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Abstract 

 

We present a model development framework and numerical solution approach to the 

general problem-class of packing convex objects into optimized convex containers. 

Specifically, here we discuss the problem of packing ovals (egg-shaped objects, defined 

here as generalized ellipses) into optimized regular polygons in ℝ2. Our solution strategy 

is based on the use of embedded Lagrange multipliers, followed by nonlinear (global-local) 

optimization. The numerical results are attained using randomized starting solutions 

refined by a single call to a local optimization solver. We obtain credible, tight packings 

for packing 4 to 10 ovals into regular polygons with 3 to 10 sides in all (224) test problems 

presented here, and for other similarly difficult packing problems.  

 

Key words: Object Packings ∙ Generalized Ellipses (Ovals, Eggs) ∙ Regular Polygon 

Containers ∙ Model Development Using Embedded Lagrange Multipliers ∙ Global-Local 

Nonlinear Optimization ∙ Numerical Test Results. 

 

 

1 Introduction 

 

The efficient packing, arrangement, or configuration design of objects is required across a 

vast range of engineering and scientific applications. Industrial engineering (IE) and 

operations research (OR) applications include facility layout design, cutting stock 

problems in various contexts (e.g., in the glass, metal, paper, textile, and wood industries), 

and the packing arrangement of solid objects for storage or transportation. A perfunctory 

web search for the key words “packing problems” returns more than 150,000 results (as of 

November 2018). Therefore here we only refer to a relatively small selection of works that 

present, review and discuss IE/OR packing methods and applications: consult e.g., 

Dowsland and Dowsland (1992), Lodi et al. (2002), Pisinger and Sigurd (2007), Bennell 

and Oliveira (2008), Castillo et al. (2008), Hifi and M’Hallah (2009), Bennell et al. (2010), 

Chernov et al. (2010), López and Beasley (2011), Fasano (2014), Fasano and Pintér (2015), 

Alt (2016), Anjos and Vieira (2017), with many topical references. Let us add that e.g., 

information theory and error-correcting codes (Conway, 1995; Shannon, 1948), number 

theory, approximation theory, algebra, and theoretical physics (Cohn, 2010), and the design 

of experiments (Kleijnen, 2015) are further important application areas.  

 



As stated by Saunders (2017) in his anniversary review article, Thompson’s classical work 

(1917) has stood at the forefront of our understanding of the development of biological 

form for the past century. Studies in computational physics, chemistry and biology often 

search for optimized object configurations. The number of web references related to these 

topics is in the range of millions: here we refer only to a small selection of books by Jensen 

(2007), Landau et al. (2012), Newman (2012), Kellis (2016), and O’Neil (2017). 

 

To give a few concrete examples, object packing studies in the sciences are related, e.g., to 

the structural analysis of liquids, crystals, and glasses (Bernal, 1959); the flow and 

compression of granular materials (Edwards, 1994; Jaeger and Nagel, 1992, 1996); the 

design of high-density ceramic materials and the formation and growth of crystals (Cheng 

et al., 1999; Rintoul and Torquato, 1996); the thermodynamics of liquid to crystal transition 

(Alder and Wainwright, 1957; Chaikin, 2000; Pusey, 1991); and the chromosome 

organization in human cell nuclei (Uhler and Wright, 2013).  

 

The paradigm packing objects efficiently leads to interesting model development and 

(often) hard optimization challenges. A packing configuration can be formally defined as 

a non-overlapping arrangement of a given collection of objects inside a chosen type(s) of 

container(s). Packings can be optimized according to some appropriately selected criterion, 

such as the area or volume of the container or the packing fraction (defined as the fraction 

of the container area/volume covered by the packed objects). The convexity of the packed 

objects and/or of the container is often postulated, noting that such problems typically still 

require non-convex continuous and/or combinatorial optimization approaches.  

 

To start with a seemingly “easy” case, packing identical circles has received considerable 

attention. Research on packing identical circles frequently aims at proving the optimality 

of the configurations found, either theoretically or with the help of rigorous computational 

techniques. Provably optimal configurations, with the exception of certain special cases, 

are available only for a few tens of circles; best-known results are available for packing up 

to 2,600 identical circles in a circle and 10,000 identical circles in a square. For further 

details and references, consult e.g., Szabó et al. (2007) or Specht (2018). 

 

The general circle packing problem – considered for a given set of circles with (in 

principle) arbitrary size – is a substantial generalization of the case with identical circles. 

In full generality, provably optimal configurations are available only for models with 𝑛 ≤
4 circles. Therefore, studies dealing with such problems introduce and apply efficient 

generic or tailored global scope numerical solution strategies, but without the ability to 

prove the optimality of the results obtained. We refer to Castillo et al. (2008) and to Hifi 

and M’Hallah (2009) for reviews of both uniform and arbitrary sized circle packings and 

their applications. More recently, Pintér et al. (2017) present numerical results for general 

sphere packings in 2, 3, 4, 5 dimensions with up to 50 spheres. 

 

Compared to circle packings, ellipse packing problems have received relatively little 

attention in the literature. Finding high quality, globally optimized packings of ellipses with 

arbitrary size and orientation is a hard computational problem. The key challenge is the 

modeling and enforcement of the non-overlapping constraints as a function of ellipse center 



locations and orientations. Galiev and Lisafina (2013) studied of ellipse packing problems 

assuming identical ellipses, orthogonally oriented inside a rectangular container. Uhler and 

Wright (2013) relax these assumptions, and propose a model that minimizes a measure of 

overlap between ellipses (while overlaps still remain possible). Kallrath (2017) extends the 

work presented in Kallrath and Rebennack (2014) to pack non-overlapping ellipses of 

arbitrary size and orientation into optimized rectangular containers: the key modeling idea 

is to use separating lines to ensure that the ellipses do not overlap with each other. Birgin 

et al. (2017) extend the work presented in Birgin et al. (2016) for packing arbitrary ellipses 

in convex containers: they propose a multi-start strategy combined with starting guesses 

and a local optimization solver, in order to find good quality packings with up to 1000 

ellipsoids. We will refer to our related previous work in Section 3, while extending that 

work for the more general problem-class studied here. Despite the substantial amount of 

research effort highlighted above, it is evident that packing relatively “simple” objects such 

as circles or ellipses into “simple” (circular, rectangular) containers already leads to 

modeling and optimization challenges. 

 

In this article, we concentrate on model development and numerical solution approaches 

to the problem of packing more general convex objects using a unified, flexible, accurate, 

and efficient framework. Our model development relies on representing the objects to be 

packed by a general convex set-type known as ovals or eggs. (In common English, the term 

oval is used for any shape which reminds one of an egg.) We will give a formal definition 

of eggs, noting that – according to our definition – circles and ellipses are special cases of 

eggs. To further enhance the flexibility of our modeling framework, we consider optimized 

regular polygons as container sets.  

 

To our best knowledge, there are no previous studies related to the general problem-class 

studied here. Following this introduction, we define and discuss eggs in Section 2. The 

optimization model development framework is presented in Section 3. Illustrative 

numerical results and their analysis are described in Section 4. The conclusions (Section 5) 

are followed by a fairly extensive list of references. 

 

 

2 Eggs: General Definition and Some Special Cases 

 

Perhaps surprisingly, there is no unique definition of ovals, egg shaped curves or bodies. 

Consult e.g. the topical webpages of Köller (2018) and Yamamoto (2018) for related 

discussions and a number of alternative definitions.  

 

Citing the “oval” entry of Wikipedia (2018), oval commonly means a shape like an egg or 

an ellipse. It can be also used to refer to a ”stadium” shape defined by two semicircles 

joined by a rectangle. Sometimes, it can even refer to a rectangle with rounded corners. 

The general term oval is used also to describe certain non-convex objects such as the 

lemniscate of Bernoulli, or Cassini ovals.  

  

In this work, we define the contour of an egg curve in ℝ2 that follows the equation 

 



 
(
𝑥

𝑎
)
𝑝

+ 𝑒𝑡𝑥 (
𝑦

𝑏
)
𝑝

= 1. 
(1) 

 

In (1), (𝑥, 𝑦) is the location of a point on the egg contour curve in ℝ2, 𝑎 > 0 and 𝑏 > 0 are 

the semi-major and semi-minor axes of this curve, 𝑝  2 is an even integer, and 𝑡  0 is the 

distortion factor. An egg can be defined with arbitrary size and orientation parameters, 

noting that – in the case studied here –the size and distortion factors are limited in order to 

maintain the egg’s convexity. The four images displayed in Figure 1 illustrate the modeling 

flexibility offered by eggs defined in the form of equation (1), for several settings of the 

parameters 𝑎, 𝑏, 𝑝, and 𝑡. For example, the setting 𝑎 = 𝑏, 𝑝 = 2, 𝑡 = 0 results in a circle; 

and the (general) pair of 𝑎, 𝑏 with p = 2, t = 0 results in an ellipse. Setting 𝑝 = 2 leads to 

ovals which become more asymmetrical and “pointed” as t increases. Setting 𝑝 = 4 leads 

to “stadium” like objects, and so on. 

 

 
𝑎 = 1, 𝑏 = 1, 𝑝 = 2, 𝑡 = 0.0 

 
𝑎 = 1, 𝑏 = 1, 𝑝 = 2, 𝑡 = 0.5 

 

 
𝑎 = 1, 𝑏 = 0.5, 𝑝 = 2, 𝑡 = 1.0 

 
𝑎 = 1, 𝑏 = 1, 𝑝 = 4, 𝑡 = 0.0 

 

Figure 1. General egg curve examples for several values of 𝑎, 𝑏, 𝑝, and 𝑡. 
 

 



3 Optimization Model Development 

 

Our modeling and solution approach is based on extending the use of embedded Lagrange 

multipliers to the case of egg objects studied here. Embedded Lagrange multipliers were 

introduced to pack ellipses inside optimized circular containers in Kampas et al. (2017), 

and to pack ellipses inside optimized regular polygons in Kampas et al. (2018).  

 

Here we also use an optimized regular polygon as the container set. The extension from 

ellipses to eggs is, however, not trivial. Our objective is to minimize the area of the regular 

polygon that contains a given collection of eggs with arbitrary size and orientation.  

 

The input data to such an optimization problem instance are defined by the number of sides 

for the container, and the parameters (semi-major, semi-minor axes, exponent and 

distortion factor) of the eggs to be packed.  

 

The primary decision variables are the polygon’s apothem, and the centre position and 

orientation of each of the packed eggs. (Recall that the apothem of a regular polygon is a 

line segment from the polygon’s center to the midpoint of one of its sides.) 

 

There are two sets of secondary variables. The first set consists of the positions of the 

distance maximizing lines pointing from each egg boundary to the center of each of the 

polygon faces. The second set is given by the positions of the points on one of each pair of 

eggs which minimizes the value of the equation describing the other egg. 

 

The secondary variables are used to define the model constraints. The first set is used to 

represent the constraints that keep the eggs inside the container. The second set is used to 

prevent the eggs from overlapping. These constraint sets are generated by embedded 

Lagrange multiplier conditions. In our optimization strategy, the calculations for finding 

the polygon’s apothem and for preventing egg overlaps proceed simultaneously, rather than 

being performed to completion at each step towards the minimization of the polygon area. 

 

Denote by 𝑚 the number of polygon sides, and by 𝑑 the 𝑚-polygon’s apothem: the area of 

this polygon equals 𝑚 ∙ 𝑑2 ∙ tan(𝜋 𝑚⁄ ). Since 𝑚 is an input parameter to the optimization 

problem instance, minimizing the apothem is equivalent to minimizing the area of the 

regular 𝑚-polygon. 

 

Equation 𝑒(𝑎, 𝑏, 𝑝, 𝑡, 𝑥𝑐, 𝑦𝑐, 𝜃; 𝑥, 𝑦) displayed below defines an egg with its given input 

parameters – semi-major and semi-minor axes 𝑎 and 𝑏, exponent 𝑝, and distortion factor 𝑡 
– centered at {𝑥𝑐, 𝑦𝑐}, and rotated counterclockwise by angle 𝜃. Recall that (𝑥𝑐, 𝑦𝑐) and 𝜃 

are the primary decision variables for each egg. 

 



 𝑒(𝑎, 𝑏, 𝑝, 𝑡, 𝑥𝑐, 𝑦𝑐, 𝜃; 𝑥, 𝑦)

= (
cos(𝜃) (𝑥 − 𝑥𝑐) + sin(𝜃) (𝑦 − 𝑦𝑐)

𝑎
)

𝑝

+ 𝑒𝑡𝛿 (
cos(𝜃) (𝑦 − 𝑦𝑐) − sin(𝜃) (𝑥 − 𝑥𝑐)

𝑏
)

𝑝

− 1, 

(2) 

          where 𝛿 = cos(𝜃) (𝑥 − 𝑥𝑐) + sin(𝜃) (𝑦 − 𝑦𝑐).  
 

The value of 𝑒(𝑎, 𝑏, 𝑝, 𝑡, 𝑥𝑐, 𝑦𝑐, 𝜃; 𝑥, 𝑦) is negative for all points (𝑥, 𝑦) located inside the 

egg, zero for all points on the egg boundary, and positive for all points outside the egg. 

 

We will assume (postulate) that the optimized polygon container is centered at the origin. 

Consider now the line 𝑐𝑥 ∙ 𝑥 + 𝑐𝑦 ∙ 𝑦 = 𝑙 that embeds one of the sides of the polygon. The 

slope of this line is −(𝑐𝑥 𝑐𝑦⁄ ). If (𝑐𝑥, 𝑐𝑦) is a unit vector so that 𝑐𝑥2 + 𝑐𝑦2 = 1, then the 

point on the line closest to the origin is 𝑙 ∙ (𝑐𝑥, 𝑐𝑦). The slope of the line to that point is 

𝑐𝑦 𝑐𝑥⁄ : hence, the line from the origin to the closest point on 𝑐𝑥 ∙ 𝑥 + 𝑐𝑦 ∙ 𝑦 = 𝑙  is 

perpendicular to it. 

 

As mentioned above, the first set of constraints is used to keep the eggs inside the container. 

We find the maximum value of 𝑙 , denoted by 𝑙max, for which the side of the polygon 

intersects the egg. Our 𝑚-polygon derivation follows the first order Karush–Kuhn–Tucker 

conditions described by Kallrath and Rebennack (2014) for a rectangular container. For the 

egg to be contained inside the polygon, all sides 𝑐𝑥 ∙ 𝑥 + 𝑐𝑦 ∙ 𝑦 must be less than or equal 

to this maximum value. Consider the following equation using 𝜆  as the maximizing 

embedded Lagrange multiplier. 

 

 𝑐𝑥 ∙ 𝑥 + 𝑐𝑦 ∙ 𝑦 = 𝜆 ∙ 𝑒(𝑎, 𝑏, 𝑝, 𝑡, 𝑥𝑐, 𝑦𝑐, 𝜃; 𝑥, 𝑦). (3) 

 

Differentiating equation (3) with respect to 𝑥, 𝑦, and 𝜆, we can numerically obtain the 

maximum value 𝑙max in the direction (𝑐𝑥, 𝑐𝑦). 
 

For example, consider the line defined by 𝑥 + 𝑦 = 1  and the egg defined by 

𝑒(1/2, 1/3,2,0,0,0,1/2; 𝑥, 𝑦) . The maximum value in the direction (𝑐𝑥, 𝑐𝑦)  is 𝑙max =
0.2444 with (𝑥, 𝑦) = (0.4000,0.2914): this value can be found by numerically solving 

equation (3). Figure 2 shows the corresponding line-egg configuration. 

 



 
Figure 2. Line-egg configuration in the given example.  

 

Based on the above, the condition of containing a given egg inside the polygon can be 

described by the relation 

 

 𝑑 ≥ 𝑙max(𝑎, 𝑏, 𝑝, 𝑡, 𝑥𝑐, 𝑦𝑐, 𝜃; 𝑥, 𝑦). (4) 

 

This constraint will be used in our optimization framework, for all sides of the regular 

polygon which, of course, share the same apothem distance 𝑑. Thus, for a regular polygon 

with 𝑚 sides, the points (𝑐𝑥𝑘 , 𝑐𝑦𝑘) that define the unit vectors for each apothem are given 

by 

 

 (𝑐𝑥𝑘 , 𝑐𝑦𝑘) = (cos (
2∙𝑘∙𝜋

𝑚
−
𝜋

2
) , sin (

2∙𝑘∙𝜋

𝑚
−
𝜋

2
)) , 𝑘 = 1,… ,𝑚. (5) 

 

Proceeding next towards preventing egg overlaps, it is useful to determine equations for 

the derivatives of the egg equation with respect to 𝑥  and 𝑦. For a given set of values 

(𝑎, 𝑏, 𝑝, 𝑡, 𝑥𝑐, 𝑦𝑐, 𝜃) we can denote 𝑒(𝑎, 𝑏, 𝑝, 𝑡, 𝑥𝑐, 𝑦𝑐, 𝜃; 𝑥, 𝑦) simply as 𝑒(𝑥, 𝑦): then these 

derivatives are 

 

 𝑑𝑒(𝑥, 𝑦)

𝑑𝑥
= −

𝑒𝑡𝛿𝑝𝜑𝑝−1

𝑏
sin(𝜃) + 𝑒𝑡𝛿𝑡𝜑𝑝 cos(𝜃) +

𝑝𝜔𝑝−1

𝑎
cos(𝜃), 

(6) 

 

 𝑑𝑒(𝑥, 𝑦)

𝑑𝑦
=
𝑒𝑡𝛿𝑝𝜑𝑝−1

𝑏
cos(𝜃) + 𝑒𝑡𝛿𝑡𝜑𝑝 sin(𝜃) +

𝑝𝜔𝑝−1

𝑎
, 

(7) 

 

where 

 
𝜑 = (

1

𝑏
) ((𝑦 − 𝑦𝑐) cos(𝜃) + (𝑥𝑐 − 𝑥) sin(𝜃)), 

(8) 

 

 
𝜔 = (

1

𝑎
) ((𝑥 − 𝑥𝑐) cos(𝜃) + (𝑦 − 𝑦𝑐) sin(𝜃)). 

(9) 

 



All pairs of packed eggs are prevented from overlapping by requiring that the minimum 

value of the egg equation for egg 𝑖  for any point on egg 𝑗  has to be greater than a 

sufficiently small parameter 휀 ≥ 0 . This requirement will be met by using embedded 

Lagrange multiplier conditions. 

 

The equations shown below determine the point on egg 𝑗 that maximizes or minimizes the 

value of the function describing egg 𝑖. In the case considered here, 𝜆 must be negative to 

obtain the minimum. During optimization, this requirement with respect to the sign of 𝜆 

will be enforced by setting its search bounds. 

 

(10) 

 

{
 
 

 
 
𝑑𝑒(𝑥,𝑦)

𝑑𝑥
(𝑎𝑖 , 𝑏𝑖 , 𝑝𝑖 , 𝑡𝑖 , 𝑥𝑐𝑖 , 𝑦𝑐𝑖 , 𝜃𝑖; 𝑥, 𝑦) = 𝜆 ∙

𝑑𝑒(𝑥,𝑦)

𝑑𝑥
(𝑎𝑗 , 𝑏𝑗 , 𝑝𝑗 , 𝑡𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗; 𝑥, 𝑦)

𝑑𝑒(𝑥,𝑦)

𝑑𝑦
(𝑎𝑖 , 𝑏𝑖 , 𝑝𝑖 , 𝑡𝑖 , 𝑥𝑐𝑖 , 𝑦𝑐𝑖 , 𝜃𝑖; 𝑥, 𝑦) = 𝜆 ∙

𝑑𝑒(𝑥,𝑦)

𝑑𝑦
(𝑎𝑗 , 𝑏𝑗 , 𝑝𝑗 , 𝑡𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗; 𝑥, 𝑦)

𝑒(𝑎𝑗 , 𝑏𝑗 , 𝑝𝑗 , 𝑡𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗)(𝑥, 𝑦) = 0 }
 
 

 
 

. 

 

 

The last equation type introduced corresponds to the requirement that the distance 

minimizing point lies on egg 𝑗. Eliminating 𝜆 from the first two equations, we obtain 

 

 𝑑𝑒(𝑥, 𝑦)

𝑑𝑦
(𝑎𝑖 , 𝑏𝑖 , 𝑝𝑖, 𝑡𝑖 , 𝑥𝑐𝑖 , 𝑦𝑐𝑖 , 𝜃𝑖; 𝑥, 𝑦)

∙
𝑑𝑒(𝑥, 𝑦)

𝑑𝑥
(𝑎𝑗 , 𝑏𝑗 , 𝑝𝑗 , 𝑡𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗; 𝑥, 𝑦)

=
𝑑𝑒(𝑥, 𝑦)

𝑑𝑦
(𝑎𝑗 , 𝑏𝑗 , 𝑝𝑗 , 𝑡𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗; 𝑥, 𝑦)

∙
𝑑𝑒(𝑥, 𝑦)

𝑑𝑥
(𝑎𝑖 , 𝑏𝑖 , 𝑝𝑖 , 𝑡𝑖 , 𝑥𝑐𝑖 , 𝑦𝑐𝑖 , 𝜃𝑖; 𝑥, 𝑦). 

(11) 

 

Let us note that at the point on egg 𝑗 that minimizes or maximizes the value of the function 

describing egg 𝑖, the slope of egg curve 𝑖 equals the slope of egg curve 𝑗. 
 

For example, consider two eggs defined by 𝑒𝑖(1,1,2,1/2,0,0,0; 𝑥, 𝑦)  and 𝑒𝑗(1/2,3/

4,2,0,0,0,0; 𝑥, 𝑦). The overlap indicator value between the eggs is −0.5924 with (𝑥, 𝑦) =
(0.1035,0.7338) : this can be found by solving equations (10). Figure 3 shows this 

(overlapping eggs) configuration. 

 



 
Figure 3. Two overlapping eggs. 

 

To give another example, consider two eggs defined by 𝑒𝑖(3/4,1,2,1/2,−1/2,0,0; 𝑥, 𝑦) 
and 𝑒𝑗(1/3,1/2,2,0,3/4,0,1/2; 𝑥, 𝑦) . The overlap indicator value between the eggs is 

0.5696 with (𝑥, 𝑦) = (0.3745,0.1004): again, this value can be found by solving the set 

of equations (10) for 𝑥  and 𝑦 . Figure 4 shows the resulting (non-overlapping eggs) 

configuration. 

 

 
Figure 4. Two non-overlapping eggs. 

 

In our optimization framework, 𝜆𝑖,𝑗  denote the Lagrange multipliers appearing in the 

equations to find the point (𝑥𝑗,𝑖 , 𝑦𝑗,𝑖) on egg 𝑗 that minimizes the value of the equation 

describing egg 𝑖. This calculation is restricted to minimization by requiring that the value 

of 𝜆𝑖,𝑗 is negative. Finally, we state constraints to prevent egg 𝑖 from overlapping with egg 

𝑗, by requiring that the minimal value of the equation describing egg 𝑖 at the minimizing 

point on egg 𝑗 is at least 휀. 

 

Summarizing the model components and development steps discussed above, we present 

the following model-class for packing 𝑛 egg-shaped objects (ovals) in an optimized regular 

𝑚-polygon. 



 

minimize 𝑑  (12) 

 

subject to 𝑑 ≥ 𝑙𝑖,𝑘
max(𝑎𝑖 , 𝑏𝑖 , 𝑝𝑖 , 𝑡𝑖 , 𝑥𝑐𝑖 , 𝑦𝑐𝑖 , 𝜃𝑖; 𝑐𝑥𝑘 , 𝑐𝑦𝑘) for 𝑖 = 1, … , 𝑛 

𝑘 = 1,… ,𝑚 

 

 

  𝑑𝑒(𝑥, 𝑦)

𝑑𝑥
(𝑎𝑖 , 𝑏𝑖 , 𝑝𝑖, 𝑡𝑖 , 𝑥𝑐𝑖 , 𝑦𝑐𝑖 , 𝜃𝑖; 𝑥𝑗,𝑖 , 𝑦𝑗,𝑖)

= 𝜆𝑗,𝑖

∙
𝑑𝑒(𝑥, 𝑦)

𝑑𝑥
(𝑎𝑗 , 𝑏𝑗 , 𝑝𝑗 , 𝑡𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗; 𝑥𝑗,𝑖 , 𝑦𝑗,𝑖) 

for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1,… , 𝑛 

 

 

  𝑑𝑒(𝑥, 𝑦)

𝑑𝑦
(𝑎𝑖 , 𝑏𝑖 , 𝑝𝑖, 𝑡𝑖 , 𝑥𝑐𝑖 , 𝑦𝑐𝑖 , 𝜃𝑖; 𝑥𝑗,𝑖 , 𝑦𝑗,𝑖)

= 𝜆𝑗,𝑖

∙
𝑑𝑒(𝑥, 𝑦)

𝑑𝑦
(𝑎𝑗 , 𝑏𝑗 , 𝑝𝑗 , 𝑡𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗; 𝑥𝑗,𝑖 , 𝑦𝑗,𝑖) 

for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1,… , 𝑛 

 

 

  𝑒(𝑎𝑗 , 𝑏𝑗 , 𝑝𝑗 , 𝑡𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗; 𝑥𝑗,𝑖 , 𝑦𝑗,𝑖) = 0 for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1,… , 𝑛 

 

 

  𝑒(𝑎𝑖 , 𝑏𝑖 , 𝑝𝑖 , 𝑡𝑖 , 𝑥𝑐𝑖 , 𝑦𝑐𝑖 , 𝜃𝑖) ≥ 휀 for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1,… , 𝑛 

 

 

  𝑙𝑏 ≤ 𝑥𝑐𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 

 

 

  𝑙𝑏 ≤ 𝑦𝑐𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 

 

 

  −𝜋 ≤ 𝜃𝑖 ≤ 𝜋 for 𝑖 = 1, … , 𝑛 

 

 

  𝑙𝑏 ≤ 𝑥𝑗,𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1,… , 𝑛 

 

 

  𝑙𝑏 ≤ 𝑦𝑗,𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1,… , 𝑛 

 

 

  2 ∙ 𝑙𝑏 ≤ 𝜆𝑗,𝑖 ≤ 0 for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1,… , 𝑛 

 

 

In model (12) 𝑙𝑏 and 𝑢𝑏 are lower and upper bounds for the egg center positions: these 

bounds can be chosen appropriately for each egg packing model instance, in order to 

facilitate the finding of feasible solutions. 

 

We close this section by noting that the embedded Lagrange multiplier conditions used 

require that the value of the function describing one egg is always greater than (or less 

than) 0 on all points on the other egg (or line), to ensure that eggs do not overlap with other 

eggs and that they are located within the polygon container. Analogous conditions are 



applicable to any convex curve described by a function which is always positive for points 

outside the curve: thus our approach can be applied also to packing rounded polygons.  

 

 

4 Illustrative Numerical Results 

 

We used a PC running under Windows 7, with an Intel Core i5 processor running at 2.6 

GHz, with 16 GBytes of RAM, using Mathematica version 11. For the purposes of this 

study, we have implemented a rather efficient, but simple global-local optimization 

strategy based on multiple starting points. The numerical experiments are based on using 

a randomized starting solution used by a single call to the local nonlinear optimization 

solver Ipopt (2018). While – similarly to all other researchers who address similarly (or 

even less) difficult general packing problems – we cannot guarantee the theoretical 

optimality of the configurations found, our computational results consistently lead to 

visibly good quality packings.  

 

As we stated earlier, to our best knowledge, there are no previously studied model instances 

available for the general egg packing problem-class considered here. Hence, we created 

our own test models, by packing eggs of (in principle) arbitrary size and orientation. Table 

1 summarizes the egg packing test problem sets considered. Note that setting 𝑝 = 2, 𝑎𝑖 =
𝑏𝑖, and 𝑡 = 0.0, test case 1 becomes a general circle packing problem for circles with radii 

𝑎𝑖 = 𝑖
−1

2⁄ .  With 𝑝 = 2 , 𝑎𝑖 > 𝑏𝑖 , and 𝑡 = 0.0,  test case 2 becomes a general ellipse 

packing problem for ellipses with semi-major 𝑎𝑖 = 𝑖
−1

2⁄  and semi-minor 𝑏𝑖 =
𝑎𝑖
𝑐⁄  axes, 

with eccentricity 𝑐 = 2. Test cases 1-6 and 8 consider eggs with the same distortion factor 

set (𝑡 = 0.0, 0.5, or 1.0). Test case 7 considers eggs with different distortion factors 𝑡𝑖 =
𝑖
5⁄ . 

 

Tables 2-9 summarize the computational results for a total of 224 egg packing problem 

instances solved. In these model instances, the number of egg objects is chosen as one of 

𝑛 = 4,… ,10; the number of regular polygon container sides is chosen as one of 𝑚 =
3,4,5, and 10.  

 

Given how difficult these problems are thought to be, we believe that the CPU times 

(ranging from seconds to several hours, see result tables) are reasonable for our entire range 

of parameter choices. Note that the result tables also include container area and packing 

fraction information. Several illustrative packing configurations are displayed in Figure 5. 

(Similar figures are available, for all examples presented here.) 

 

Considering Tables 2-7, we see that, on average, CPU time increases with the distortion 

factor 𝑡 (comparing, e.g., Tables 4-5 and 6-7). On average, CPU time also increases with 

the exponent 𝑝 (comparing Tables 2 and 8). We can also see that, on average, the packing 

fraction increases with the eccentricity 𝑐 (comparing, e.g., Tables 2 and 3). In general, there 

is a positive correlation between the packing fraction and certain functions of the different 

input parameters. Multiple linear regression analysis, using, for consistency, Tables 2-7 



(with 𝑝 = 2 and 𝑡𝑖 = 𝑡  for all instances), indicates that the regression function for the 

packing fraction can be estimated as  

 

0.8022 + 0.0173 ∙ 𝑡 + 0.0444 ∙ 𝑐 − 0.2745 ∙ (1 𝑛⁄ ) − 0.1905 ∙ (1 𝑚⁄ ).  
We received p-values (i.e., observed significance levels, cf. Black et al. (2014)) below 

0.0001 for all other input parameters. This finding indicates that we have very strong 

statistical evidence suggesting that the regression coefficients are different from zero. 

Figure 6 highlights the quality of our regression equation by depicting actual vs. predicted 

packing fractions. 

 

To conclude the discussion of numerical results, we note that it is apparent that our global-

local optimization strategy could become prohibitively expensive for arbitrarily increasing 

size collections of eggs, particularly when the eggs are highly distorted and eccentric. 

Therefore we believe that large-scale problem instances open future research directions 

towards finding suitable heuristic approaches. 

 

Table 1. Egg packing test cases 

Test case 𝑝𝑖 (𝑎𝑖 , 𝑏𝑖) 𝑡𝑖 
1 2 (𝑖

−1
2⁄ , 𝑎𝑖) 0.0 

2 2 (𝑖
−1

2⁄ ,
𝑎𝑖
2⁄ ) 0.0 

3 2 (𝑖
−1

2⁄ , 𝑎𝑖) 0.5 

4 2 (𝑖
−1

2⁄ ,
𝑎𝑖
2⁄ ) 0.5 

5 2 (𝑖
−1

2⁄ , 𝑎𝑖) 1.0 

6 2 (𝑖
−1

2⁄ ,
𝑎𝑖
2⁄ ) 1.0 

7 2 (𝑖
−1

2⁄ , 𝑎𝑖) 
𝑖
5⁄  

8 4 (𝑖
−1

2⁄ , 𝑎𝑖) 0.0 

 

 

Table 2. Egg packing results for test case 1 

Problem 

number 

Number of 

container 

sides 

Number of 

eggs 

Objective Area of 

optimized 

container 

Packing 

fraction 

Time 

(sec.) 

1 3 4 2.6781 9.3169 0.7025 21.7489 

2  5 2.8097 10.2554 0.6995 15.5796 

3  6 2.8829 10.7962 0.7129 279.985 

4  7 2.9296 11.1491 0.7306 71.5815 

5  8 3.0304 11.9295 0.7157 589.264 

6  9 3.0490 12.0760 0.7360 67.2593 

7  10 3.0839 12.3544 0.7448 69.9138 

8 4 4 2.1580 9.3137 0.7027 14.0704 

9  5 2.1871 9.5668 0.7498 54.0113 



10  6 2.2897 10.4850 0.7341 28.3510 

11  7 2.3275 10.8340 0.7519 62.3785 

12  8 2.3561 11.1021 0.7691 57.7027 

13  9 2.3702 11.2353 0.7910 134.182 

14  10 2.4040 11.5583 0.7961 110.340 

15 5 4 1.9740 9.2647 0.7064 10.7099 

16  5 2.0290 9.7887 0.7328 21.9864 

17  6 2.0596 10.0855 0.7632 24.0855 

18  7 2.1128 10.6139 0.7675 40.0479 

19  8 2.1597 11.0903 0.7699 42.5799 

20  9 2.1943 11.4487 0.7763 72.4504 

21  10 2.2507 12.0438 0.7640 421.234 

22 10 4 1.7637 9.1417 0.7159 169.622 

23  5 1.8094 9.6219 0.7455 86.3605 

24  6 1.8740 10.3211 0.7457 95.7238 

25  7 1.9214 10.8499 0.7508 159.780 

26  8 1.9391 11.0510 0.7726 330.072 

27  9 1.9664 11.3644 0.7820 185.579 

28  10 2.0018 11.7771 0.7813 232.406 

 

 

Table 3. Egg packing results for test case 2 

Problem 

number 

Number of 

container 

sides 

Number of 

eggs 

Objective Area of 

optimized 

container 

Packing 

fraction 

Time 

(sec.) 

29 3 4 1.8381 4.3887 0.7457 15.1797 

30  5 1.9093 4.7357 0.7574 18.5818 

31  6 1.9336 4.8566 0.7924 23.9995 

32  7 1.9881 5.1343 0.7933 33.1757 

33  8 2.0180 5.2903 0.8070 47.1203 

34  9 2.0566 5.4945 0.8088 65.3648 

35  10 2.0913 5.6816 0.8098 75.5452 

36 4 4 1.4386 4.1391 0.7906 17.1312 

37  5 1.5025 4.5148 0.7944 20.1131 

38  6 1.5461 4.7809 0.8050 24.5677 

39  7 1.5728 4.9476 0.8232 43.7241 

40  8 1.6144 5.2123 0.8191 47.2367 

41  9 1.6396 5.3765 0.8265 72.3506 

42  10 1.6713 5.5863 0.8236 99.1121 

43 5 4 1.3064 4.0581 0.8064 15.3050 

44  5 1.3535 4.3560 0.8234 22.0519 

45  6 1.3909 4.6001 0.8366 29.7306 

46  7 1.4281 4.8492 0.8399 40.7732 

47  8 1.4614 5.0780 0.8407 52.5977 

48  9 1.4904 5.2815 0.8414 72.7178 

49  10 1.5118 5.4340 0.8467 85.8090 



50 10 4 1.1624 3.9708 0.8241 53.9213 

51  5 1.1979 4.2170 0.8505 79.3888 

52  6 1.2422 4.5350 0.8486 105.983 

53  7 1.2777 4.7978 0.8489 133.923 

54  8 1.2974 4.9472 0.8630 177.798 

55  9 1.3255 5.1635 0.8606 224.357 

56  10 1.3481 5.3408 0.8615 294.655 

 

 

Table 4. Egg packing results for test case 3 

Problem 

number 

Number of 

container 

sides 

Number of 

eggs 

Objective Area of 

optimized 

container 

Packing 

fraction 

Time 

(sec.) 

57 3 4 2.5905 8.7175 0.7548 17.5593 

58  5 2.7513 9.8335 0.7331 28.0943 

59  6 2.8194 10.3258 0.7490 40.0847 

60  7 2.8858 10.8185 0.7564 65.4501 

61  8 2.9339 11.1818 0.7670 80.5654 

62  9 2.9797 11.5340 0.7738 103.953 

63  10 3.0536 12.1128 0.7628 142.606 

64 4 4 2.1050 8.8621 0.7425 21.2198 

65  5 2.1562 9.2988 0.7753 33.0706 

66  6 2.2376 10.0139 0.7723 41.2511 

67  7 2.2963 10.5457 0.7759 59.5441 

68  8 2.3385 10.9372 0.7841 82.6317 

69  9 2.4068 11.5853 0.7704 111.078 

70  10 2.4268 11.7785 0.7845 143.685 

71 5 4 1.9439 8.9847 0.7324 22.6133 

72  5 1.9767 9.2901 0.7760 36.1682 

73  6 2.0239 9.7393 0.7941 49.2482 

74  7 2.0797 10.2841 0.7957 70.5491 

75  8 2.1322 10.8094 0.7934 95.7088 

76  9 2.1946 11.4508 0.7794 142.376 

77  10 2.2212 11.7306 0.7877 163.732 

78 10 4 1.7507 9.0073 0.7305 84.8077 

79  5 1.7772 9.2819 0.7767 177.210 

80  6 1.8157 9.6893 0.7982 251.449 

81  7 1.8767 10.3510 0.7905 246.120 

82  8 1.8995 10.6040 0.8088 338.850 

83  9 1.9526 11.2051 0.7965 483.244 

84  10 1.9793 11.5138 0.8025 632.362 

 

 

Table 5. Egg packing results for test case 4 



Problem 

number 

Number of 

container 

sides 

Number of 

eggs 

Objective Area of 

optimized 

container 

Packing 

fraction 

Time 

(sec.) 

85 3 4 1.8583 4.4860 0.7334 2.7068 

86  5 1.9052 4.7153 0.7645 4.1626 

87  6 1.9562 4.9708 0.7779 5.3980 

88  7 2.0110 5.2534 0.7788 8.0164 

89  8 2.0703 5.5678 0.7701 10.4752 

90  9 2.0871 5.6585 0.7887 14.5303 

91  10 2.1150 5.8110 0.7950 19.1139 

92 4 4 1.4501 4.2056 0.7823 3.6087 

93  5 1.5141 4.5850 0.7862 5.8385 

94  6 1.5525 4.8208 0.8021 7.8616 

95  7 1.5782 4.9815 0.8213 9.8326 

96  8 1.6043 5.1478 0.8330 14.8706 

97  9 1.6495 5.4419 0.8201 19.4581 

98  10 1.6936 5.7365 0.8054 23.8477 

99 5 4 1.3073 4.0632 0.8097 33.6934 

100  5 1.3527 4.3503 0.8286 52.4342 

101  6 1.3897 4.5919 0.8421 89.9398 

102  7 1.4305 4.8655 0.8409 107.572 

103  8 1.4617 5.0797 0.8441 153.185 

104  9 1.4905 5.2822 0.8449 919.116 

105  10 1.5286 5.5554 0.8316 259.104 

106 10 4 1.1646 3.9860 0.8254 128.008 

107  5 1.2081 4.2896 0.8403 183.518 

108  6 1.2489 4.5842 0.8435 281.481 

109  7 1.2769 4.7915 0.8539 954.583 

110  8 1.3110 5.0512 0.8489 486.143 

111  9 1.3330 5.2218 0.8546 622.763 

112  10 1.3559 5.4027 0.8551 1435.69 

 

 

Table 6. Egg packing results for test case 5 

Problem 

number 

Number of 

container 

sides 

Number of 

eggs 

Objective Area of 

optimized 

container 

Packing 

fraction 

Time 

(sec.) 

113 3 4 2.5323 8.3301 0.8026 769.011 

114  5 2.6901 9.4009 0.7785 888.957 

115  6 2.7724 9.9844 0.7857 1376.57 

116  7 2.8754 10.7403 0.7724 4189.08 

117  8 2.9253 11.1165 0.7817 3603.15 

118  9 3.0084 11.7566 0.7689 5123.83 

119  10 3.0549 12.1234 0.7717 6635.19 

120 4 4 2.1002 8.8214 0.7579 806.650 

121  5 2.1920 9.6100 0.7615 408.624 



122  6 2.2683 10.2900 0.7623 2353.17 

123  7 2.2841 10.4342 0.7950 1886.77 

124  8 2.3317 10.8733 0.7992 5462.55 

125  9 2.3803 11.3316 0.7978 5119.08 

126  10 2.4475 11.9800 0.7809 7125.15 

127 5 4 1.9254 8.8140 0.7586 753.826 

128  5 1.9641 9.1721 0.7979 1231.89 

129  6 2.0435 9.9285 0.7901 2060.84 

130  7 2.1054 10.5396 0.7871 3801.65 

131  8 2.1549 11.0405 0.7871 3512.30 

132  9 2.1745 11.2429 0.8040 11414.5 

133  10 2.2179 11.6956 0.7999 7243.70 

134 10 4 1.7674 9.1800 0.7283 144.602 

135  5 1.7711 9.2187 0.7938 220.932 

136  6 1.8089 9.6169 0.8157 386.938 

137  7 1.8542 10.1038 0.8210 2241.72 

138  8 1.8674 10.2481 0.8479 1022.57 

139  9 1.9245 10.8852 0.8305 844.129 

140  10 1.9651 11.3488 0.8243 6043.67 

 

 

Table 7. Egg packing results for test case 6 

Problem 

number 

Number of 

container 

sides 

Number of 

eggs 

Objective Area of 

optimized 

container 

Packing 

fraction 

Time 

(sec.) 

141 3 4 1.8521 4.4561 0.7502 19.9478 

142 3 5 1.8946 4.6629 0.7847 61.6953 

143 3 6 1.9510 4.9449 0.7932 226.774 

144 3 7 2.0160 5.2798 0.7856 484.932 

145 3 8 2.0764 5.6007 0.7758 808.216 

146 3 9 2.0904 5.6764 0.7963 223.154 

147 3 10 2.1299 5.8932 0.7937 1186.28 

148 4 4 1.4592 4.2586 0.7850 1021.43 

149 4 5 1.4992 4.4952 0.8140 1230.49 

150 4 6 1.5558 4.8410 0.8102 1612.22 

151 4 7 1.6041 5.1463 0.8060 2545.30 

152 4 8 1.6322 5.3282 0.8154 3803.67 

153 4 9 1.6629 5.5305 0.8173 5969.19 

154 4 10 1.6882 5.6997 0.8207 6740.09 

155 5 4 1.3348 4.2363 0.7891 2207.20 

156 5 5 1.3775 4.5118 0.8110 3220.68 

157 5 6 1.4176 4.7777 0.8210 4472.20 

158 5 7 1.4462 4.9729 0.8341 6903.90 

159 5 8 1.4881 5.2651 0.8252 6838.76 

160 5 9 1.5067 5.3975 0.8374 20883.4 

161 5 10 1.5293 5.5610 0.8411 13502.4 



162 10 4 1.1859 4.1332 0.8088 192.373 

163  5 1.2239 4.4021 0.8312 1399.74 

164  6 1.2617 4.6783 0.8384 1937.92 

165  7 1.2917 4.9038 0.8458 6500.79 

166  8 1.3307 5.2038 0.8349 8730.52 

167  9 1.3436 5.3057 0.8519 3542.88 

168  10 1.3695 5.5118 0.8486 22030.7 

 

 

Table 8. Egg packing results for test case 7 

Problem 

number 

Number of 

container 

sides 

Number of 

eggs 

Objective Area of 

optimized 

container 

Packing 

fraction 

Time 

(sec.) 

169 3 4 2.6259 8.9576 0.7324 4.4808 

170  5 2.8097 10.2554 0.7014 8.1396 

171  6 2.8555 10.5919 0.7289 14.4646 

172  7 2.9837 11.5647 0.7067 17.0902 

173  8 2.9682 11.4449 0.7488 44.3698 

174  9 3.0139 11.7999 0.7562 96.7891 

175  10 3.0565 12.1355 0.7615 825.447 

176 4 4 2.1203 8.9910 0.7297 25.2150 

177  5 2.1505 9.2497 0.7776 42.6442 

178  6 2.2505 10.1294 0.7622 254.799 

179  7 2.3094 10.6664 0.7663 648.593 

180  8 2.3073 10.6475 0.8049 491.954 

181  9 2.3776 11.3063 0.7892 1249.69 

182  10 2.4305 11.8150 0.7821 2829.13 

183 5 4 1.9532 9.0707 0.7233 5.1273 

184  5 2.0343 9.8391 0.7311 9.3015 

185  6 2.0398 9.8929 0.7804 17.5677 

186  7 2.1284 10.7706 0.7588 73.7508 

187  8 2.1273 10.7596 0.7965 43.6279 

188  9 2.1929 11.4336 0.7804 492.502 

189  10 2.2566 12.1079 0.7632 185.712 

190 10 4 1.7538 9.0400 0.7257 75.2667 

191  5 1.7759 9.2686 0.7761 121.193 

192  6 1.8182 9.7154 0.7947 196.941 

193  7 1.8671 10.2456 0.7977 1287.00 

194  8 1.9274 10.9182 0.7849 1409.65 

195  9 1.9630 11.3250 0.7879 1761.68 

196  10 1.9846 11.5755 0.7983 6089.94 

 

 

Table 9. Egg packing results for test case 8 



Problem 

number 

Number of 

container 

sides 

Number of 

eggs 

Objective Area of 

optimized 

container 

Packing 

fraction 

Time 

(sec.) 

197 3 4 2.8763 10.7470 0.7188 73.1147 

198  5 2.9749 11.4967 0.7365 123.432 

199  6 3.1845 13.1732 0.6897 151.958 

200  7 3.2575 13.7846 0.6975 227.377 

201  8 3.4068 15.0769 0.6685 298.352 

202  9 3.5440 16.3158 0.6429 358.151 

203  10 3.7169 17.9468 0.6052 669.925 

204 4 4 2.2294 9.9408 0.7771 67.3030 

205  5 2.3802 11.3307 0.7473 125.285 

206  6 2.4112 11.6275 0.7813 163.078 

207  7 2.4629 12.1321 0.7925 225.838 

208  8 2.5937 13.4545 0.7491 311.393 

209  9 2.7438 15.0572 0.6967 433.157 

210  10 2.9695 17.6357 0.6159 510.207 

211 5 4 2.1035 10.5206 0.7343 82.7059 

212  5 2.2389 11.9184 0.7104 127.430 

213  6 2.2976 12.5509 0.7238 189.892 

214  7 2.3291 12.8980 0.7454 299.622 

215  8 2.3904 13.5858 0.7418 312.729 

216  9 2.5637 15.6268 0.6713 753.623 

217  10 2.7022 17.3613 0.6256 757.450 

218 10 4 1.9398 11.0588 0.6986 139.701 

219  5 2.0385 12.2126 0.6933 210.233 

220  6 2.0892 12.8277 0.7082 351.298 

221  7 2.1804 13.9716 0.6882 437.045 

222  8 2.3291 15.9423 0.6322 538.977 

223  9 2.3294 15.9465 0.6578 888.381 

224  10 2.4129 17.1113 0.6347 1492.95 
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Figure 5. Packing configurations found for 𝑛 = 8 and 𝑚 = 5. 
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Figure 6. Actual (computed) vs. predicted packing fractions. 

 

 

5 Conclusions 

 

The efficient packing, arrangement, or configuration design of objects is required across a 

vast range of engineering and scientific applications. In this work, we present a model 

development approach to the challenging problem of packing convex planar objects. 

Specifically, we introduce the general problem-class of packing eggs (defined here as 

exponentially distorted ellipses) into optimized regular polygons. The numerical solution 

approach is based on the use of embedded Lagrange multipliers. We produce credible 

packings for all test problems considered, at the expense of an overall reasonable 

computational effort. Our embedded Lagrange multipliers based modeling approach is 

applicable to objects defined by any convex curve described by a function which is always 

positive for points outside the curve. This observation can lead to model development and 

solution strategies to handle further very general packing problems. 
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