Skip to main content
Log in

Parametric monotone function maximization with matroid constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study the problem of maximizing an increasing function \(f:2^N\rightarrow \mathcal {R}_{+}\) subject to matroid constraints. Gruia Calinescu, Chandra Chekuri, Martin Pál and Jan Vondrák have shown that, if f is nondecreasing and submodular, the continuous greedy algorithm and pipage rounding technique can be combined to find a solution with value at least \(1-1/e\) of the optimal value. But pipage rounding technique have strong requirement for submodularity. Chandra Chekuri, Jan Vondrák and Rico Zenklusen proposed a rounding technique called contention resolution schemes. They showed that if f is submodular, the objective value of the integral solution rounding by the contention resolution schemes is at least \(1-1/e\) times of the value of the fractional solution. Let \(f:2^N\rightarrow \mathcal {R}_{+}\) be an increasing function with generic submodularity ratio \(\gamma \in (0,1]\), and let \((N,\mathcal {I})\) be a matroid. In this paper, we consider the problem \(\max _{S\in \mathcal {I}}f(S)\) and provide a \(\gamma (1-e^{-1})(1-e^{-\gamma }-o(1))\)-approximation algorithm. Our main tools are the continuous greedy algorithm and contention resolution schemes which are the first time applied to nonsubmodular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ageev, A.A., Sviridenko, M.I.: Pipage rounding: a new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method, vol. 3, pp. 307–314. Wiley, New York (2008)

    Book  Google Scholar 

  3. Alon, N., Gamzu, I., Tennenholtz, M.: Optimizing budget allocation among channels and influencers. In: Proceedings of the 21st international conference on World Wide Web, ACM, 381–388 (2012)

  4. Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: International conference on machine learning, 498–507 (2017)

  5. Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem. Discrete Appl. Math. 7(3), 251–274 (1984)

    Article  MathSciNet  Google Scholar 

  6. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint. In: 12th international IPCO conference on integer programming and combinatorial optimization, 182–196 (2007)

  7. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: Proceedings of the forty-third annual ACM symposium on theory of computing, ACM, 783–792 (2011)

  8. Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selection, sparse approximation and dictionary selection. In: Proceedings of the 28th international conference on international conference on machine learning, Omnipress, 1057–1064 (2011)

  9. Edmonds, J.: Matroids and the greedy algorithm. Math. Progr. 1(1), 127–136 (1971)

    Article  MathSciNet  Google Scholar 

  10. Edmonds, J.: Submodular Functions, Matroids, and Certain Polyhedra. Combinatorial OptimizationEureka, You Shrink!, pp. 11–26. Springer, Berlin (2003)

    Book  Google Scholar 

  11. Feige, U., Izsak, R.: Welfare maximization and the supermodular degree. In: Proceedings of the 4th conference on innovations in theoretical computer science, ACM, 247–256 (2013)

  12. Feldman, M., Izsak, R.: Constrained monotone function maximization and the supermodular degree. arXiv preprint arXiv:1407.6328 (2014)

  13. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22(2), 89C103 (1971)

    Article  MathSciNet  Google Scholar 

  14. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An Analysis of Approximations for Maximizing Submodular Set FunctionsII. Polyhedral Combinatorics, pp. 73–87. Springer, Berlin (1978)

    Google Scholar 

  15. Fujishige, S.: Submodular Functions and Optimization, vol. 58. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  16. Iyer, R., Bilmes, J.: Algorithms for approximate minimization of the difference between submodular functions, with applications. arXiv preprint arXiv:1207.0560 (2012)

  17. Kuhnle, A., Smith, J.D., Crawford, V.G., Thai, M.T.: Fast maximization of non-submodular, monotonic functions on the integer lattice. arXiv preprint arXiv:1805.06990 (2018)

  18. Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55(2), 270–296 (2006)

    Article  MathSciNet  Google Scholar 

  19. Maehara, T., Murota, K.: A framework of discrete DC programming by discrete convex analysis. Math. Progr. 152(1–2), 435–466 (2015)

    Article  MathSciNet  Google Scholar 

  20. Narasimhan, M., Bilmes, J.A.: A submodular-supermodular procedure with applications to discriminative structure learning. arXiv preprint arXiv:1207.1404 (2012)

  21. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functionsI. Math. Progr. 14(1), 265–294 (1978)

    Article  Google Scholar 

  22. Soma, T., Yoshida, Y.: A generalization of submodular cover via the diminishing return property on the integer lattice. Adv. Neural Inf. Process. Syst. 1, 847–855 (2015)

    Google Scholar 

  23. Soma, T., Yoshida, Y.: Maximizing monotone submodular functions over the integer lattice. Math. Progr. 172(1–2), 539–563 (2018)

    Article  MathSciNet  Google Scholar 

  24. Soma, T., Yoshida, Y.: Non-monotone dr-submodular function maximization. In: Thirty-First AAAI conference on artificial intelligence, 898–904 (2017)

  25. Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the fortieth annual ACM symposium on theory of computing, ACM, 67–74 (2008)

  26. Vondrák, J.: Submodularity and curvature: the optimal algorithm. Combinatorica 2, 385–393 (1982)

    Article  MathSciNet  Google Scholar 

  27. Wu, C., Wang, Y., Lu, Z., Pardalos, P.M., Xu, D., Zhang, Z., Du, D.Z.: Solving the degree-concentrated fault-tolerant spanning subgraph problem by DC programming. Math. Progr. 169(1), 255–275 (2018)

    Article  MathSciNet  Google Scholar 

  28. Wu, W.L., Zhang, Z., Du, D.Z.: Set function optimization. J. Oper. Res. Soc. China (2018). https://doi.org/10.1007/s40305-018-0233-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingqin Nong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported in part by the National Natural Science Foundation of China under Grant Numbers 11201439 and 11871442, and was also supported in part by the Natural Science Foundation of Shandong Province under grant number ZR2019MA052 and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, S., Nong, Q., Liu, W. et al. Parametric monotone function maximization with matroid constraints. J Glob Optim 75, 833–849 (2019). https://doi.org/10.1007/s10898-019-00800-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00800-2

Keywords

Navigation