large improvement.

In Table 3, RLT denotes the conic relaxation (SDPRLT), SOC-RLT denotes the conic relaxation

(SDPSOC-RLT), GSRT-A denotes the conic relaxation (SDPGSRT-A) and GSRT-B denotes the conic

relaxation (SDPGSRT-B), according to their definitions in Section 2. The number of RLT constraints

is m(m−1). The number of SOC-RLT constraints, which are SOC representable constraints, is km.

The number of convex quadratic (SOC representable) constraints and that of linear constraints in
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GSRT constraints are 2(l−k)m+2(l−k) and (l−k)m, respectively. Also, to illustrate the effect of

the GSRT relaxations, we kick out the examples whose SDP+RLT relaxation are exact, infeasible

or unbounded.

We can conclude from Table 3 that a dominance relationship of RLT ≤ SOC-RLT ≤ GSRT-A ≤
GSRT-B holds for the lower bound and a dominance relationship of RLT ≤ SOC-RLT ≤ GSRT-B or

GSRT-A holds for the CPU time. The tighter lower bounds of both (SDPGSRT-A) and (SDPGSRT-B)

than (SDPSOC-RLT), albeit the increased CPU time cost, are reasonable because of the additional

valid inequalities. The comparison of the lower bounds further shows an interesting result that the

lower bounds of GSRT-B are always better than or equal to the lower bounds of GSRT-A, whose

proof remains as an open problem. For most problem sets, the CPU time satisfies the following

inequality GSRT-B ≤ GSRT-A. We also conclude from the table that the number of linear and

SOC constraints significantly affects the CPU time for different relaxations. An increment of linear

constraints largely increases the number of SOC constraints in SOC-RLT, GSRT-A and GSRT-

B, thus increasing the CPU time significantly. For instances with the same number of quadratic

constraints and similar number of linear constraints, more nonconvex quadratic constraints lead

to larger CPU time in GSRT-A and GSRT-B, because a nonconvex quadratic constraint generates

SOC constraints about two times more than a convex quadratic constraint does and has one more

dimension in the lifted matrix.

Since we do not know the optimal value of the examples in Table 3, we could not measure the

improvement of the GSRT constraint precisely. In the following Figures 1–3, we will show that the

improvement can be significant for some class of problems. To measure the effect of the GSRT

relaxations, we define the improvement ratio as

improv.ratio =
v(SDPGSRT)− v(SDPRLT)

v(SDPRLT)
.

We set the test problems the same as those in Table 3 except that the negative eigenvalues in the

quadratic constraints have different number of eigenvalues (which is denoted by φ in Figures 1–3),

and Q0 = I−∑n
i Qi to ensure the boundedness of the relaxations. We also set the dimension of the

problem as n = 20, the number of quadratic constraint as l = 5 and all the quadratic constraints are

nonconvex, i.e., k = 0, and the linear constraints m changing from 1 to 40. For each problem setting,

we compute 10 random examples and illustrate the mean and maximal improvement in the figures.

From Figures 1–3, we conclude that the improvement is significant with average improvement up

to 9%, 5% and 11% and maximal improvement up to 30%, 17% and 36% for cases that φ = 5,

φ = 10 and φ = 15, respectively.

7 Concluding remark

In this paper, we have presented the GSRT valid inequalities to tighten the SDP relaxations for

nonconvex QCQP problems. While the convex relaxations in the current literature lose their

effects when dealing with nonconvex quadratic constraints, we decompose each nonconvex quadratic

constraint to two convex quadratic constraints and develop GSRT constraints based on the idea
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Figure 1: Evolution of average and maximal improvement (of 10 examples) versus number of linear con-

straints for problem setting n = 20, φ = 5.

of RLT. Specifically, our GSRT constraints extend the SOC-RLT constraint, by linearizing the

product of any pair of linear constraint and SOC constraint derived from nonconvex quadratic

constraints. Enlightened by the decomposition-approximation method in [31], we have further

proposed a tighter relaxation with extra RLT, SOC-RLT and GSRT generated by extra valid linear

inequality αu ≥ uTx. Extending the idea of the GSRT constraints, we have also derived valid

inequalities by linearizing the product of any pair of SOC constraints derived from all quadratic

constraints. We have finally extended the Kronecker product constraint to GSOC constraints

and demonstrated its relationship with the previous relaxations. Promising performance of our

numerical tests make us to believe potential applications of our approaches in branch and bound

method algorithms for general QCQP problems.

While we extend the reach of the RLT-like techniques for almost all different types of constraint-

pairs, we also examine the dominance relationships among them in order to remove these dominated

valid inequalities from consideration. We now summarize the dominance relationships of different

relaxations discussed in this paper in the following Figure 4.

In fact, we can further rewrite the objective function as min τ and add a new constraint xT0 Q0x0+

cT0 x ≤ τ , with a new variable τ . The original problem is then equivalent to minimizing τ and all

the techniques developed in this paper can be applied to the new constraint xT0 Q0x0 + c0Tx ≤ τ

to achieve a tighter lower bound.
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Figure 2: Evolution of average and maximal improvement versus number of linear constraints for problem

setting n = 20, φ = 10.

An obvious drawback of the relaxations proposed in this paper is their expensive computational

cost due to the involved large number of extra SOC constraints, which is a general challenge in RLT

based optimization algorithms, see [1, 25]. One direction to overcome this computational difficulty

is to avoid solving SDP problems by using, instead, linear inequalities to approximate the linear

matrix constraint X � xxT , which are also called semidefinite cutting plane method [25] and [22].

Another important observation is that a large number of RLT, SOC-RLT and GSRT constraints

are inactive at the optimal solution, which inspires us to consider in our future study the idea of

dynamically adding semidefinite cutting planes. More specifically, we can dynamically add some

RLT, SOC-RLT and GSRT constraints which are most violated by the current relaxation solution,

rather than including all the RLT, SOC-RLT and GSRT constraints in the beginning.
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Figure 3: Evolution of average and maximal improvement versus number of linear constraints for problem

setting n = 20, φ = 15.
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